A New Characterization of Complete Heyting and Co-Heyting Algebras

Total Page:16

File Type:pdf, Size:1020Kb

A New Characterization of Complete Heyting and Co-Heyting Algebras Logical Methods in Computer Science Vol. 13(3:25)2017, pp. 1–11 Submitted Apr. 15, 2015 www.lmcs-online.org Published Sep. 14, 2017 A NEW CHARACTERIZATION OF COMPLETE HEYTING AND CO-HEYTING ALGEBRAS FRANCESCO RANZATO Dipartimento di Matematica, University of Padova, Italy e-mail address: [email protected] ABSTRACT. We give a new order-theoretic characterization of a complete Heyting and co-Heyting algebra C. This result provides an unexpected relationship with the field of Nash equilibria, being based on the so-called Veinott ordering relation on subcomplete sublattices of C, which is crucially used in Topkis’ theorem for studying the order-theoretic stucture of Nash equilibria of supermodular games. INTRODUCTION Complete Heyting algebras — also called frames, while locales is used for complete co-Heyting algebras — play a fundamental role as algebraic model of intuitionistic logic and in pointless topology [Johnstone 1982, Johnstone 1983]. To the best of our knowledge, no characterization of complete Heyting and co-Heyting algebras has been known. As reported in [Balbes and Dwinger 1974], a sufficient condition has been given in [Funayama 1959] while a necessary condition has been given by [Chang and Horn 1962]. We give here an order-theoretic characterization of complete Heyting and co-Heyting algebras that puts forward an unexected relationship with Nash equilibria. Topkis’ theorem [Topkis 1998] is well known in the theory of supermodular games in mathematical economics. This result shows that the set of solutions of a supermodular game, i.e., its set of pure-strategy Nash equilibria, is nonempty and contains a greatest element and a least one [Topkis 1978]. Topkis’ theorem has been strengthned by [Zhou 1994], where it is proved that this set of Nash equilibria is indeed a complete lattice. These results rely on so-called Veinott’s ordering relation (also called strong set relation). Let hC; ≤; ^; _i be a complete lattice. Then, the relation ≤v⊆ }(C) × }(C) on subsets of C, according to Topkis [Topkis 1978], has been introduced by Veinott [Topkis 1998, Veinott 1989]: for any S; T 2 }(C), 4 S ≤v T () 8s 2 S:8t 2 T: s ^ t 2 S & s _ t 2 T: This relation ≤v is always transitive and antisymmetric, while reflexivity S ≤v S holds if and only if S is a sublattice of C. If SL(C) denotes the set of nonempty subcomplete sublattices of C then hSL(C); ≤vi is therefore a poset. The proof of Topkis’ theorem is then based on the fixed points of a certain mapping defined on the poset hSL(C); ≤vi. Key words and phrases: Complete Heyting algebra, Veinott ordering. lLOGICAL METHODS c F. Ranzato IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(3:25)2017 CC Creative Commons 2 F. RANZATO To the best of our knowledge, no result is available on the order-theoretic properties of the Veinott poset hSL(C); ≤vi. When is this poset a lattice? And a complete lattice? Our efforts in investigating these questions led to the following main result: the Veinott poset SL(C) is a complete lattice if and only if C is a complete Heyting and co-Heyting algebra. This finding therefore reveals an unexpected link between complete Heyting algebras and Nash equilibria of supermodular games. This characterization of the Veinott relation ≤v could be exploited for generalizing a recent approach based on abstract interpretation for approximating the Nash equilibria of supermodular games introduced by [Ranzato 2016]. 1. NOTATION If hP; ≤i is a poset and S ⊆ P then lb(S) denotes the set of lower bounds of S, i.e., lb(S) , fx 2 P j 8s 2 S: x ≤ sg, while if x 2 P then #x , fy 2 P j y ≤ xg. Let hC; ≤; ^; _i be a complete lattice. A nonempty subset S ⊆ C is a subcomplete sublattice of C if for all its nonempty subsets X ⊆ S, ^X 2 S and _X 2 S, while S is merely a sublattice of C if this holds for all its nonempty and finite subsets X ⊆ S only. If S ⊆ C then the nonempty Moore ∗ ∗ closure of S is defined as M (S) , f^X 2 C j X ⊆ S; X 6= ?g. Let us observe that M is an upper closure operator on the poset h}(C); ⊆i, meaning that: (1) S ⊆ T )M∗(S) ⊆ M∗(T ); (2) S ⊆ M∗(S); (3) M∗(M∗(S)) = M∗(S). We define SL(C) , fS ⊆ C j S 6= ?;S subcomplete sublattice of Cg: Thus, if ≤v denotes the Veinott ordering defined in Section then hSL(C); ≤vi is a poset. C is a complete Heyting algebra (also called frame) if for any x 2 C and Y ⊆ C, x ^ (W Y ) = W y2Y x ^ y, while it is a complete co-Heyting algebra (also called locale) if the dual equation V V x _ ( Y ) = y2Y x _ y holds. Let us recall that these two notions are orthogonal, for example the complete lattice of open subsets of R ordered by ⊆ is a complete Heyting algebra, but not a complete co-Heyting algebra. C is (finitely) distributive if for any x; y; z 2 C, x ^ (y _ z) = (x ^ y) _ (x ^ z). Let us also recall that C is completely distributive if for any family fxj;k j j 2 J; k 2 K(j)g ⊆ C, we have that ^ _ _ ^ xj;k = xj;f(j) j2J k2K(j) f2J K j2J where J and, for any j 2 J, K(j) are sets of indices and J K , ff : J ![j2J K(j) j 8j 2 J: f(j) 2 K(j)g denotes the set of choice functions. It turns out that the class of completely distributive complete lattices is strictly contained in the class of complete Heyting and co-Heyting algebras. Clearly, any completely distribuitive lattice is a complete Heyting and co-Heyting algebra. On the other hand, this containment turns out to be strict, as shown by the following counterexample. Example 1.1. Let us recall that a subset S ⊆ [0; 1] of real numbers is a regular open set if S is open and S coincides with the interior of the closure of S. For example, (1=3; 2=3) and (0; 1=3) [ (2=3; 1) are both regular open sets, while (1=3; 2=3) [ (2=3; 1) is open but not regular. Let us consider C = hfS ⊆ [0; 1] j S is a regular open setg; ⊆i. It is known that C is a complete Boolean algebra (see e.g. [Vladimirov 2002, Theorem 12, Section 2.5]). As a consequence, C is a complete Heyting and co-Heyting algebra (see e.g. [Vladimirov 2002, Theorem 3, Section 0.2.3]). Recall that an element a 2 C in a complete lattice C is an atom if a is different from the least element ?C of C and for any x 2 C, if ?C < x ≤ a then x = a, while C is atomic if for any x 2 C r f?C g there exists an atom a 2 C such that a ≤ x. It turns out that C does not have atoms: in fact, any regular open set S 2 C is a union of open sets, namely, S = [fU ⊆ [0; 1] j U is open;U ⊆ Sg A NEW CHARACTERIZATION OF COMPLETE HEYTING AND CO-HEYTING ALGEBRAS 3 (see e.g. [Vladimirov 2002, Section 2.5]), so that no S 2 C r f?g can be an atom of C. In turn, this implies that C is a complete Boolean algebra which is not atomic. It known that a complete Boolean algebra is completely distributive if and only if it is atomic (see [Koppelberg 1989, Theorem 14.5, Chapter 5]). Hence, since C is not atomic, we obtain that C is not completely distributive. 2. THE SUFFICIENT CONDITION To the best of our knowledge, no result is available on the order-theoretic properties of the Veinott poset hSL(C); ≤vi. The following example shows that, in general, hSL(C); ≤vi is not a lattice. Example 2.1. Consider the nondistributive pentagon lattice N5, where, to use a compact notation, subsets of N5 are denoted by strings of letters. e d b c a Consider ed; abce 2 SL(N5). It turns out that #ed = fa; c; d; ab; ac; ad; cd; ed; acd; ade; cde; abde; acde; abcdeg and #abce = fa; ab; ac; abceg. Thus, fa; ab; acg is the set of common lower bounds of ed and abce. However, the set fa; ab; acg does not include a greatest element, since a ≤v ab and a ≤v ac while ab and ac are incomparable. Hence, ab and c are maximal lower bounds of ed and v abce, so that hSL(N5); ≤ i is not a lattice. Indeed, the following result shows that if SL(C) turns out to be a lattice then C must necessarily be distributive. Lemma 2.2. If hSL(C); ≤vi is a lattice then C is distributive. Proof. By the basic characterization of distributive lattices, we know that C is not distributive iff either the pentagon N5 is a sublattice of C or the diamond M3 is a sublattice of C. We consider separately these two possibilities. (N5) Assume that N5, as depicted by the diagram in Example 2.1, is a sublattice of C. Following Example 2.1, we consider the sublattices ed; abce 2 hSL(C); ≤vi and we prove that their meet does not exist. By Example 2.1, ab; ac 2 lb(fed; abceg).
Recommended publications
  • The Structure of Gunk: Adventures in the Ontology of Space
    The Structure of Gunk: Adventures in the Ontology of Space Jeff Sanford Russell February 16, 2009 1 Points and gunk Here are two ways space might be (not the only two): (1) Space is “pointy”. Ev- ery finite region has infinitely many infinitesimal, indivisible parts, called points. Points are zero-dimensional atoms of space. In addition to points, there are other kinds of “thin” boundary regions, like surfaces of spheres. Some regions include their boundaries—the closed regions—others exclude them—the open regions—and others include some bits of boundary and exclude others. Moreover, space includes unextended regions whose size is zero. (2) Space is “gunky”.1 Every region contains still smaller regions—there are no spatial atoms. Every region is “thick”—there are no boundary regions. Every region is extended. Pointy theories of space and space-time—such as Euclidean space or Minkowski space—are the kind that figure in modern physics. A rival tradition, most famously associated in the last century with A. N. Whitehead, instead embraces gunk.2 On the Whiteheadian view, points, curves and surfaces are not parts of space, but rather abstractions from the true regions. Three different motivations push philosophers toward gunky space. The first is that the physical space (or space-time) of our universe might be gunky. We posit spatial reasons to explain what goes on with physical objects; thus the main reason Dean Zimmerman has been a relentless source of suggestions and criticism throughout the writing of this paper. Thanks are also due to Frank Arntzenius, Kenny Easwaran, Peter Forrest, Hilary Greaves, John Hawthorne, and Beatrice Sanford for helpful comments.
    [Show full text]
  • A First Introduction to the Algebra of Sentences
    A First Introduction to the Algebra of Sentences Silvio Ghilardi Dipartimento di Scienze dell'Informazione, Universit`adegli Studi di Milano September 2000 These notes cover the content of a basic course in propositional alge- braic logic given by the author at the italian School of Logic held in Cesena, September 18-23, 2000. They are addressed to people having few background in Symbolic Logic and they are mostly intended to develop algebraic methods for establishing basic metamathematical results (like representation theory and completeness, ¯nite model property, disjunction property, Beth de¯n- ability and Craig interpolation). For the sake of simplicity, only the case of propositional intuitionistic logic is covered, although the methods we are explaining apply to other logics (e.g. modal) with minor modi¯cations. The purity and the conceptual clarity of such methods is our main concern; for these reasons we shall feel free to apply basic mathematical tools from cate- gory theory. The choice of the material and the presentation style for a basic course are always motivated by the occasion and by the lecturer's taste (that's the only reason why they might be stimulating) and these notes follow such a rule. They are expecially intended to provide an introduction to category theoretic methods, by applying them to topics suggested by propositional logic. Unfortunately, time was not su±cient to the author to include all material he planned to include; for this reason, important and interesting develope- ments are mentioned in the ¯nal Section of these notes, where the reader can however only ¯nd suggestions for further readings.
    [Show full text]
  • Implicative Algebras: a New Foundation for Realizability and Forcing
    Under consideration for publication in Math. Struct. in Comp. Science Implicative algebras: a new foundation for realizability and forcing Alexandre MIQUEL1 1 Instituto de Matem´atica y Estad´ıstica Prof. Ing. Rafael Laguardia Facultad de Ingenier´ıa{ Universidad de la Rep´ublica Julio Herrera y Reissig 565 { Montevideo C.P. 11300 { URUGUAY Received 1 February 2018 We introduce the notion of implicative algebra, a simple algebraic structure intended to factorize the model constructions underlying forcing and realizability (both in intuitionistic and classical logic). The salient feature of this structure is that its elements can be seen both as truth values and as (generalized) realizers, thus blurring the frontier between proofs and types. We show that each implicative algebra induces a (Set-based) tripos, using a construction that is reminiscent from the construction of a realizability tripos from a partial combinatory algebra. Relating this construction with the corresponding constructions in forcing and realizability, we conclude that the class of implicative triposes encompass all forcing triposes (both intuitionistic and classical), all classical realizability triposes (in the sense of Krivine) and all intuitionistic realizability triposes built from total combinatory algebras. 1. Introduction 2. Implicative structures 2.1. Definition Definition 2.1 (Implicative structure). An implicative structure is a complete meet- semilattice (A ; 4) equipped with a binary operation (a; b) 7! (a ! b), called the impli- cation of A , that fulfills the following two axioms: (1) Implication is anti-monotonic w.r.t. its first operand and monotonic w.r.t. its second operand: 0 0 0 0 0 0 if a 4 a and b 4 b ; then (a ! b) 4 (a ! b )(a; a ; b; b 2 A ) (2) Implication commutes with arbitrary meets on its second operand: a ! kb = k(a ! b)(a 2 A ;B ⊆ A ) b2B b2B Remarks 2.2.
    [Show full text]
  • Basic Category Theory and Topos Theory
    Basic Category Theory and Topos Theory Jaap van Oosten Jaap van Oosten Department of Mathematics Utrecht University The Netherlands Revised, February 2016 Contents 1 Categories and Functors 1 1.1 Definitions and examples . 1 1.2 Some special objects and arrows . 5 2 Natural transformations 8 2.1 The Yoneda lemma . 8 2.2 Examples of natural transformations . 11 2.3 Equivalence of categories; an example . 13 3 (Co)cones and (Co)limits 16 3.1 Limits . 16 3.2 Limits by products and equalizers . 23 3.3 Complete Categories . 24 3.4 Colimits . 25 4 A little piece of categorical logic 28 4.1 Regular categories and subobjects . 28 4.2 The logic of regular categories . 34 4.3 The language L(C) and theory T (C) associated to a regular cat- egory C ................................ 39 4.4 The category C(T ) associated to a theory T : Completeness Theorem 41 4.5 Example of a regular category . 44 5 Adjunctions 47 5.1 Adjoint functors . 47 5.2 Expressing (co)completeness by existence of adjoints; preserva- tion of (co)limits by adjoint functors . 52 6 Monads and Algebras 56 6.1 Algebras for a monad . 57 6.2 T -Algebras at least as complete as D . 61 6.3 The Kleisli category of a monad . 62 7 Cartesian closed categories and the λ-calculus 64 7.1 Cartesian closed categories (ccc's); examples and basic facts . 64 7.2 Typed λ-calculus and cartesian closed categories . 68 7.3 Representation of primitive recursive functions in ccc's with nat- ural numbers object .
    [Show full text]
  • Distribution Algebras and Duality
    Advances in Mathematics 156, 133155 (2000) doi:10.1006Âaima.2000.1947, available online at http:ÂÂwww.idealibrary.com on Distribution Algebras and Duality Marta Bunge Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6 Jonathon Funk Department of Mathematics, University of Saskatchewan, 106 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E6 Mamuka Jibladze CORE Metadata, citation and similar papers at core.ac.uk Provided by ElsevierDepartement - Publisher Connector de Mathematique , Louvain-la-Neuve, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium; and Institute of Mathematics, Georgian Academy of Sciences, M. Alexidze Street 1, Tbilisi 380093, Republic of Georgia and Thomas Streicher Fachbereich 4 Mathematik, TU Darmstadt, Schlo;gartenstrasse 7, 64289 Darmstadt, Germany Communicated by Ross Street Received May 20, 2000; accepted May 20, 2000 0. INTRODUCTION Since being introduced by F. W. Lawvere in 1983, considerable progress has been made in the study of distributions on toposes from a variety of viewpoints [59, 12, 15, 19, 24]. However, much work still remains to be done in this area. The purpose of this paper is to deepen our understanding of topos distributions by exploring a (dual) lattice-theoretic notion of dis- tribution algebra. We characterize the distribution algebras in E relative to S as the S-bicomplete S-atomic Heyting algebras in E. As an illustration, we employ distribution algebras explicitly in order to give an alternative description of the display locale (complete spread) of a distribution [7, 10, 12]. 133 0001-8708Â00 35.00 Copyright 2000 by Academic Press All rights of reproduction in any form reserved.
    [Show full text]
  • Arxiv:1912.09166V1 [Math.LO]
    HYPER-MACNEILLE COMPLETIONS OF HEYTING ALGEBRAS JOHN HARDING AND FREDERIK MOLLERSTR¨ OM¨ LAURIDSEN Abstract. A Heyting algebra is supplemented if each element a has a dual pseudo-com- plement a+, and a Heyting algebra is centrally supplement if it is supplemented and each supplement is central. We show that each Heyting algebra has a centrally supplemented ex- tension in the same variety of Heyting algebras as the original. We use this tool to investigate a new type of completion of Heyting algebras arising in the context of algebraic proof theory, the so-called hyper-MacNeille completion. We show that the hyper-MacNeille completion of a Heyting algebra is the MacNeille completion of its centrally supplemented extension. This provides an algebraic description of the hyper-MacNeille completion of a Heyting algebra, allows development of further properties of the hyper-MacNeille completion, and provides new examples of varieties of Heyting algebras that are closed under hyper-MacNeille comple- tions. In particular, connections between the centrally supplemented extension and Boolean products allow us to show that any finitely generated variety of Heyting algebras is closed under hyper-MacNeille completions. 1. Introduction Recently, a unified approach to establishing the existence of cut-free hypersequent calculi for various substructural logics has been developed [11]. It is shown that there is a countably infinite set of equations/formulas, called P3, such that, in the presence of weakening and exchange, any logic axiomatized by formulas from P3 admits a cut-free hypersequent calculus obtained by adding so-called analytic structural rules to a basic hypersequent calculus. The key idea is to establish completeness for the calculus without the cut-rule with respect to a certain algebra and then to show that for any set of rules coming from P3-formulas the calculus with the cut-rule is also sound with respect to this algebra.
    [Show full text]
  • Extending Obstructions to Noncommutative Functorial Spectra
    EXTENDING OBSTRUCTIONS TO NONCOMMUTATIVE FUNCTORIAL SPECTRA BENNO VAN DEN BERG AND CHRIS HEUNEN Abstract. Any functor from the category of C*-algebras to the category of locales that assigns to each commutative C*-algebra its Gelfand spectrum must be trivial on algebras of n-by-n matrices for n ≥ 3. This obstruction also applies to other spectra such as those named after Zariski, Stone, and Pierce. We extend these no-go results to functors with values in (ringed) topological spaces, (ringed) toposes, schemes, and quantales. The possibility of spectra in other categories is discussed. 1. Introduction The spectrum of a commutative ring is a leading tool of commutative algebra and algebraic geometry. For example, a commutative ring can be reconstructed using (among other ingredients) its Zariski spectrum, a coherent topological space. Spectra are also of central importance to functional analysis and operator algebra. For example, there is a dual equivalence between the category of commutative C*-algebras and compact Hausdorff topological spaces, due to Gelfand.1 A natural question is whether such spectra can be extended to the noncommu- tative setting. Indeed, many candidates have been proposed for noncommutative spectra. In a recent article [23], M. L. Reyes observed that none of the proposed spectra behave functorially, and proved that indeed they cannot, on pain of trivial- izing on the prototypical noncommutative rings Mn(C) of n-by-n matrices with complex entries. To be precise: any functor F : Ringop → Set that satisfies F (C) = Spec(C) for commutative rings C, must also satisfy F (Mn(C)) = ∅ for n ≥ 3.
    [Show full text]
  • Topos Theory
    Topos Theory Olivia Caramello Introduction Interpreting logic in categories First-order logic First-order languages First-order theories Categorical semantics Topos Theory Classes of ‘logical’ categories The interpretation of logic in categories The interpretation of formulae Examples Soundness and completeness Olivia Caramello Toposes as mathematical universes The internal language Kripke-Joyal semantics For further reading Topos Theory Interpreting first-order logic in categories Olivia Caramello Introduction • In Logic, first-order languages are a wide class of formal Interpreting logic in categories languages used for talking about mathematical structures of First-order logic any kind (where the restriction ‘first-order’ means that First-order languages quantification is allowed only over individuals rather than over First-order theories collections of individuals or higher-order constructions on Categorical semantics them). Classes of ‘logical’ categories • A first-order language contains sorts, which are meant to The interpretation of formulae represent different kinds of individuals, terms, which denote Examples individuals, and formulae, which make assertions about the Soundness and completeness individuals. Compound terms and formulae are formed by Toposes as mathematical using various logical operators. universes • It is well-known that first-order languages can always be The internal language interpreted in the context of (a given model of) set theory. In Kripke-Joyal semantics this lecture, we will show that these languages can also be For further reading meaningfully interpreted in a category, provided that the latter possesses enough categorical structure to allow the interpretation of the given fragment of logic. In fact, sorts will be interpreted as objects, terms as arrows and formulae as subobjects, in a way that respects the logical structure of compound expressions.
    [Show full text]
  • Induced Morphisms Between Heyting-Valued Models
    Induced morphisms between Heyting-valued models Jos´eGoudet Alvim∗ Universidade de S˜ao Paulo, S˜ao Paulo, Brasil Arthur Francisco Schwerz Cahali† Universidade de S˜ao Paulo, S˜ao Paulo, Brasil Hugo Luiz Mariano‡ Universidade de S˜ao Paulo, S˜ao Paulo, Brasil December 4, 2019 Abstract To the best of our knowledge, there are very few results on how Heyting-valued models are affected by the morphisms on the complete Heyting algebras that de- termine them: the only cases found in the literature are concerning automorphisms of complete Boolean algebras and complete embedding between them (i.e., injec- tive Boolean algebra homomorphisms that preserves arbitrary suprema and arbi- trary infima). In the present work, we consider and explore how more general kinds of morphisms between complete Heyting algebras H and H′ induce arrows ′ between V(H) and V(H ), and between their corresponding localic toposes Set(H) ′ (≃ Sh (H)) and Set(H ) (≃ Sh (H′)). In more details: any geometric morphism ′ f ∗ : Set(H) → Set(H ), (that automatically came from a unique locale morphism ′ f : H → H′), can be “lifted” to an arrow f˜ : V(H) → V(H ). We also provide also ′ some semantic preservation results concerning this arrow f˜ : V(H) → V(H ). Introduction The expression “Heyting-valued model of set theory” has two (related) meanings, both arXiv:1910.08193v2 [math.CT] 3 Dec 2019 parametrized by a complete Heyting algebra H: (i) The canonical Heyting-valued models in set theory, V(H), as introduced in the setting of complete boolean algebras in the 1960s by D. Scott, P.
    [Show full text]
  • Toy Examples Concerning the Bousfield Lattice
    Toy examples concerning the Bousfield lattice Greg Stevenson October 26, 2011 Contents 1 Introduction 1 2 RecollectionsonHeytingandBooleanalgebras 1 3 AnycompleteBooleanalgebraisaBousfieldlattice 3 4 NoteverylocalizingidealisaBousfieldclass 7 5 Strange behaviour of the Bousfield lattice under localization 8 1 Introduction The aim of this note is to give some examples of toy tensor triangulated categories to illustrate certain properties of the Bousfield lattice; it serves to show that one can not be too ambitious in trying to prove general results about the Bousfield lattice. 2 Recollections on Heyting and Boolean algebras In this section we give a brief reminder of the definitions of Heyting algebras, Boolean algebras, and of the Booleanization functor. Notation 2.1. Let L be a lattice. All our lattices will be bounded and we denote by 0 and 1 (or 0L and 1L if our notation would otherwise be ambiguous) the minimal and maximal elements of L respectively. We use and to denote the join and meet on L. ∨ ∧ Definition 2.2. A Heyting algebra is a lattice H equipped with an implication oper- ation : Hop H H satisfying the following universal property: ⇒ × −→ (l m) n if and only if l (m n) ∧ ≤ ≤ ⇒ for all l,m,n H. A complete Heyting algebra is a Heyting algebra which is complete as a lattice. ∈ 1 2 RECOLLECTIONS ON HEYTING AND BOOLEAN ALGEBRAS 2 A morphism of Heyting algebras is a morphism of lattices which preserves impli- cation. A morphism of complete Heyting algebras is a morphism of lattices which preserves implication and arbitrary joins. It is standard that Heyting algebras are distributive and that complete Heyting algebras are the same as frames i.e., complete distributive lattices.
    [Show full text]
  • Hilbert Algebras As Implicative Partial Semilattices
    DOI: 10.2478/s11533-007-0008-2 Research article CEJM 5(2) 2007 264–279 Hilbert algebras as implicative partial semilattices J¯anis C¯ırulis∗ University of Latvia, LV-1586 Riga, Latvia Received 15 August 2006; accepted 16 February 2007 Abstract: The infimum of elements a and b of a Hilbert algebra are said to be the compatible meet of a and b, if the elements a and b are compatible in a certain strict sense. The subject of the paper will be Hilbert algebras equipped with the compatible meet operation, which normally is partial. A partial lower semilattice is shown to be a reduct of such an expanded Hilbert algebra iff both algebras have the same filters. An expanded Hilbert algebra is actually an implicative partial semilattice (i.e., a relative subalgebra of an implicative semilattice), and conversely. The implication in an implicative partial semilattice is characterised in terms of filters of the underlying partial semilattice. c Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved. Keywords: Compatible elements, filter, Hilbert algebra, implication, implicative semilattice, meet, partial semilattice MSC (2000): 06A12, 03G25 1 Introduction Hilbert algebras, or positive implication algebras [35], are the duals of Henkin algebras called by him implicative models in [21] (this term has also been used for Hilbert algebras [30, 31]). Positive implicative BCK-algebras [24] are actually another version of Henkin algebras (see, e.g. [28, 37]). As a matter of fact, these algebras are an algebraic counterpart of positive implica- tional calculus. Various expansions of Hilbert algebras by a conjunction-like operation have also been studied in the literature.
    [Show full text]
  • Seminar I Boolean and Modal Algebras
    Seminar I Boolean and Modal Algebras Dana S. Scott University Professor Emeritus Carnegie Mellon University Visiting Scholar University of California, Berkeley Visiting Fellow Magdalen College, Oxford Oxford, Tuesday 25 May, 2010 Edinburgh, Wednesday 30 June, 2010 A Very Brief Potted History Gödel gave us two translations: (1) classical into intuitionistic using not-not, and (2) intuitionistic into S4-modal logic. Tarski and McKinsey reviewed all this algebraically in propositional logic, proving completeness of (2). Mostowski suggested the algebraic interpretation of quantifiers. Rasiowa and Sikorski went further with first-order logic, giving many completeness proofs (pace Kanger, Hintikka and Kripke). Montague applied higher-order modal logic to linguistics. Solovay and Scott showed how Cohen's forcing for ZFC can be considered under (1). Bell wrote a book (now 3rd ed.). Gallin studied a Boolean-valued version of Montague semantics. Myhill, Goodman, Flagg and Scedrov made proposals about modal ZF. Fitting studied modal ZF models and he and Smullyan worked out forcing results using both (1) and (2). What is a Lattice? 0 ≤ x ≤ 1 Bounded x ≤ x Partially Ordered x ≤ y & y ≤ z ⇒ x ≤ z Set x ≤ y & y ≤ x ⇒ x = y x ∨ y ≤ z ⇔ x ≤ z & y ≤ z With sups & z ≤ x ∧ y ⇔ z ≤ x & z ≤ y With infs What is a Complete Lattice? ∨i∈Ixi ≤ y ⇔ (∀i∈I) xi ≤ y y ≤ ∧i∈Ixi ⇔ (∀i∈I) y ≤ xi Note: ∧i∈Ixi = ∨{y|(∀i∈I) y ≤ xi } What is a Heyting Algebra? x ≤ y→z ⇔ x ∧ y ≤ z What is a Boolean Algebra? x ≤ (y→z) ∨ w ⇔ x ∧ y ≤ z ∨ w Alternatively using Negation x ≤ ¬y ∨ z ⇔ x ∧ y ≤ z Distributivity Theorem: Every Heyting algebra is distributive: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) Theorem: Every complete Heyting algebra is (∧ ∨)-distributive: ∧ ∨ = ∨ ∧ x i∈Iyi i∈I(x yi) Note: The dual law does not follow for complete Heyting algebras.
    [Show full text]