Distribution Algebras and Duality
Advances in Mathematics 156, 133155 (2000) doi:10.1006Âaima.2000.1947, available online at http:ÂÂwww.idealibrary.com on Distribution Algebras and Duality Marta Bunge Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6 Jonathon Funk Department of Mathematics, University of Saskatchewan, 106 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E6 Mamuka Jibladze CORE Metadata, citation and similar papers at core.ac.uk Provided by ElsevierDepartement - Publisher Connector de Mathematique , Louvain-la-Neuve, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium; and Institute of Mathematics, Georgian Academy of Sciences, M. Alexidze Street 1, Tbilisi 380093, Republic of Georgia and Thomas Streicher Fachbereich 4 Mathematik, TU Darmstadt, Schlo;gartenstrasse 7, 64289 Darmstadt, Germany Communicated by Ross Street Received May 20, 2000; accepted May 20, 2000 0. INTRODUCTION Since being introduced by F. W. Lawvere in 1983, considerable progress has been made in the study of distributions on toposes from a variety of viewpoints [59, 12, 15, 19, 24]. However, much work still remains to be done in this area. The purpose of this paper is to deepen our understanding of topos distributions by exploring a (dual) lattice-theoretic notion of dis- tribution algebra. We characterize the distribution algebras in E relative to S as the S-bicomplete S-atomic Heyting algebras in E. As an illustration, we employ distribution algebras explicitly in order to give an alternative description of the display locale (complete spread) of a distribution [7, 10, 12]. 133 0001-8708Â00 35.00 Copyright 2000 by Academic Press All rights of reproduction in any form reserved.
[Show full text]