Complex Abelian Varieties

Total Page:16

File Type:pdf, Size:1020Kb

Complex Abelian Varieties Complex abelian varieties Por Sebasti´anTorres Tesis presentada a la Facultad de Matem´aticas de la Pontificia Universidad Cat´olicade Chile para optar al grado de Mag´ısteren Matem´aticas Profesora gu´ıa: Rub´ıRodr´ıguez- Universidad de la Frontera Comisi´oninformante: Anita Rojas - Universidad de Chile Gonzalo Riera - Pontificia Universidad Cat´olicade Chile Agosto de 2015 Santiago, Chile Contents 1 Introduction 1 2 Complex manifolds 2 2.1 Vector bundles . 5 2.2 Tangent bundle . 8 2.3 Differential forms . 11 2.4 Integration . 13 3 Riemann surfaces 15 3.1 Divisors on Riemann surfaces . 18 3.2 Group actions on Riemann surfaces . 19 3.3 Jacobian variety . 20 4 Complex Tori 22 4.1 Differential forms . 24 4.2 Theta functions . 26 4.3 Divisors . 29 4.4 Line bundles . 32 5 Complex abelian varieties 36 5.1 Homomorphisms of abelian varieties . 37 6 Representations of finite groups 40 6.1 Decomposition of semi-simple rings . 40 6.2 Rational central idempotents . 46 7 Group representations in abelian varieties 49 7.1 Involutions on ppav's . 51 7.2 Automorphisms of order three on ppav's . 52 i 1 Introduction The present work is devoted to the study of complex abelian varieties and the action of a group on it. In the main part of the text, we describe the theoretic frame regarding abelian varieties, for which we need to talk about complex manifolds, complex tori and topics surrounding those. Most of the results here will not be proved; these contents can be found in classical books. In section 2 we define complex manifolds and the main concepts we will need later, especially vector bundles, sections and differential forms. The next section gives a one-dimensional flavor to the theory of complex manifolds, stating a few classical results in compact Riemann surfaces, without proof. This section is not strictly necessary to understand what follows. In section 4 we describe how the theory of complex tori works. A complex torus is the compact quotient of Cn by some discrete additive subgroup. One of the most important things here is understanding how divisors can be seen as line bundles, for what we need to speak about theta functions, among others. Next we talk about abelian varieties, which are complex tori with a bilinear form satisfying certain properties, and describe how this can be written in terms of matrices. We also mention the important fact that an abelian variety can always be seen as a submanifold of some projective space. To understand how a group acts on an abelian variety, in section 6 we study part of the algebra we need regarding group representations, for in section 7 apply this theory to our case, stating Lange and Recillas' isotypical decomposition. The algebra needed can be found in classical books like [3], while its applications to abelian varieties are studied in specific articles such as [13], [7] or [2], for instance. Finally, we try to work out specific group actions on abelian varieties. In [12], Rodr´ıguezcompletely describes abelian varieties admitting an involution. In the same spirit, the present works makes an attempt to describe the action of an order-three group in an abelian variety. For this we need to study symplectic matrices. Further interesting work would be to work out the way different finite groups act on a complex abelian variety. 1 2 Complex manifolds Roughly speaking, a complex manifold is a space that locally looks like Cn, so that we can define holomorphic functions on it. Here we describe these ideas more precisely. Definition 2.1. A function f from an open set D ⊂ Cn to C is said to be holomorphic if every point a 2 D has a neighborhood in which f can be expressed as a power series 1 X k1 kn f(z) = ck1;:::;kn (z1 − a1) ··· (zn − an) : k1;:::;kn=0 A function between open sets D ⊂ Cn, E ⊂ Cm is said to be holomorphic if every coordinate function is so. Holomorphic functions in several variables quite behave like single-variable holomorphic functions. We state a couple of useful lemmas, whose proofs can be found, for instance, in [14]. The first one is known as Osgood's lemma. Lemma 2.2. Let f : D ! C be a continuous function. If f is holomorphic in each variable separately, then it is holomorphic on D. As a consecuence of Osgood's lemma, we have that a C1 function f : D ! is holomorphic iff @f = ··· = @f = 0. The following is the identity C @z¯1 @z¯n principle for several variables. Lemma 2.3. If f, g are holomorphic functions on a connected open set n D ⊂ C , and U ⊂ D is nonempty open subset satisfying fjU = gjU , then f = g. Definition 2.4. Let X be a topological space. An atlas is a covering of X given by a family of open subsets Ui ⊂ X, together with a set of homeomor- n phisms φi : Ui ! Di, where Di is an open set of C , which satisfy that −1 φi ◦ φj : φj(Ui \ Uj) ! φi(Ui \ Uj) 2 is a biholomorphism for every par (i; j). We call a Hausdorff, second count- able space X with such an atlas a complex manifold. The functions φi are called charts. We may always assume that the family f(Ui; φi)g is maximal with respect to the condition above. We also assume that X is connected, unless otherwise stated. In this case, the number n does not depend on the chart and will be called the dimension of X.A function f : X ! Y between complex manifolds is said to be holomorphic −1 if every composition 'j ◦ f ◦ φi is holomorphic, where φi and 'j are charts for X, Y , respectively. Of course, the condition need only be checked for one chart at each point. Note that C itself has a natural structure of complex manifold. Holomorphic functions between X and C will be referred to simply as holomorphic functions on X. Example 2.5. Consider Cn+1nf0g with the equivalence relation given by: x ∼ y iff x = ty for some t 2 C∗. The quotient is called the projective space n P and is made into a complex manifold by setting Ui = f[x0 : ::: : xn] j xi 6= 0g and n φi : Ui ! C x0 xi−1 xi+1 xn [x0 : ::: : xn] 7! ; ··· ; ; ; ··· ; : x1 xi xi xi Pn is the set of lines in Cn+1. For n = 1, we obtain the Riemann sphere, that can be seen as C plus one point called infinity, 1 = [1 : 0]. We denote it by C^ = C [ f1g = P1. Definition 2.6. A meromorphic function on X is a holomorphic function f : X ! C^ which is not identically 1. The space of such functions is denoted M(X). Let f; g be meromorphic functions on X, with g not identically zero. If f(z) = [f1(z): f2(z)] and g(z) = [g1(z): g2(z)], we define the quotient 3 f=g simply as [f1g2 : f2g1]. It is not difficult to check that this indeed is well defined and gives a meromorphic function, so this makes M(X) into a field. A holomorphic function h on X can also be regarded as a meromorphic function by identifying it with [h : 1]. Next we will come to an alternative definition of complex manifold using the language of sheaves. Definition 2.7. Let X be a topological space. A geometric structure O is an assignment O(U) for every open subset U ⊂ X, where O(U) is a ring of continuous functions defined on U, which satisfies the following conditions: (1) The constants are in O(U) for every open subset U. (2) If V ⊂ U are open sets, then fjV 2 O(V ) for every f 2 O(U). (3) If U is a collection of open subsets and f 2 O(U ) satisfy f j = i i i i Ui\Uj f j 8i; j, then there exists a unique f 2 O(U) such that f = j Ui\Uj i fj 8i, where U = S U . Ui i We call such a pair (X; O) a geometric space. Note that every open subset U ⊂ Cn has a natural structure of geometric space by letting O(V ) be the set of holomorphic functions on V . If X is a geometric space and U ⊂ X is open, U inherits a structure of geometric space that we denote (U; OjU ), given by OjU (V ) = O(V ) for V ⊂ U an open set. Definition 2.8. Let (X; OX ), (Y; OY ) be geometric spaces. A morphism between them is a continuous function f : X ! Y such that for every U ⊂ Y −1 open, g ◦ f 2 OX (f (U)). An isomorphism is a morphism with a two sided inverse that is also a morphism. Now we give an alternative definition for a complex manifold. 4 Definition 2.9. Let X be a second countable, Hausdorff topological space with a geometric structure O. We say that (X; O) is a complex manifold if it has a covering by open sets Ui such that every (Ui; O(Ui)) is isomorphic to some open subset of Cn. It is not too difficult to see that both definitions coincide. If we have a geometric space X satisfying the conditions above and fi :(Ui; O(Ui)) ! n (Di; ODi ) are isomorphisms with open subsets of C , then the mappings fi : Ui ! Di give coordinate charts for X, and the compatibility conditions are easily checked to be satisfied. Conversely, if we have a complex manifold with respect to the first definition, we can give it a complex structure putting O(U) as the holomorphic functions in U for every open subset U ⊂ X, and the coordinate charts give isomorphisms of geometric spaces.
Recommended publications
  • The Chiral De Rham Complex of Tori and Orbifolds
    The Chiral de Rham Complex of Tori and Orbifolds Dissertation zur Erlangung des Doktorgrades der Fakult¨atf¨urMathematik und Physik der Albert-Ludwigs-Universit¨at Freiburg im Breisgau vorgelegt von Felix Fritz Grimm Juni 2016 Betreuerin: Prof. Dr. Katrin Wendland ii Dekan: Prof. Dr. Gregor Herten Erstgutachterin: Prof. Dr. Katrin Wendland Zweitgutachter: Prof. Dr. Werner Nahm Datum der mundlichen¨ Prufung¨ : 19. Oktober 2016 Contents Introduction 1 1 Conformal Field Theory 4 1.1 Definition . .4 1.2 Toroidal CFT . .8 1.2.1 The free boson compatified on the circle . .8 1.2.2 Toroidal CFT in arbitrary dimension . 12 1.3 Vertex operator algebra . 13 1.3.1 Complex multiplication . 15 2 Superconformal field theory 17 2.1 Definition . 17 2.2 Ising model . 21 2.3 Dirac fermion and bosonization . 23 2.4 Toroidal SCFT . 25 2.5 Elliptic genus . 26 3 Orbifold construction 29 3.1 CFT orbifold construction . 29 3.1.1 Z2-orbifold of toroidal CFT . 32 3.2 SCFT orbifold . 34 3.2.1 Z2-orbifold of toroidal SCFT . 36 3.3 Intersection point of Z2-orbifold and torus models . 38 3.3.1 c = 1...................................... 38 3.3.2 c = 3...................................... 40 4 Chiral de Rham complex 41 4.1 Local chiral de Rham complex on CD ...................... 41 4.2 Chiral de Rham complex sheaf . 44 4.3 Cechˇ cohomology vertex algebra . 49 4.4 Identification with SCFT . 49 4.5 Toric geometry . 50 5 Chiral de Rham complex of tori and orbifold 53 5.1 Dolbeault type resolution . 53 5.2 Torus .
    [Show full text]
  • On Hodge Theory and Derham Cohomology of Variétiés
    On Hodge Theory and DeRham Cohomology of Vari´eti´es Pete L. Clark October 21, 2003 Chapter 1 Some geometry of sheaves 1.1 The exponential sequence on a C-manifold Let X be a complex manifold. An amazing amount of geometry of X is encoded in the long exact cohomology sequence of the exponential sequence of sheaves on X: exp £ 0 ! Z !OX !OX ! 0; where exp takes a holomorphic function f on an open subset U to the invertible holomorphic function exp(f) := e(2¼i)f on U; notice that the kernel is the constant sheaf on Z, and that the exponential map is surjective as a morphism of sheaves because every holomorphic function on a polydisk has a logarithm. Taking sheaf cohomology we get exp £ 1 1 1 £ 2 0 ! Z ! H(X) ! H(X) ! H (X; Z) ! H (X; OX ) ! H (X; OX ) ! H (X; Z); where we have written H(X) for the ring of global holomorphic functions on X. Now let us reap the benefits: I. Because of the exactness at H(X)£, we see that any nowhere vanishing holo- morphic function on any simply connected C-manifold has a logarithm – even in the complex plane, this is a nontrivial result. From now on, assume that X is compact – in particular it homeomorphic to a i finite CW complex, so its Betti numbers bi(X) = dimQ H (X; Q) are finite. This i i also implies [Cartan-Serre] that h (X; F ) = dimC H (X; F ) is finite for all co- herent analytic sheaves on X, i.e.
    [Show full text]
  • AN EXPLORATION of COMPLEX JACOBIAN VARIETIES Contents 1
    AN EXPLORATION OF COMPLEX JACOBIAN VARIETIES MATTHEW WOOLF Abstract. In this paper, I will describe my thought process as I read in [1] about Abelian varieties in general, and the Jacobian variety associated to any compact Riemann surface in particular. I will also describe the way I currently think about the material, and any additional questions I have. I will not include material I personally knew before the beginning of the summer, which included the basics of algebraic and differential topology, real analysis, one complex variable, and some elementary material about complex algebraic curves. Contents 1. Abelian Sums (I) 1 2. Complex Manifolds 2 3. Hodge Theory and the Hodge Decomposition 3 4. Abelian Sums (II) 6 5. Jacobian Varieties 6 6. Line Bundles 8 7. Abelian Varieties 11 8. Intermediate Jacobians 15 9. Curves and their Jacobians 16 References 17 1. Abelian Sums (I) The first thing I read about were Abelian sums, which are sums of the form 3 X Z pi (1.1) (L) = !; i=1 p0 where ! is the meromorphic one-form dx=y, L is a line in P2 (the complex projective 2 3 2 plane), p0 is a fixed point of the cubic curve C = (y = x + ax + bx + c), and p1, p2, and p3 are the three intersections of the line L with C. The fact that C and L intersect in three points counting multiplicity is just Bezout's theorem. Since C is not simply connected, the integrals in the Abelian sum depend on the path, but there's no natural choice of path from p0 to pi, so this function depends on an arbitrary choice of path, and will not necessarily be holomorphic, or even Date: August 22, 2008.
    [Show full text]
  • Abelian Varieties
    Abelian Varieties J.S. Milne Version 2.0 March 16, 2008 These notes are an introduction to the theory of abelian varieties, including the arithmetic of abelian varieties and Faltings’s proof of certain finiteness theorems. The orginal version of the notes was distributed during the teaching of an advanced graduate course. Alas, the notes are still in very rough form. BibTeX information @misc{milneAV, author={Milne, James S.}, title={Abelian Varieties (v2.00)}, year={2008}, note={Available at www.jmilne.org/math/}, pages={166+vi} } v1.10 (July 27, 1998). First version on the web, 110 pages. v2.00 (March 17, 2008). Corrected, revised, and expanded; 172 pages. Available at www.jmilne.org/math/ Please send comments and corrections to me at the address on my web page. The photograph shows the Tasman Glacier, New Zealand. Copyright c 1998, 2008 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permis- sion from the copyright holder. Contents Introduction 1 I Abelian Varieties: Geometry 7 1 Definitions; Basic Properties. 7 2 Abelian Varieties over the Complex Numbers. 10 3 Rational Maps Into Abelian Varieties . 15 4 Review of cohomology . 20 5 The Theorem of the Cube. 21 6 Abelian Varieties are Projective . 27 7 Isogenies . 32 8 The Dual Abelian Variety. 34 9 The Dual Exact Sequence. 41 10 Endomorphisms . 42 11 Polarizations and Invertible Sheaves . 53 12 The Etale Cohomology of an Abelian Variety . 54 13 Weil Pairings . 57 14 The Rosati Involution . 61 15 Geometric Finiteness Theorems . 63 16 Families of Abelian Varieties .
    [Show full text]
  • 1 Complex Theory of Abelian Varieties
    1 Complex Theory of Abelian Varieties Definition 1.1. Let k be a field. A k-variety is a geometrically integral k-scheme of finite type. An abelian variety X is a proper k-variety endowed with a structure of a k-group scheme. For any point x X(k) we can defined a translation map Tx : X X by 2 ! Tx(y) = x + y. Likewise, if K=k is an extension of fields and x X(K), then 2 we have a translation map Tx : XK XK defined over K. ! Fact 1.2. Any k-group variety G is smooth. Proof. We may assume that k = k. There must be a smooth point g0 G(k), and so there must be a smooth non-empty open subset U G. Since2 G is covered by the G(k)-translations of U, G is smooth. ⊆ We now turn our attention to the analytic theory of abelian varieties by taking k = C. We can view X(C) as a compact, connected Lie group. Therefore, we start off with some basic properties of complex Lie groups. Let X be a Lie group over C, i.e., a complex manifold with a group structure whose multiplication and inversion maps are holomorphic. Let T0(X) denote the tangent space of X at the identity. By adapting the arguments from the C1-case, or combining the C1-case with the Cauchy-Riemann equations we get: Fact 1.3. For each v T0(X), there exists a unique holomorphic map of Lie 2 δ groups φv : C X such that (dφv)0 : C T0(X) satisfies (dφv)0( 0) = v.
    [Show full text]
  • Intermediate Jacobians and Abel-Jacobi Maps
    Intermediate Jacobians and Abel-Jacobi Maps Patrick Walls April 28, 2012 Intermediate Jacobians are complex tori defined in terms of the Hodge structure of X . Abel-Jacobi Maps are maps from the groups of cycles of X to its Intermediate Jacobians. The result is that questions about cycles can be translated into questions about complex tori . Introduction Let X be a smooth projective complex variety. The result is that questions about cycles can be translated into questions about complex tori . Introduction Let X be a smooth projective complex variety. Intermediate Jacobians are complex tori defined in terms of the Hodge structure of X . Abel-Jacobi Maps are maps from the groups of cycles of X to its Intermediate Jacobians. Introduction Let X be a smooth projective complex variety. Intermediate Jacobians are complex tori defined in terms of the Hodge structure of X . Abel-Jacobi Maps are maps from the groups of cycles of X to its Intermediate Jacobians. The result is that questions about cycles can be translated into questions about complex tori . The subspaces Hp;q(X ) consist of classes [α] of differential forms that are representable by a closed form α of type (p; q) meaning that locally X α = fI ;J dzI ^ dzJ I ; J ⊆ f1;:::; ng jI j = p ; jJj = q for some choice of local holomorphic coordinates z1;:::; zn. Hodge Decomposition Let X be a smooth projective complex variety of dimension n. The Hodge decomposition is a direct sum decomposition of the complex cohomology groups k M p;q H (X ; C) = H (X ) ; 0 ≤ k ≤ 2n : p+q=k Hodge Decomposition Let X be a smooth projective complex variety of dimension n.
    [Show full text]
  • Abelian Varieties and Theta Functions
    Abelian Varieties and Theta Functions YU, Hok Pun A Thesis Submitted to In Partial Fulfillment of the Requirements for the Degree of • Master of Philosophy in Mathematics ©The Chinese University of Hong Kong October 2008 The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s) intending to use a part or whole of the materials in the thesis in a proposed publication must seek copyright release from the Dean of the Graduate School. Thesis Committee Prof. WANG, Xiaowei (Supervisor) Prof. LEUNG, Nai Chung (Chairman) Prof. WANG, Jiaping (Committee Member) Prof. WU,Siye (External Examiner) Abelian Varieties and Theta Functions 4 Abstract In this paper we want to find an explicit balanced embedding of principally polarized abelian varieties into projective spaces, and we will give an elementary proof, that for principally polarized abelian varieties, this balanced embedding induces a metric which converges to the flat metric, and that this result was originally proved in [1). The main idea, is to use the theory of finite dimensional Heisenberg groups to find a good basis of holomorphic sections, which the holo- morphic sections induce an embedding into the projective space as a subvariety. This thesis will be organized in the following way: In order to find a basis of holomorphic sections of a line bundle, we will start with line bundles on complex tori, and study the characterization of line bundles with Appell-Humbert theorem. We will make use of the fact that a positive line bundle will have enough sections for an embedding. If a complex torus can be embedded into the projective space this way, it is called an abelian variety, and the holomorphic sections of an abelian variety are called theta functions.
    [Show full text]
  • Complex Structures on Product of Circle Bundles Over Compact Complex Manifolds
    COMPLEX STRUCTURES ON PRODUCT OF CIRCLE BUNDLES OVER COMPACT COMPLEX MANIFOLDS By Ajay Singh Thakur THE INSTITUTE OF MATHEMATICAL SCIENCES, CHENNAI. A Thesis submitted to the Board of Studies in Mathematics Sciences In partial fulfillment of requirements for the degree of DOCTOR OF PHILOSOPHY of HOMI BHABHA NATIONAL INSTITUTE Homi Bhabha National Institute Recommendations of the Viva Voce Board As members of the Viva Voce Board, we recommend that the dissertation prepared by Ajay Singh Thakur titled \Complex Structures on Product of Circle Bundles over Compact Complex Manifolds" may be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Date : R. V. Gurjar (External Examiner) Date : D. S. Nagaraj Date : K. N. Raghavan Date : Parameswaran Sankaran (Guide) Date : V. S. Sunder (Chair) Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copies of the dissertation to HBNI. i DECLARATION I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. Date : Guide: Prof. Parameswaran Sankaran ii DECLARATION I, hereby declare that the results presented in the thesis have been car- ried out by me under the guidance of my supervisor Prof. Parameswaran Sankaran. My collaboration with him in our paper was necessitated by the difficulty and depth of the problem considered. The work is original and has not been submitted earlier as a whole or in part for a degree/diploma at this or any other Institute/University. Ajay Singh Thakur iii Abstract ¯ Let Li −! Xi be a holomorphic line bundle over a compact complex manifold for i = 1; 2.
    [Show full text]
  • Classical Theta Functions and Their Generalization
    Workshop on Curves and Jacobians, pp. 1{25 Classical theta functions and their generalization Arnaud Beauville Abstract. We first recall the modern theory of classical theta functions, viewed as sections of line bundles on complex tori. We emphasize the case of theta functions associated to an algebraic curve C : they are sections of a natural line bundle (and of its tensor powers) on the Jacobian of C , a complex torus which parametrizes topologically trivial line bundles on C . Then we ex- plain how replacing the Jacobian by the moduli space of higher rank vector bundles leads to a natural generalization (\non-abelian theta functions"). We present some of the main results and open problems about these new theta functions. Introduction Theta functions are holomorphic functions on Cg , quasi-periodic with respect to a lattice. For g = 1 they have been introduced by Jacobi; in the general case they have been thoroughly studied by Riemann and his followers. From a modern point of view they are sections of line bundles on certain complex tori; in particular, the theta functions associated to an algebraic curve C are viewed as sections of a natural line bundle (and of its tensor powers) on a complex torus associated to C , the Jacobian, which parametrizes topologically trivial line bundles on C . Around 1980, under the impulsion of mathematical physics, the idea emerged gradually that one could replace in this definition line bundles by higher rank vector bundles. The resulting sections are called generalized (or non-abelian) theta functions; they turn out to share some (but not all) of the beautiful properties of classical theta functions.
    [Show full text]
  • Complex Torus Manifolds
    Introduction Structure near a fixed point Toric structure . Complex torus manifolds . .. Hiroaki Ishida Osaka City University Advanced Mathematical Institute November 28, 2011 Introduction Structure near a fixed point Toric structure . Torus manifold Let us consider M : connected smooth manifold, (S1)n y M : effective, 1 n M(S ) , ;. ) ≤ 1 n 2 dim M (see the tangential rep. of (S1)n at a fixed point). 1 We consider the extreme case (n = 2 dim M). Introduction Structure near a fixed point Toric structure . Torus manifold . Definition (Hattori-Masuda) . .. M : torus manifold of dim 2n () def: M : closed connected oriented manifold of dim 2n, (S1)n y M : effective, 1 n . M(S ) , ;. .. Introduction Structure near a fixed point Toric structure . Complex torus manifold We consider the case when M is a complex mfd. ..Definition A complex torus manifold M of dimC n is M : closed conn. complex manifold of dimC n, (S1)n y M : effective, as biholomorphisms, 1 n . M(S ) , ;. .. Introduction Structure near a fixed point Toric structure . Simple examples of torus manifolds . Example . .. S2n : 2n-dimensional sphere X 2n n 2 2 S = f(y; z1;:::; zn) 2 R × C j y + jzij = 1g (S1)n y S2n given by ;:::; · ; ;:::; ; ;:::; . (g1 gn) (y z1 zn) := (y g1 gnzn) .. Example (Complex) . .. (S1)n y CPn given by ;:::; · ;:::; ; ;:::; . (g1 gn) [z0 zn] := [z0 g1z1 gnzn] .. Introduction Structure near a fixed point Toric structure . In Khabarovsk Combining BIG RESULTS +", Donaldson Kodaira Masuda-Panov Orlik-Raymond . Theorem (I.-Masuda) . .. M : closed connected complex mfd of dimC n, (S1)n y M : effectively, as biholomorphisms, Hodd(M) = 0.
    [Show full text]
  • Geometry of Algebraic Curves
    Geometry of Algebraic Curves Lectures delivered by Joe Harris Notes by Akhil Mathew Fall 2011, Harvard Contents Lecture 1 9/2 x1 Introduction 5 x2 Topics 5 x3 Basics 6 x4 Homework 11 Lecture 2 9/7 x1 Riemann surfaces associated to a polynomial 11 x2 IOUs from last time: the degree of KX , the Riemann-Hurwitz relation 13 x3 Maps to projective space 15 x4 Trefoils 16 Lecture 3 9/9 x1 The criterion for very ampleness 17 x2 Hyperelliptic curves 18 x3 Properties of projective varieties 19 x4 The adjunction formula 20 x5 Starting the course proper 21 Lecture 4 9/12 x1 Motivation 23 x2 A really horrible answer 24 x3 Plane curves birational to a given curve 25 x4 Statement of the result 26 Lecture 5 9/16 x1 Homework 27 x2 Abel's theorem 27 x3 Consequences of Abel's theorem 29 x4 Curves of genus one 31 x5 Genus two, beginnings 32 Lecture 6 9/21 x1 Differentials on smooth plane curves 34 x2 The more general problem 36 x3 Differentials on general curves 37 x4 Finding L(D) on a general curve 39 Lecture 7 9/23 x1 More on L(D) 40 x2 Riemann-Roch 41 x3 Sheaf cohomology 43 Lecture 8 9/28 x1 Divisors for g = 3; hyperelliptic curves 46 x2 g = 4 48 x3 g = 5 50 1 Lecture 9 9/30 x1 Low genus examples 51 x2 The Hurwitz bound 52 2.1 Step 1 . 53 2.2 Step 10 ................................. 54 2.3 Step 100 ................................ 54 2.4 Step 2 .
    [Show full text]
  • Complex Algebraic Varieties and Their Cohomology
    Complex Algebraic Varieties and their Cohomology Donu Arapura July 16, 2003 Introduction In these notes, which originated from various “second courses” in algebraic geometry given at Purdue, I study complex algebraic varieties using a mixture of algebraic, analytic and topological methods. I assumed an understanding of basic algebraic geometry (around the level of [Hs]), but little else beyond stan- dard graduate courses in algebra, analysis and elementary topology. I haven’t attempted to prove everything, often I have been content to give a sketch along with a reference to the relevent section of Hartshorne [H] or Griffiths and Harris [GH]. These weighty tomes are, at least for algebraic geometers who came of age when I did, the canonical texts. They are a bit daunting however, and I hope these notes makes some of this material more accessible. These notes are pretty rough and somewhat incomplete at the moment. Hopefully, that will change with time. For updates check http://www.math.purdue.edu/∼dvb 1 Contents 1 Manifolds and Varieties via Sheaves 5 1.1 Sheaves of functions ......................... 5 1.2 Manifolds ............................... 6 1.3 Algebraic varieties .......................... 9 1.4 Stalks and tangent spaces ...................... 11 1.5 Nonsingular Varieties ......................... 13 1.6 Vector fields .............................. 14 2 Generalities about Sheaves 16 2.1 The Category of Sheaves ...................... 16 2.2 Exact Sequences ........................... 17 2.3 The notion of a scheme ....................... 19 2.4 Toric Varieties ............................ 20 2.5 Sheaves of Modules .......................... 22 2.6 Direct and Inverse images ...................... 24 3 Sheaf Cohomology 26 3.1 Flabby Sheaves ............................ 26 3.2 Cohomology .............................. 27 3.3 Soft sheaves .............................
    [Show full text]