Bovichtus: Notothenioidei)

Total Page:16

File Type:pdf, Size:1020Kb

Bovichtus: Notothenioidei) Polar Biology https://doi.org/10.1007/s00300-019-02489-1 ORIGINAL PAPER Recent diversifcation in an ancient lineage of Notothenioid fshes (Bovichtus: Notothenioidei) Thomas J. Near1,2 · Ava Ghezelayagh1 · F. Patricio Ojeda3 · Alex Dornburg4 Received: 3 August 2018 / Revised: 24 February 2019 / Accepted: 13 March 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Notothenioids are among the most intensively studied lineages of marine fshes. However, notothenioid research is pre- dominately focused on the approximately 100 species of Antarctic cryonotothenioids. Far less attention is devoted to the non-Antarctic lineages Bovichtidae, Pseudaphritis urvillii, and Eleginops maclovinus, all of which originated prior to the diversifcation of cryonotothenioid species. Here we utilize DNA sequence data from mitochondrial and nuclear genes, as well as meristic trait morphology to investigate the evolutionary history of Bovichtidae. Bovichtus is the only polytypic lineage of early diverging non-Antarctic notothenioids providing a unique opportunity to contextualize the diversifcation dynamics of cryonotothenioids with their non-Antarctic relatives. We fnd strong evidence that species of Bovichtus represent a recent evolutionary radiation with divergence times similar to those estimated among the most closely related species of cryonotothenioids. The divergence in traditional meristic trait morphology among species of Bovichtus is consistent with their phylogenetic relationships. The phylogeny of Bovichtus implies the wide geographic distribution of species in the clade is likely the result of West Wind drift-driven dispersal. The phylogeny and divergence time estimates results reject a hypothesis that species persistence in Bovichtus refects long periods of evolutionary stasis. Instead, we hypothesize that patterns of extinction and diversifcation in Bovichtus closely mirror those observed in their Antarctic relatives. Keywords West Wind drift · Historical biogeography · Notothenioidei · Bovichtidae · Adaptive radiation Introduction Kock 1985; Barrera-Oro 2002; La Mesa et al. 2004), and are considered a rare example of adaptive radiations among Notothenioids, which dominate the near-shore marine habi- marine fshes (Clarke and Johnston 1996; Near et al. 2012). tats of the Southern Ocean, are one of the most intensively Although important advances in understanding the evolu- studied lineages of teleost fshes (Cheng and Detrich 2007). tionary history and ecology of Antarctic notothenioids have This attention is not unwarranted as notothenioids are of developed over the past 25 years (Eastman 1993; Bargelloni critical importance to multi-national fshing interests (Kock et al. 2000; Near et al. 2012, 2018; Dornburg et al. 2017), far 1992; Collins 2010), are a key component of the marine food less attention has been devoted toward the development of web dynamics of the Southern Ocean (Eastman 1985a, b; an evolutionary framework that focuses on the non-Antarctic lineages Bovichtidae, Pseudaphritis urvillii, and Eleginops maclovinus (Near et al. 2015; Papetti et al. 2016). As result, * Thomas J. Near [email protected] there is no perspective to compare diversifcation dynamics of the Antarctic adaptive radiation with other notothenioid 1 Department of Ecology and Evolutionary Biology, Osborn lineages. Memorial Labs, Yale University, P.O. Box 208106, A notable feature of notothenioid phylogenetic diversity New Haven, CT 06520-8106, USA is the presence of non-Antarctic species-depauperate lin- 2 Peabody Museum of Natural History, Yale University, eages, Bovichtidae (6 species), Pseudaphritis urvillii, and New Haven, CT 06520-8106, USA Eleginops maclovinus that form successive sister lineages 3 Departamento de Ecología, Facultad de Ciencias Biológicas, of the predominantly Antarctic Cryonotothenioidea (Fig. 1). Pontifcia Universidad Católica de Chile, Santiago, Chile The divergences times of Bovichtidae and Pseudaphritis 4 North Carolina Museum of Natural Sciences, Raleigh, are consistently placed in the Cretaceous (Near 2004, 2009; NC 27601, USA Vol.:(0123456789)1 3 Polar Biology Fig. 1 Current phylogenetic hypothesis of early diverging notothenioid relationships as discussed in the text. Diver- gence times refect those esti- mated in Near et al. (2015) Near et al. 2012, 2015), with their origins hypothesized to informed perspective on species diversity, the current lack have resulted from continental fragmentation in the Southern of a phylogenetic hypothesis challenges the development of Hemisphere (DeWitt 1971; Miller 1987; Balushkin 2000; a more robust understanding of the evolutionary history of Near et al. 2015). Given that no fossils have been found for Bovichtus. these lineages and that both Cottoperca and Pseudaphri- Collectively, the six recognized species of Bovichtus tis are monotypic, investigating the evolutionary history of are widely distributed (Fig. 2) from the Pacifc and Atlan- Bovichtus represents the only opportunity to explore pat- tic coasts of southern South American, the Antarctic Pen- terns of speciation in a polytypic ancestrally non-Antarctic insula, Tristan da Cunha, St. Paul Island in the southern notothenioid clade. Inference of a species-level phylogeny Indian Ocean, southern Australia and Tasmania, New Zea- for Bovichtus has never been attempted (Papetti et al. 2016). land, the Campbell Plateau, and seamounts east of New Molecular phylogenetic analyzes that include Bovichtus Zealand in the southern Pacifc (Sauvage 1879; Hureau and have only included two species, B. variegatus and B. dia- Tomo 1977; Hardy 1988; Kingsford et al. 1989; Andrew canthus, which resolve as monophyletic with strong node et al. 1995; Bravo et al. 1999; Balushkin 2016). Relaxed support (Near et al. 2012). All other systematic investiga- molecular clock analyzes have consistently estimated an age tions of Bovichtus have used meristic and morphometric for most recent common ancestor (MRCA) of Bovichtidae traits to assess the distinctiveness of the described species. (Cottoperca trigloides and Bovichtus) at ~ 40 Myr. This is Regan (1913, pp. 255–257) reviewed eight species of Bovi- nearly twice the age ( ~ 23 myr) estimated for the MRCA of chtus, providing descriptions of B. angustifrons, B. chilen- the species-rich Cryonotothenioidea (Near et al. 2012, 2015; sis, and B. decipiens. Comparison of meristic data taken Dornburg et al. 2017). Given this ancient divergence time from a large number of specimens resulted in B. argentinus between Cottoperca trigloides and Bovichtus (Fig. 1), it is Mac Donagh and B. elongatus Hureau and Tomo being syn- not clear if the wide geographic distribution of Bovichtus is onymized with B. chilensis (Bravo et al. 1999). In a review the result of speciation events that occurred in the Paleogene of the Australasian species of Bovichtus, B. oculus Hardy and the living diversity of Bovichtus is the result of a grad- was described from a single specimen, B. decipiens and B. ual accumulation of lineages through time. Alternatively, if roseopictus Hutton were synonymized with B. variegatus the timing of diversifcation in Bovichtus is more recent, it Richardson, and Aurion efulgens Waite was synonymized suggests similar patterns of lineage diversifcation that are with B. psychrolutes Gunther (Hardy 1988). A recent study observed among species of Antarctic distributed Cryono- by Balushkin (2016) led to the additional reduction of the tothenioidea (Stankovic et al. 2002; Near et al. 2012; Hüne number recognized species of Bovichtus by synonymizing B. et al. 2015; Dornburg et al. 2017). The absence of a molecu- oculus with B. psychrolutes. While these studies provide an lar time tree has precluded investigating the evolutionary 1 3 Polar Biology Fig. 2 Map showing the geo- graphic distribution of the six recognized species of Bovichtus history and timing of diversifcation in Bovichtus. Over the Phylogenies were inferred from each of the fve sampled past 20 years, we have been able to gather specimens from genes using MrBayes v. 3.2 (Ronquist et al. 2012). For each four of the six recognized species of Bovichtus for molecular nuclear gene, an HKY substitution model was applied and a phylogenetic analysis. In this study, we investigate the phy- GTR + Γ4 model was used for the mitochondrial ND2 gene logenetic relationships within Bovichtus and timing of diver- based on Akaike information criterion-based model selec- sifcation in the lineage using a dataset of DNA sequences tion in ModelTest (Posada and Crandall 1998). The MrBayes from mitochondrial and nuclear genes. v. 3.2 analysis was run for 107 generations with two simul- taneous runs each with four chains. Convergence and sta- tionarity of the chains were assessed through visual inspec- tion of the chain likelihoods and by monitoring the average Materials and methods standard deviation of the split frequencies between the two runs, which was less than 0.005 after 2 × 106 generations. Tissue samples were obtained from specimens collected The frst 50% of the sampled generations were discarded as during several expeditions, and most of these specimens burn-in, and the posterior phylogeny was summarized as a are maintained in museum research collections (Table 1). 50% majority-rule consensus tree. Qiagen DNeasy Blood and Tissue kits were used to iso- We jointly estimated divergence times and the tree topol- late DNA from frozen or ethanol preserved muscle tissues. ogy for early diverging notothenioids using a multispe- Four nuclear genes (enc1,
Recommended publications
  • Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role.
    [Show full text]
  • Phylogeography of the Sub-Antarctic Notothenioid Wsh Eleginops Maclovinus: Evidence of Population Expansion
    Mar Biol (2012) 159:499–505 DOI 10.1007/s00227-011-1830-4 ORIGINAL PAPER Phylogeography of the sub-Antarctic notothenioid Wsh Eleginops maclovinus: evidence of population expansion Santiago Guillermo Ceballos · Enrique Pablo Lessa · Mariela Fernanda Victorio · Daniel Alfredo Fernández Received: 8 June 2011 / Accepted: 20 October 2011 / Published online: 16 November 2011 © Springer-Verlag 2011 Abstract Phylogeography studies add insights into the Introduction geographic and evolutionary processes that underline the genetic divergence of populations. This work examines the Eleginops maclovinus (Cuvier and Valenciennes 1830), geographic genetic structure of the Patagonian blennie, Ele- known as róbalo in Argentina and Chile, is a notothenioid ginops maclovinus, a notothenioid (Perciformes) endemic Wsh (Perciformes) of the monotypic family Eleginopidae. to South American temperate and sub-Antarctic waters, This marine Wsh is endemic to the coastal temperate and using mitochondrial DNA cytochrome b sequences. We sub-Antarctic waters of South America with a range along found 58 haplotypes in the analysis of 261 individual the Atlantic and PaciWc Patagonian coasts from Valparaiso, sequences of 833 base pairs in length. Among-population Chile (33°S) (Pequeño 1989) to San Matias Gulf, Argentina variance was very low (1.62%) and many haplotypes were (40°S) (Cousseau and Perrotta 2000). This eurithermic and shared between several populations across the species geo- euryhaline species that has been described as a protandrous graphic range. Genetic diVerentiation was not consistent hermaphrodite (Calvo et al. 1992; Brickle et al. 2005; with a simple model of isolation by distance, possibly sug- Licandeo et al. 2006) inhabits costal waters, river mouths gesting a lack of equilibrium between gene Xow and local and estuaries (Gosztonyi 1980).
    [Show full text]
  • Variable Expression of Myoglobin Among the Hemoglobinless Antarctic Icefishes (Channichthyidae͞oxygen Transport͞phylogenetics)
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 3420–3424, April 1997 Physiology Variable expression of myoglobin among the hemoglobinless Antarctic icefishes (Channichthyidaeyoxygen transportyphylogenetics) BRUCE D. SIDELL*†‡,MICHAEL E. VAYDA*†,DEENA J. SMALL†,THOMAS J. MOYLAN*, RICHARD L. LONDRAVILLE*§, MENG-LAN YUAN†¶,KENNETH J. RODNICK*i,ZOE A. EPPLEY*, AND LORI COSTELLO† *School of Marine Sciences and Department of Zoology, †Department of Biochemistry, Microbiology and Molecular Biology, University of Maine, Orono, ME 04469 Communicated by George N. Somero, Stanford University, Pacific Grove, CA, January 13, 1997 (received for review October 24, 1996) ABSTRACT The important intracellular oxygen-binding Icefishes exhibit several unique physiological features. Car- protein, myoglobin (Mb), is thought to be absent from oxi- diovascular adaptations to compensate for lack of hemoglobin dative muscle tissues of the family of hemoglobinless Antarctic in the circulation include lower blood viscosity, increased heart icefishes, Channichthyidae. Within this family of fishes, which size, greater cardiac output, and increased blood volume is endemic to the Southern Ocean surrounding Antarctica, compared with their red-blooded notothenioid relatives (2, there exist 15 known species and 11 genera. To date, we have 14–16). Combined with the high aqueous solubility of oxygen examined eight species of icefish (representing seven genera) at severely cold body temperature, these cardiovascular fea- using immunoblot analyses. Results indicate that Mb is tures are considered necessary to ensure that tissues obtain present in heart ventricles from five of these species of icefish. adequate amounts of oxygen carried in physical solution by the Mb is absent from heart auricle and oxidative skeletal muscle plasma.
    [Show full text]
  • Jan Jansen, Dipl.-Biol
    The spatial, temporal and structural distribution of Antarctic seafloor biodiversity by Jan Jansen, Dipl.-Biol. Under the supervision of Craig R. Johnson Nicole A. Hill Piers K. Dunstan and John McKinlay Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Quantitative Antarctic Science Institute for Marine and Antarctic Studies (IMAS), University of Tasmania May 2019 In loving memory of my dad, whose passion for adventure, sport and all of nature’s life and diversity inspired so many kids, including me, whose positive and generous attitude touched so many people’s lives, and whose love for the ocean has carried over to me. The spatial, temporal and structural distribution of Antarctic seafloor biodiversity by Jan Jansen Abstract Biodiversity is nature’s most valuable resource. The Southern Ocean contains significant levels of marine biodiversity as a result of its isolated history and a combination of exceptional environmental conditions. However, little is known about the spatial and temporal distribution of biodiversity on the Antarctic continental shelf, hindering informed marine spatial planning, policy development underpinning regulation of human activity, and predicting the response of Antarctic marine ecosystems to environmental change. In this thesis, I provide detailed insight into the spatial and temporal distribution of Antarctic benthic macrofaunal and demersal fish biodiversity. Using data from the George V shelf region in East Antarctica, I address some of the main issues currently hindering understanding of the functioning of the Antarctic ecosystem and the distribution of biodiversity at the seafloor. The focus is on spatial biodiversity prediction with particular consideration given to previously unavailable environmental factors that are integral in determining where species are able to live, and the poor relationships often found between species distributions and other environmental factors.
    [Show full text]
  • Age-Length Composition of Mackerel Icefish (Champsocephalus Gunnari, Perciformes, Notothenioidei, Channichthyidae) from Different Parts of the South Georgia Shelf
    CCAMLR Scieilce, Vol. 8 (2001): 133-146 AGE-LENGTH COMPOSITION OF MACKEREL ICEFISH (CHAMPSOCEPHALUS GUNNARI, PERCIFORMES, NOTOTHENIOIDEI, CHANNICHTHYIDAE) FROM DIFFERENT PARTS OF THE SOUTH GEORGIA SHELF G.A. Frolkina AtlantNIRO 5 Dmitry Donskoy Street Kaliningrad 236000, Russia Email - atlantQbaltnet.ru Abstract Biostatistical data obtained by Soviet research and commercial vessels from 1970 to 1991 have been used to determine tlne age-length composition of mackerel icefish (Chnnzpsoceplzalus g~~izllnrl)from different parts of the South Georgia area. An analysis of the spatial distribution of C. giirzrznri size and age groups over the eastern, northern, western and soutlnern parts of tlne shelf, and near Shag Rocks, revealed a similar age-leingtl~composition for young fish inhabiting areas to the west of the island and near Shag Rocks. Differences were observed between those t~7ogroups and the easterin group. The larger number of mature fish in the west is related to the migration of maturing individuals from the eastern and western parts of the area. It is implied that part of tlne western group migrates towards Shag Rocks at the age of 2-3 years. It has been found that, by number, recruits represent the largest part of tlne population, whether a fishery is operating or not. As a result of this, as well as the species' ability to live not only in off- bottom, but also in pelagic waters, an earlier age of sexual maturity compared to other nototheniids, and favourable oceanographic conditions, the C. g~lrliznrl stock could potentially recover quickly from declines in stock size and inay become abundant in the area, as has bee11 demonstrated on several occasions in the 1970s and 1980s.
    [Show full text]
  • Dietary Resilience Among Hunter-Gatherers of Tierra Del Fuego: Isotopic Evidence in a Diachronic Perspective
    RESEARCH ARTICLE Dietary resilience among hunter-gatherers of Tierra del Fuego: Isotopic evidence in a diachronic perspective Mary Anne Tafuri1☯*, Atilio Francisco Javier Zangrando2☯*, Augusto Tessone3, Sayuri Kochi3, Jacopo Moggi Cecchi4, Fabio Di Vincenzo1, Antonio Profico1, Giorgio Manzi1 1 Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy, 2 CADIC ± CONICET, Ushuaia, Argentina, 3 INGEIS-CONICET, PabelloÂn INGEIS, Buenos Aires, Argentina, 4 Dipartimento di Biologia, Università degli Studi di Firenze, Firenze, Italy a1111111111 a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] (MAT); [email protected] (AFJZ) a1111111111 a1111111111 Abstract The native groups of Patagonia have relied on a hunter-gatherer economy well after the first Europeans and North Americans reached this part of the world. The large exploitation of OPEN ACCESS marine mammals (i.e., seals) by such allochthonous groups has had a strong impact on the Citation: Tafuri MA, Zangrando AFJ, Tessone A, Kochi S, Moggi Cecchi J, Di Vincenzo F, et al. local ecology in a way that might have forced the natives to adjust their subsistence strate- (2017) Dietary resilience among hunter-gatherers gies. Similarly, the introduction of new foods might have changed local diet. These are the of Tierra del Fuego: Isotopic evidence in a premises of our isotopic-based analysis. There is a large set of paleonutritional investiga- diachronic perspective. PLoS ONE 12(4): tions through isotopic analysis on Fuegians groups, however a systematic exploration of e0175594. https://doi.org/10.1371/journal. pone.0175594 food practices across time in relation to possible pre- and post-contact changes is still lack- ing.
    [Show full text]
  • Piscirickettsiosis and Piscirickettsia Salmonis in Fish: a Review
    Journal of Fish Diseases 2014, 37, 163–188 doi:10.1111/jfd.12211 Review Piscirickettsiosis and Piscirickettsia salmonis in fish: a review M Rozas1,2 and R Enrıquez3 1 Faculty of Veterinary Sciences, Graduate School, Universidad Austral de Chile, Valdivia, Chile 2 Laboratory of Fish Pathology, Pathovet Ltd., Puerto Montt, Chile 3 Laboratory of Aquatic Pathology and Biotechnology, Faculty of Veterinary Sciences, Animal Pathology Institute, Universidad Austral de Chile, Valdivia, Chile prevention of and treatment for piscirickettsiosis Abstract are discussed. The bacterium Piscirickettsia salmonis is the aetio- Keywords: control, epidemiology, pathogenesis, logical agent of piscirickettsiosis a severe disease pathology, Piscirickettsia salmonis, piscirickettsiosis, that has caused major economic losses in the transmission. aquaculture industry since its appearance in 1989. Recent reports of P. salmonis or P. salmonis-like organisms in new fish hosts and geographical regions have increased interest in the bacterium. Introduction Because this gram-negative bacterium is still poorly understood, many relevant aspects of its Piscirickettsia salmonis was the first rickettsia-like life cycle, virulence and pathogenesis must be bacterium to be known as a fish pathogen (Fryer investigated before prophylactic procedures can be et al. 1992). Since the first reports of pisciricketts- properly designed. The development of effective iosis in Chile at the end of the 1980s, Piscirickett- control strategies for the disease has been limited sia-like bacteria have been frequently recognized due to a lack of knowledge about the biology, in various fish species farmed in fresh water and intracellular growth, transmission and virulence of sea water and have significantly affected the pro- the organism. Piscirickettsiosis has been difficult ductivity of aquaculture worldwide (Mauel & to control; the failure of antibiotic treatment is Miller 2002).
    [Show full text]
  • Proximal Composition and Fatty Acid Profile of Hemigrapsus
    Brazilian Journal of Biology https://doi.org/10.1590/1519-6984.231834 ISSN 1519-6984 (Print) Original Article ISSN 1678-4375 (Online) Proximal composition and fatty acid profile ofHemigrapsus crenulatus (H. Milne Edwards, 1837) as one of the main foods of “patagonian blenny”Eleginops maclovinus (Cuvier, 1830) G. Figueroa-Muñoza,b,c , P. De los Ríos-Escalanted,e , P. Dantagnana,f , C. Toledog , R. Oyarzúnh , L. Vargas-Chacoffh , C. Essei and R. Vega-Aguayoa,f* aUniversidad Católica de Temuco, Facultad de Recursos Naturales, Departamento de Ciencias Agropecuarias y Acuícolas, Temuco, Chile bIlustre Municipalidad de Cisnes, Puerto Cisnes, Chile cUniversidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Zoología, Genomics in Ecology, Evolution and Conservation Laboratory – GEECLAB, Concepción, Chile dUniversidad Católica de Temuco, Facultad de Recursos Naturales, Departamento de Ciencias Biológicas y Químicas, Temuco, Chile eUniversidad Católica de Temuco, Núcleo de Estudios Ambientales, Temuco, Chile fUniversidad Católica de Temuco, Núcleo de Investigación en Producción Alimentaria, Temuco, Chile gUniversidad Católica de Temuco, Facultad de Recursos Naturales, Programa de Doctorado en Ciencias Agropecuarias, Temuco, Chile hUniversidad Austral de Chile, Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias- FONDAP, Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes-IDEAL, Instituto de Ciencias Marinas y Limnológicas, Valdivia, Chile iUniversidad Autónoma de Chile, Facultad de Arquitectura y Construcción, Instituto de Estudios del Hábitat – IEH, Unidad de Cambio Climático y Medio Ambiente – UCCMA, Temuco, Chile *e-mail: [email protected] Received: December 05, 2019 - Accepted: April 07, 2020 - Distributed: August 31, 2021 Abstract The Patagonian blenny (Eleginops maclovinus) is species endemic to South America with physiological characteristics that would facilitate its incorporation into Chilean aquaculture.
    [Show full text]
  • Climate Change Direct Effects on Antarctic Fish and Indirect Effects on Ecosystems and Fisheries Management
    PCAS 15 (2012/2013) Supervised Project Report (ANTA604) Climate change direct effects on Antarctic fish and indirect effects on ecosystems and fisheries management Beth Vanderhaven Student ID:42236339 Word count:4816 Abstract/executive summary (ca. 200 words): Climate change has direct effects on the physiology of Antarctic fish. These polar fish, predominantly from Notothenioidei, are well adapted for the stable, cold environmental conditions of the Southern Ocean. Physiological adaptations include antifreeze glycogen proteins (AFGP) and a narrow tolerance to temperature change. Climate change does not impact evenly around Antarctica, in areas of warming there are predicted negative effects on fish stock and survivability, habitats and indirectly ecosystems. In turn fisheries and their management must also take into account the direct impacts on the Antarctic fish they harvest. This critical review identifies specific areas of weakness of fish species, habitats and the Antarctic marine ecosystem. Whilst also identifying current fisheries issues that need to be addressed due to the direct influences on the Antarctic fish. Table of contents Introduction ……….………………………………………………………………………………………………page 3 Climate change………….…………………………………………………………………………………….…page 3-4 Antarctic fish…………………………………………………………………………………………………...…page 4-6 Direct effects on fish…………………………….………………………………………………………..….page 6-7 Ecosystem effects……………………………………………..………..…………………………..………...page 7-8 Management and Fisheries……….…………………………………………………………………….….page 8 Discussion and Conclusion…………………………………………………………………………………..page 9-10 References…………………………………………..…………………………………………..………………...page 10-13 Page nos. 1-13 Word count. 4816 Introduction Fisheries in the Southern Ocean are the longest continuous human activity in Antarctica and have had the greatest effect on the ecosystem up to this point (Croxall & Nicol, 2004). Now we are seeing the effects climate change is having on its ecosystem and fish, identifying it now as the current and future threat to them.
    [Show full text]
  • Mitochondrial DNA, Morphology, and the Phylogenetic Relationships of Antarctic Icefishes
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 28 (2003) 87–98 www.elsevier.com/locate/ympev Mitochondrial DNA, morphology, and the phylogenetic relationships of Antarctic icefishes (Notothenioidei: Channichthyidae) Thomas J. Near,a,* James J. Pesavento,b and Chi-Hing C. Chengb a Center for Population Biology, One Shields Avenue, University of California, Davis, CA 95616, USA b Department of Animal Biology, 515 Morrill Hall, University of Illinois, Urbana, IL 61801, USA Received 10 July 2002; revised 4 November 2002 Abstract The Channichthyidae is a lineage of 16 species in the Notothenioidei, a clade of fishes that dominate Antarctic near-shore marine ecosystems with respect to both diversity and biomass. Among four published studies investigating channichthyid phylogeny, no two have produced the same tree topology, and no published study has investigated the degree of phylogenetic incongruence be- tween existing molecular and morphological datasets. In this investigation we present an analysis of channichthyid phylogeny using complete gene sequences from two mitochondrial genes (ND2 and 16S) sampled from all recognized species in the clade. In addition, we have scored all 58 unique morphological characters used in three previous analyses of channichthyid phylogenetic relationships. Data partitions were analyzed separately to assess the amount of phylogenetic resolution provided by each dataset, and phylogenetic incongruence among data partitions was investigated using incongruence length difference (ILD) tests. We utilized a parsimony- based version of the Shimodaira–Hasegawa test to determine if alternative tree topologies are significantly different from trees resulting from maximum parsimony analysis of the combined partition dataset. Our results demonstrate that the greatest phylo- genetic resolution is achieved when all molecular and morphological data partitions are combined into a single maximum parsimony analysis.
    [Show full text]
  • Terra Nova Bay, Ross Sea
    MEASURE 14 - ANNEX Management Plan for Antarctic Specially Protected Area No 161 TERRA NOVA BAY, ROSS SEA 1. Description values to be protected A coastal marine area encompassing 29.4km2 between Adélie Cove and Tethys Bay, Terra Nova Bay, is proposed as an Antarctic Specially Protected Area (ASPA) by Italy on the grounds that it is an important littoral area for well-established and long-term scientific investigations. The Area is confined to a narrow strip of waters extending approximately 9.4km in length immediately to the south of the Mario Zucchelli Station (MZS) and up to a maximum of 7km from the shore. No marine resource harvesting has been, is currently, or is planned to be, conducted within the Area, nor in the immediate surrounding vicinity. The site typically remains ice-free in summer, which is rare for coastal areas in the Ross Sea region, making it an ideal and accessible site for research into the near-shore benthic communities of the region. Extensive marine ecological research has been carried out at Terra Nova Bay since 1986/87, contributing substantially to our understanding of these communities which had not previously been well-described. High diversity at both species and community levels make this Area of high ecological and scientific value. Studies have revealed a complex array of species assemblages, often co-existing in mosaics (Cattaneo-Vietti, 1991; Sarà et al., 1992; Cattaneo-Vietti et al., 1997; 2000b; 2000c; Gambi et al., 1997; Cantone et al., 2000). There exist assemblages with high species richness and complex functioning, such as the sponge and anthozoan communities, alongside loosely structured, low diversity assemblages.
    [Show full text]
  • Fitting Together the Evolutionary Puzzle Pieces of the Immunoglobulin T Gene from Antarctic Fishes
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2020 doi:10.20944/preprints202011.0685.v1 Article Fitting together the evolutionary puzzle pieces of the Immunoglobulin T gene from Antarctic fishes Alessia Ametrano1,2 Marco Gerdol3, Maria Vitale1,4, Samuele Greco3, Umberto Oreste1, Maria Rosaria Coscia1,* 1 Institute of Biochemistry and Cell Biology - National Research Council of Italy, 80131 Naples, Italy; [email protected] (A.A.); [email protected] (U.O.); [email protected] (M.R.C.) 2 Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; [email protected] (A.A.) 3 Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; [email protected] (M.G.); [email protected] (S.G.) 1,4 Department of Molecular Medicine and Medical biotechnology, University of Naples Federico II, 80131 Naples, Italy (Present address); [email protected] (M.V.) * Correspondence: [email protected]; Tel.: +0039 081 6132556 (M.R.C.) Abstract: Cryonotothenioidea is the main group of fishes that thrive in the extremely cold Antarctic environment, thanks to the acquisition of peculiar morphological, physiological and molecular adaptations. We have previously disclosed that IgM, the main immunoglobulin isotype in teleosts, display typical cold-adapted features. Recently, we have analyzed the gene encoding the heavy chain constant region (CH) of the IgT isotype from the Antarctic teleost Trematomus bernacchii (family Nototheniidae), characterized by the near-complete deletion of the CH2 domain. Here, we aimed to track the loss of the CH2 domain along notothenioid phylogeny and to identify its ancestral origins.
    [Show full text]