Serpentes: Viperinae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Very European Tale – Britain Still Has Only Three Snake Species, but Its Grass Snake Is Now Assigned to Another Species (Natrix Helvetica)
SHORT COMMUNICATION The Herpetological Bulletin 141, 2017: 44-45 A very European tale – Britain still has only three snake species, but its grass snake is now assigned to another species (Natrix helvetica) UWE FRITZ1* & CAROLIN KINDLER1 1Senckenberg Natural History Collections Dresden, Museum of Zoology, A. B. Meyer Building, 01109 Dresden, Germany *Corresponding author Email: [email protected] ollowing several investigations of the phylogeography and systematics of grass snakes (Fritz et al., 2012; FKindler et al., 2013, 2014; Pokrant et al., 2016), we published a further detailed study on this topic in August (Kindler et al., 2017). Our new investigation revealed that only very limited gene flow occurs between western barred grass snakes and eastern common grass snakes. Consequently, we concluded that the barred grass snake (Fig. 1), previously a subspecies, should be elevated to a full species. August being the ‘silly season’ for news stories led the local media, including the highly respected BBC, to claim that Britain has now an additional snake species, i.e. four instead of three species – the northern viper (Vipera Figure 1. Young N. helvetica showing the distinctive lateral bars berus), the smooth snake (Coronella austriaca) as well as from which the species common name the ‘barred grass snake’ is derived (photo: © Jason Steel) two species of grass snake, the common grass snake (Natrix natrix) and the newly recognised barred grass snake (Natrix helvetica). findings. However, some southern populations identified This upheaval resulted from a complete misunderstanding by Thorpe with barred grass snakes, for instance from of a press release by the Senckenberg Institution. The press northern Italy, turned out to be distinct from N. -
Rare Species of Shield-Head Vipers in the Caucasus
Nature Conservation Research. Заповедная наука 2016. 1 (3): 11–25 RARE SPECIES OF SHIELD-HEAD VIPERS IN THE CAUCASUS Boris S. Tuniyev Sochi National Park, Russia e-mail: [email protected] Received: 03.10.2016 An overview is presented on shield-head vipers of the genus Pelias distributed in the post-Soviet countries of the Caucasian Ecoregion. The assessment presents the current conservation status and recommendations to vipers’ ter- ritorial protection. Key words: Caucasian Ecoregion, shield-head vipers, current status, protection. Introduction The Caucasian Ecoregion (the territory south- to-landscape descriptions (Tunieyv B.S. et al., 2009; ward from the Kuma-Manych depression to north- Tuniyev S.B. et al., 2012, 2014). The stationary works eastern Turkey and northwestern Iran) is the centre (mostly on the territory of the Caucasian State Nature of taxonomic diversity of shield-head vipers within Biosphere reserve and Sochi National Park) conducted the genus Pelias Merrem, 1820, of which 13–18 a study of the microclimatic features of vipers’ habitats species are found here. Without exception, all spe- including temperature and humidity modes of air and cies have a status of the different categories of rare- the upper soil horizon. The results were compared with ness, they are included on the IUCN Red list, or in thermobiological characteristics of the animals (Tuni- the current and upcoming publication of National yev B.S. & Unanian, 1986; Tuniyev B.S. & Volčik, and Regional Red Data Books. Besides the shield- 1995). In a number of cases difficult to determine the head vipers the Caucasian Ecoregion inhabit three taxonomic affiliation, in addition to the classical meth- representatives of mountain vipers of the genus ods of animal morphology and statistics, biochemistry Montivipera Nilson, Tuniyev, Andren, Orlov, Joger and molecular-genetic analysis methods have been ap- & Herrman, 1999 (M. -
(Christoph, 1861), in the Saratov Region, Russian Federation
All_Short_Notes:SHORT_NOTE.qxd 12.02.2019 14:39 Seite 15 SHORT NOTE HERPETOZOA 31 (3/4) Wien, 28. Februar 2019 SHORT NOTE 233 lizards ( Dactyloa ): Taxonomic implications, new Distribution of Vipera renardi insights about phenotypic evolution and the timing of diversification.- Molecular Phylogenetics and Evolu - renardi (CHRiSTOPH , 1861), in the tion, Barking; 82: 258-268. PuRviS , A. & G iTTlEMAN , Saratov region, Russian Federation G. l. & C OWliNSHAW , G. & M ACE , G. M. (2000): Predicting extinction risk in declining species.- Pro - ceedings of the Royal Society of london, london; (Ser. The Steppe viper, Vipera renardi re - B) 267 (1456): 1947-1952. QuiROlA , D. R. & M áRMOl , A. & T ORRES -C ARvAjAl , O. & N ARvAEZ , A. E. & A yAlA - nardi (CHRiSTOPH , 1861), is widespread in vARElA , F. & M OORE , i. T. (2017): use of a rostral southeast European Russia ( ANANjEvA et appendage during social interactions in the Ecuadorian al. 2004). Distribution limits of the species Anolis proboscis .- journal of Natural History, london; are well known in general, whereas infor - 51 (27-28): 1625-1638. RiBEiRO -j úNiOR , M. A . (2015a): Catalogue of distribution of lizards (Reptilia: mation on local populations scattered with - Squamata) from the Brazilian Amazonia. i. Dactyloi - in marginal areas of the range is insuffi - dae, Hoplocercidae, iguanidae, leiosauridae, Polychro - cient. This situation applies to the northern tidae, Tropiduridae.- Zootaxa, Auckland; 3983: 1-110. range area and the Saratov region in partic - RiBEiRO -j úNiOR , M. A. (2015b): Catalogue of distribu - tion of lizards (Reptilia: Squamata) from the Brazilian ular, on which the present note is focused. Amazonia. ii. Gekkonidae, Phyllodactylidae, Sphaero - The authors’ analysis of confinement dactylidae.- Zootaxa, Auckland; 3981: 1-55. -
Trade in Live Reptiles, Its Impact on Wild Populations, and the Role of the European Market
BIOC-06813; No of Pages 17 Biological Conservation xxx (2016) xxx–xxx Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/bioc Review Trade in live reptiles, its impact on wild populations, and the role of the European market Mark Auliya a,⁎,SandraAltherrb, Daniel Ariano-Sanchez c, Ernst H. Baard d,CarlBrownd,RafeM.Browne, Juan-Carlos Cantu f,GabrieleGentileg, Paul Gildenhuys d, Evert Henningheim h, Jürgen Hintzmann i, Kahoru Kanari j, Milivoje Krvavac k, Marieke Lettink l, Jörg Lippert m, Luca Luiselli n,o, Göran Nilson p, Truong Quang Nguyen q, Vincent Nijman r, James F. Parham s, Stesha A. Pasachnik t,MiguelPedronou, Anna Rauhaus v,DannyRuedaCórdovaw, Maria-Elena Sanchez x,UlrichScheppy, Mona van Schingen z,v, Norbert Schneeweiss aa, Gabriel H. Segniagbeto ab, Ruchira Somaweera ac, Emerson Y. Sy ad,OguzTürkozanae, Sabine Vinke af, Thomas Vinke af,RajuVyasag, Stuart Williamson ah,1,ThomasZieglerai,aj a Department Conservation Biology, Helmholtz Centre for Environmental Conservation (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany b Pro Wildlife, Kidlerstrasse 2, 81371 Munich, Germany c Departamento de Biología, Universidad del Valle de, Guatemala d Western Cape Nature Conservation Board, South Africa e Department of Ecology and Evolutionary Biology,University of Kansas Biodiversity Institute, 1345 Jayhawk Blvd, Lawrence, KS 66045, USA f Bosques de Cerezos 112, C.P. 11700 México D.F., Mexico g Dipartimento di Biologia, Universitá Tor Vergata, Roma, Italy h Amsterdam, The Netherlands -
The Adder (Vipera Berus) in Southern Altay Mountains
The adder (Vipera berus) in Southern Altay Mountains: population characteristics, distribution, morphology and phylogenetic position Shaopeng Cui1,2, Xiao Luo1,2, Daiqiang Chen1,2, Jizhou Sun3, Hongjun Chu4,5, Chunwang Li1,2 and Zhigang Jiang1,2 1 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 2 University of Chinese Academy of Sciences, Beijing, China 3 Kanas National Nature Reserve, Buerjin, Urumqi, China 4 College of Resources and Environment Sciences, Xinjiang University, Urumqi, China 5 Altay Management Station, Mt. Kalamaili Ungulate Nature Reserve, Altay, China ABSTRACT As the most widely distributed snake in Eurasia, the adder (Vipera berus) has been extensively investigated in Europe but poorly understood in Asia. The Southern Altay Mountains represent the adder's southern distribution limit in Central Asia, whereas its population status has never been assessed. We conducted, for the first time, field surveys for the adder at two areas of Southern Altay Mountains using a combination of line transects and random searches. We also described the morphological characteristics of the collected specimens and conducted analyses of external morphology and molecular phylogeny. The results showed that the adder distributed in both survey sites and we recorded a total of 34 sightings. In Kanas river valley, the estimated encounter rate over a total of 137 km transects was 0.15 ± 0.05 sightings/km. The occurrence of melanism was only 17%. The small size was typical for the adders in Southern Altay Mountains in contrast to other geographic populations of the nominate subspecies. A phylogenetic tree obtained by Bayesian Inference based on DNA sequences of the mitochondrial Submitted 21 April 2016 cytochrome b (1,023 bp) grouped them within the Northern clade of the species but Accepted 18 July 2016 failed to separate them from the subspecies V. -
Indigenous Reptiles
Reptiles Sylvain Ursenbacher info fauna & NLU, Universität Basel pdf can be found: www.ursenbacher.com/teaching/Reptilien_UNIBE_2020.pdf Reptilia: Crocodiles Reptilia: Tuataras Reptilia: turtles Rep2lia: Squamata: snakes Rep2lia: Squamata: amphisbaenians Rep2lia: Squamata: lizards Phylogeny Tetrapoda Synapsida Amniota Lepidosauria Squamata Sauropsida Anapsida Archosauria H4 Phylogeny H5 Chiari et al. BMC Biology 2012, 10:65 Amphibians – reptiles - differences Amphibians Reptiles numerous glands, generally wet, without or with limited number skin without scales of glands, dry, with scales most of them in water, no links with water, reproduction larval stage without a larval stage most of them in water, packed in not in water, hard shell eggs tranparent jelly (leathery or with calk) passive transmission of venom, some species with active venom venom toxic skin as passive protection injection Generally in humide and shady Generally dry and warm habitats areas, nearby or directly in habitats, away from aquatic aquatic habitats habitats no or limited seasonal large seasonal movements migration movements, limited traffic inducing big traffic problems problems H6 First reptiles • first reptiles: about 320-310 millions years ago • embryo is protected against dehydration • ≈ 305 millions years ago: a dryer period ➜ new habitats for reptiles • Mesozoic (252-66 mya): “Age of Reptiles” • large disparition of species: ≈ 252 and 65 millions years ago H7 Mesozoic Quick systematic overview total species CH species (oct 2017) Order Crocodylia (crocodiles) -
Cleaning the Linnean Stable of Names for Grass Snakes (Natrix Astreptophora, N
70 (4): 621– 665 © Senckenberg Gesellschaft für Naturforschung, 2020. 2020 The Fifth Labour of Heracles: Cleaning the Linnean stable of names for grass snakes (Natrix astreptophora, N. helvetica, N. natrix sensu stricto) Uwe Fritz 1 & Josef Friedrich Schmidtler 2 1 Museum of Zoology, Senckenberg Dresden, A. B. Meyer Building, 01109 Dresden, Germany; [email protected] — 2 Liebenstein- straße 9A, 81243 Munchen, Germany; [email protected] Submitted July 29, 2020. Accepted October 29, 2020. Published online at www.senckenberg.de/vertebrate-zoology on November 12, 2020. Published in print Q4/2020. Editor in charge: Ralf Britz Abstract We scrutinize scientifc names erected for or referred to Natrix astreptophora (Seoane, 1884), Natrix helvetica (Lacepède, 1789), and Natrix natrix (Linnaeus, 1758). As far as possible, we provide synonymies for the individual subspecies of each species, identify each name with one of the mtDNA lineages or nuclear genomic clusters within these taxa, and clarify the whereabouts of type material. In addi tion, we feature homonyms and names erroneously identifed with grass snakes. For Natrix astreptophora (Seoane, 1884), we recognize a second subspecies from North Africa under the name Natrix astreptophora algerica (Hecht, 1930). The nominotypical subspecies occurs in the European part of the distribution range (Iberian Peninsula, adjacent France). Within Natrix helvetica (Lacepède, 1789), we recognize four subspecies. The nominotypical subspecies occurs in the northern distribution range, Natrix helvetica sicula (Cuvier, 1829) in Sicily, mainland Italy and adjacent regions, Natrix helvetica cetti Gené, 1839 on Sardinia, and Natrix helvetica corsa (Hecht, 1930) on Corsica. However, the validity of the latter subspecies is questionable. -
Contents Herpetological Journal
British Herpetological Society Herpetological Journal Volume 31, Number 3, 2021 Contents Full papers Killing them softly: a review on snake translocation and an Australian case study 118-131 Jari Cornelis, Tom Parkin & Philip W. Bateman Potential distribution of the endemic Short-tailed ground agama Calotes minor (Hardwicke & Gray, 132-141 1827) in drylands of the Indian sub-continent Ashish Kumar Jangid, Gandla Chethan Kumar, Chandra Prakash Singh & Monika Böhm Repeated use of high risk nesting areas in the European whip snake, Hierophis viridiflavus 142-150 Xavier Bonnet, Jean-Marie Ballouard, Gopal Billy & Roger Meek The Herpetological Journal is published quarterly by Reproductive characteristics, diet composition and fat reserves of nose-horned vipers (Vipera 151-161 the British Herpetological Society and is issued free to ammodytes) members. Articles are listed in Current Awareness in Marko Anđelković, Sonja Nikolić & Ljiljana Tomović Biological Sciences, Current Contents, Science Citation Index and Zoological Record. Applications to purchase New evidence for distinctiveness of the island-endemic Príncipe giant tree frog (Arthroleptidae: 162-169 copies and/or for details of membership should be made Leptopelis palmatus) to the Hon. Secretary, British Herpetological Society, The Kyle E. Jaynes, Edward A. Myers, Robert C. Drewes & Rayna C. Bell Zoological Society of London, Regent’s Park, London, NW1 4RY, UK. Instructions to authors are printed inside the Description of the tadpole of Cruziohyla calcarifer (Boulenger, 1902) (Amphibia, Anura, 170-176 back cover. All contributions should be addressed to the Phyllomedusidae) Scientific Editor. Andrew R. Gray, Konstantin Taupp, Loic Denès, Franziska Elsner-Gearing & David Bewick A new species of Bent-toed gecko (Squamata: Gekkonidae: Cyrtodactylus Gray, 1827) from the Garo 177-196 Hills, Meghalaya State, north-east India, and discussion of morphological variation for C. -
For the Hungarian Meadow Viper (Vipera Ursinii Rakosiensis)
Population and Habitat Viability Assessment (PHVA) For the Hungarian Meadow Viper (Vipera ursinii rakosiensis) 5 – 8 November, 2001 The Budapest Zoo Budapest, Hungary Workshop Report A Collaborative Workshop: The Budapest Zoo Conservation Breeding Specialist Group (SSC / IUCN) Sponsored by: The Budapest Zoo Tiergarten Schönbrunn, Vienna A contribution of the IUCN/SSC Conservation Breeding Specialist Group, in collaboration with The Budapest Zoo. This workshop was made possible through the generous financial support of The Budapest Zoo and Tiergarten Schönbrunn, Vienna. Copyright © 2002 by CBSG. Cover photograph courtesy of Zoltan Korsós, Hungarian Natural History Museum, Budapest. Title Page woodcut from Josephus Laurenti: Specimen medicum exhibens synopsin reptilium, 1768. Kovács, T., Korsós, Z., Rehák, I., Corbett, K., and P.S. Miller (eds.). 2002. Population and Habitat Viability Assessment for the Hungarian Meadow Viper (Vipera ursinii rakosiensis). Workshop Report. Apple Valley, MN: IUCN/SSC Conservation Breeding Specialist Group. Additional copies of this publication can be ordered through the IUCN/SSC Conservation Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124 USA. Send checks for US$35 (for printing and shipping costs) payable to CBSG; checks must be drawn on a US bank. Visa or MasterCard are also accepted. Population and Habitat Viability Assessment (PHVA) For the Hungarian Meadow Viper (Vipera ursinii rakosiensis) 5 – 8 November, 2001 The Budapest Zoo Budapest, Hungary CONTENTS Section I: Executive Summary 3 Section II: Life History and Population Viability Modeling 13 Section III: Habitat Management 37 Section IV: Captive Population Management 45 Section V: List of Workshop Participants 53 Section VI: Appendices Appendix A: Participant Responses to Day 1 Introductory Questions 57 Appendix I: Workshop Presentation Summaries Z. -
Index Vol. 6 (1986)
INDEX VOL. 6 (1986) Editor-in-chief Anton van Woerkom, Zeist, The Netherlands Editors for the English Edition Ken Welch, Milton, England Adam Wright, Stoke, England Editorial co-operators Hugo Claessen, Berchem, Belgium Jacqueline Donkers, Bennekom, The Netherlands Astrid Gomes, Zoetermeer, The Netherlands Bertus van der Heijden, Wanrooy, The Netherlands Dr. M.S. Hoogmoed, Leiden, The Netherlands Ed PrUst, Utrecht, The Netherlands Piet Schiereck, Montfoort, The Netherlands Fons Sleijpen, Oost Souburg, The Netherlands Ton Steehouder, Tilburg, The Netherlands Jaap Winius, Leiden, The Netherlands Prof. Dr. P. Zwart, Utrecht, The Netherlands I II CONTENTS Abuys, A. The snakes of Surinam, part XIII: Subfamily Xenodontinae (genera Pseudoeryx, Pseustes, and Rhadinaea) 19- 30 The snakes of Surinam, part XIV: Subfamily Xenodontinae (genera Rhinobothryum, Sibon and Siphlophis) 66- 73 The snakes of Surinam, part XV: Subfamily Xenodontinae {genera Tantilla, Thamnodynastes, and Tripanurgos) 107-116 The snakes of Surinam, part XVI: Subfamily Xenodontinae (genera Waglerophis, Xenodon and Xenopholis) 181-192 Bakker, J. Breeding results: Thamnophis sirtalis floridana 155-156 Bardulla, Fadil Breeding results: Dasypeltis scabra 117-118 Behme, Wolfgang Preliminary note on the taxono- mic status of Psa111T1ophis leuco- gaster Spawls, 1983 (Colubri- dae: Psammophini) 171-180 Eerden, Hans van der Striking behaviour of Corallus enydris enydris in the terra- rium 126 Gales, David Breeding results: Elaphe gut tata guttata x Elaphe guttata rosacea 42- 43 Heijden, Bertus van The husbandry and breeding of der Chondropython viridis 4- 12 Heijnen, Gerard Breeding results: Elaphe obso leta rossalleni 203 Hirschkorn, Dieter Breeding results: Elaphe obso leta deckerti 157 Breeding results: Pituophis melanoleucus catenifer 157-158 Breeding results: Pituophis melanoleucus affinis 158 III Breeding results: Pituophis melanoleucus annectans 158-159 Jansen-Pezzano, E.F. -
P. 1 AC27 Inf. 7 (English Only / Únicamente En Inglés / Seulement
AC27 Inf. 7 (English only / únicamente en inglés / seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Twenty-seventh meeting of the Animals Committee Veracruz (Mexico), 28 April – 3 May 2014 Species trade and conservation IUCN RED LIST ASSESSMENTS OF ASIAN SNAKE SPECIES [DECISION 16.104] 1. The attached information document has been submitted by IUCN (International Union for Conservation of * Nature) . It related to agenda item 19. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. AC27 Inf. 7 – p. 1 Global Species Programme Tel. +44 (0) 1223 277 966 219c Huntingdon Road Fax +44 (0) 1223 277 845 Cambridge CB3 ODL www.iucn.org United Kingdom IUCN Red List assessments of Asian snake species [Decision 16.104] 1. Introduction 2 2. Summary of published IUCN Red List assessments 3 a. Threats 3 b. Use and Trade 5 c. Overlap between international trade and intentional use being a threat 7 3. Further details on species for which international trade is a potential concern 8 a. Species accounts of threatened and Near Threatened species 8 i. Euprepiophis perlacea – Sichuan Rat Snake 9 ii. Orthriophis moellendorfi – Moellendorff's Trinket Snake 9 iii. Bungarus slowinskii – Red River Krait 10 iv. Laticauda semifasciata – Chinese Sea Snake 10 v. -
Insect Venom Phospholipases A1 and A2 Roles in the Envenoming Process and Allergy
Insect Biochemistry and Molecular Biology 105 (2019) 10–24 Contents lists available at ScienceDirect Insect Biochemistry and Molecular Biology journal homepage: www.elsevier.com/locate/ibmb Insect venom phospholipases A1 and A2: Roles in the envenoming process and allergy T Amilcar Perez-Riverola, Alexis Musacchio Lasab, José Roberto Aparecido dos Santos-Pintoa, ∗ Mario Sergio Palmaa, a Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil b Center for Genetic Engineering and Biotechnology, Biomedical Research Division, Department of System Biology, Ave. 31, e/158 and 190, P.O. Box 6162, Cubanacan, Playa, Havana, 10600, Cuba ARTICLE INFO ABSTRACT Keywords: Insect venom phospholipases have been identified in nearly all clinically relevant social Hymenoptera, including Hymenoptera bees, wasps and ants. Among other biological roles, during the envenoming process these enzymes cause the Venom phospholipases A1 and A2 disruption of cellular membranes and induce hypersensitive reactions, including life threatening anaphylaxis. ff Toxic e ects While phospholipase A2 (PLA2) is a predominant component of bee venoms, phospholipase A1 (PLA1) is highly Hypersensitive reactions abundant in wasps and ants. The pronounced prevalence of IgE-mediated reactivity to these allergens in sen- Allergy diagnosis sitized patients emphasizes their important role as major elicitors of Hymenoptera venom allergy (HVA). PLA1 and -A2 represent valuable marker allergens for differentiation of genuine sensitizations to bee and/or wasp venoms from cross-reactivity. Moreover, in massive attacks, insect venom phospholipases often cause several pathologies that can lead to fatalities. This review summarizes the available data related to structure, model of enzymatic activity and pathophysiological roles during envenoming process of insect venom phospholipases A1 and -A2.