1 16.01. Lecture 1. Complex Algebraic Curves in C2 and Real Algebraic Curves

Total Page:16

File Type:pdf, Size:1020Kb

1 16.01. Lecture 1. Complex Algebraic Curves in C2 and Real Algebraic Curves 1 16.01. Lecture 1. Complex algebraic curves in C2 and real algebraic curves Let P (x; y) 2 C[x; y] be a polynomial in 2 variables with complex coefficients. P has no repeated factors if it cannot be written as P (x; y) = Q(x; y)2R(x; y) for non-constant polynomial Q. Definition 1.1. Let P 2 C[x; y] be a non-constant polynomial with no repeated factors. The complex algebraic curve defined by P is 2 C = f(x; y) 2 C j P (x; y) = 0g: We want to assume that curves are given by polynomials with no repeated factors because of the following Theorem 1.2 (Hilbert's Nullstellensatz). If P (x; y) and Q(x; y) are polynomials in C[x; y] then 2 2 f(x; y) 2 C j P (x; y) = 0g = f(x; y) 2 C j Q(x; y) = 0g if and only if there exist m; n 2 N such that P divides Qm and Q divides P n. In other words, if and only if P and Q have the same irreducible factors possibly occurring with different multiplicities. It follows from Theorem 1.2 that two polynomials P , Q with no repeated factors define the same complex algebraic curve C if and only if there exists λ 2 C∗ such that P = λQ. In general, one can define complex algebraic curves as equivalence classes of non- constant polynomials P 2 C[x; y] where P ∼ Q if and only if P and Q have the same irreducible factors. A polynomial with repeated factors defines a curve with multiplicities attached, for P = x2y the line fy = 0g has multiplicity one while fx = 0g comes into C = fP (x; y) = 0g with multiplicity two. Definition 1.3. The degree of a curve C = fP (x; y) = 0g is the degree of the polynomial P r s P (x; y) = cr;sx y , i.e. d = maxfr + s j cr;s 6= 0g: Definition 1.4. A point (a; b) 2 C is a singular point (or singularity) of C, if @P @P (a; b) = 0; (a; b) = 0: @x @y The set of singular points is denoted by Sing(C). C is called non-singular if Sing(C) = ;. Definition 1.5. A curve defined by αx + βy + γ = 0; where α; β; γ 2 C and (α; β) 6= (0; 0), is a line. 1 We will be mostly interested in curves in projective plane. They are given by homogeneous polynomials Definition 1.6. A non-zero polynomial P 2 C[x1; : : : ; xn] is homogeneous of degree d if d P (λx1; : : : ; λxn) = λ P (x1; : : : ; xn); for all λ 2 C. Equivalently P has the form X r1 rn P (x1; : : : ; xn) = ar1;:::;rn x1 : : : xn : r1+:::+rn=d Lemma 1.7. If P 2 C[x; y] is homogeneous of degree d then it factors as a product of linear polynomials d Y P (x; y) = (αix + βiy); i=1 for some αi; βi 2 C. Proof. We have d d X X X x P (x; y) = a xrys = a xryd−r = yd a ( )r: r;s r;d−r r;d−r y r+s=d r=0 r=0 Pd r Polynomial Pe(t) := r=0 ar;d−rt 2 C[t] is a complex polynomial in one variable, hence it can be factorised as d e X r Y Pe(t) = ar;d−rt = ae (t − γi); r=0 i=1 where e = maxfr j ar;d−r 6= 0g is the degree of Pe. Then e e d x d Y x d−e Y P (x; y) = y Pe( ) = y ae (( ) − γi) = aey (x − γiy): y y i=1 i=1 Since P (x; y) is a polynomial it has a finite Taylor expansion X @i+jP (x − a)i(y − b)j P (x; y) = (a; b) @xi@yj i!j! i;j≥0 at any point (a; b) 2 C2. Definition 1.8. The multiplicity of curve C = fP (x; y) = 0g at point (a; b) 2 C is the @mP smallest m 2 N such that @xi@yj (a; b) 6= 0. The polynomial X @mP (x − a)i(y − b)j (a; b) (1) @xi@yj i!j! i+j=m 2 is then homogeneous of degree m and so by Lemma 1.7 can be written as a product of polynomials of the form α(x − a) + β(y − b) where (α; β) 2 C2 n f0g. The lines defined by these linear polynomials are tangent lines to C at (a; b). The point (a; b) is non-singular if and only if its multiplicity is 1; in this case C has just one tangent line @P @P (a; b)(x − a) + (a; b)(y − b) = 0: @x @y A point (a; b) 2 C is a double point (respectively triple point, etc.) if the multiplicity of C at (a; b) is two (respectively three, etc.). A singular point is ordinary if polynomial (1) has no repeated factors, i.e. if C has m distinct tangent lines at (a; b). Cubic curves 2 3 2 2 3 C1 = fy − x − x = 0g;C2 = fy − x = 0g have double points at the origin. Indeed, if Ci = fPi(x; y) = 0g then @P @P 1 = −3x2 − 2x; 2 = −3x2; @x @x @P @P 1 = 2y; 2 = 2y; @y @y @2P @2P 1 = −6x − 2; 2 = −6x; @x2 @x2 @2P @2P 1 = 0; 2 = 0; @x@y @x@y @2P @2P 1 = 2; 2 = 2: @y2 @y2 Polynomials (1) are respectively x2 y2 x2 y2 − 2 + 0xy + 2 = (y − x)(y + x); 0 + 0xy + 2 = y2: 2! 2! 2! 2! It follows that only for C1 the double point at the origin is ordinary. 4 4 2 2 2 The curve C3 = f(x + y ) − x y = 0g has a singular point of multiplicity four at 4 4 2 2 2 2 2 the origin which is not ordinary. The curve C4 = f(x + y − x − y ) − 9x y g has an ordinary singular point of multiplicity 4 at the origin. Historically, real algebraic curves were studied first. Let P (x; y) 2 R[x; y] be a non-constant polynomial in 2 variables with real coefficients. A real algebraic curve defined by P is 2 C = f(x; y) 2 R j P (x; y) = 0g: 3 The study of real algebraic curves originates in ancient Greece. Ancient Greeks had sophisticated geometrical methods but a relatively primitive understanding of algebra. To them a circle was not defined by an equation (x − a)2 + (y − b)2 = r2 but it was the locus of all points having equal distance from a fixed point (a; b). Generalising the above point of view we arrive at the definition of conchoid. 2 More precisely, consider a fixed point q 2 R and a fixed constant a 2 R>0. The conchoid of C with respect to q and with parameter a is the locus of all points p 2 R2 such that the line through p and q meets C at a distance a from p. The classical example is the conchoid of Nicomedes (225 B.C.) which is the conchoid of a line with respect to a point not on a line. If the line is x = b and q = (0; 0) is the origin then the conchoid is (x2 + y2)(x − b)2 = a2x2: It can be used to trisect an angle α. Let α be the angle AOB and let D be any point E C A B D L O on jAOj. Line perpendicular to jADj in point D intersects line jOBj in point L. We consider the conchoid of line DL with respect to point O with parameter 2jOLj (i.e. jDEj = 2jOLj). Line parallel to jOAj and passing through L intersect the conchoid in point C. Then the angle AOC is one third of the angle AOB. 4 One can also consider a path of a fixed point on a circle rolling along a line. The obtained curve, cycloid, was discovered by Bernoulli around 1700. It is a path that a particle takes when sliding from one point to another on a vertical plane. This discovery led to the development of the theory of variations. 5 2 19.01. Lecture 2. Complex projective spaces and projective transformations Complex algebraic curves, as defined in the previous lecture, are never compact. For many purposes it is useful to compactify complex algebraic curves by adding points ”infinity". For example, curves 2 2 C1 = fy = x − 1g;C2 = fy = cxg intersect when c 6= ±1. If c = ±1, C1 and C2 do not intersect but they are asymptotic as x and y tend to infinity. We would like to \add points at infinity" to say that C1 and C2 intersect, possibly at infinity, for any value of c 2 C. To do so, we need the notion of a complex projective space P2. Recall that a topological space X is compact if any open cover of X has a finite subcover. A metric space (X; d) is compact if (X; d) is complete (any Cauchy sequence has a limit) and universally bounded (for any " > 0 there exists a finite open cover of X with balls of radius "). X is a Hausdorff space if it satisfies axiom T2, i.e. if for any pair of points x, y of X there exist open subsets U; V ⊂ X such that x 2 U, y 2 V and U \ V = ;.
Recommended publications
  • INTRODUCTION to ALGEBRAIC GEOMETRY, CLASS 25 Contents 1
    INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 25 RAVI VAKIL Contents 1. The genus of a nonsingular projective curve 1 2. The Riemann-Roch Theorem with Applications but No Proof 2 2.1. A criterion for closed immersions 3 3. Recap of course 6 PS10 back today; PS11 due today. PS12 due Monday December 13. 1. The genus of a nonsingular projective curve The definition I’m going to give you isn’t the one people would typically start with. I prefer to introduce this one here, because it is more easily computable. Definition. The tentative genus of a nonsingular projective curve C is given by 1 − deg ΩC =2g 2. Fact (from Riemann-Roch, later). g is always a nonnegative integer, i.e. deg K = −2, 0, 2,.... Complex picture: Riemann-surface with g “holes”. Examples. Hence P1 has genus 0, smooth plane cubics have genus 1, etc. Exercise: Hyperelliptic curves. Suppose f(x0,x1) is a polynomial of homo- geneous degree n where n is even. Let C0 be the affine plane curve given by 2 y = f(1,x1), with the generically 2-to-1 cover C0 → U0.LetC1be the affine 2 plane curve given by z = f(x0, 1), with the generically 2-to-1 cover C1 → U1. Check that C0 and C1 are nonsingular. Show that you can glue together C0 and C1 (and the double covers) so as to give a double cover C → P1. (For computational convenience, you may assume that neither [0; 1] nor [1; 0] are zeros of f.) What goes wrong if n is odd? Show that the tentative genus of C is n/2 − 1.(Thisisa special case of the Riemann-Hurwitz formula.) This provides examples of curves of any genus.
    [Show full text]
  • Projective Geometry: a Short Introduction
    Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g.
    [Show full text]
  • Algebraic Geometry Michael Stoll
    Introductory Geometry Course No. 100 351 Fall 2005 Second Part: Algebraic Geometry Michael Stoll Contents 1. What Is Algebraic Geometry? 2 2. Affine Spaces and Algebraic Sets 3 3. Projective Spaces and Algebraic Sets 6 4. Projective Closure and Affine Patches 9 5. Morphisms and Rational Maps 11 6. Curves — Local Properties 14 7. B´ezout’sTheorem 18 2 1. What Is Algebraic Geometry? Linear Algebra can be seen (in parts at least) as the study of systems of linear equations. In geometric terms, this can be interpreted as the study of linear (or affine) subspaces of Cn (say). Algebraic Geometry generalizes this in a natural way be looking at systems of polynomial equations. Their geometric realizations (their solution sets in Cn, say) are called algebraic varieties. Many questions one can study in various parts of mathematics lead in a natural way to (systems of) polynomial equations, to which the methods of Algebraic Geometry can be applied. Algebraic Geometry provides a translation between algebra (solutions of equations) and geometry (points on algebraic varieties). The methods are mostly algebraic, but the geometry provides the intuition. Compared to Differential Geometry, in Algebraic Geometry we consider a rather restricted class of “manifolds” — those given by polynomial equations (we can allow “singularities”, however). For example, y = cos x defines a perfectly nice differentiable curve in the plane, but not an algebraic curve. In return, we can get stronger results, for example a criterion for the existence of solutions (in the complex numbers), or statements on the number of solutions (for example when intersecting two curves), or classification results.
    [Show full text]
  • Trigonometry Cram Sheet
    Trigonometry Cram Sheet August 3, 2016 Contents 6.2 Identities . 8 1 Definition 2 7 Relationships Between Sides and Angles 9 1.1 Extensions to Angles > 90◦ . 2 7.1 Law of Sines . 9 1.2 The Unit Circle . 2 7.2 Law of Cosines . 9 1.3 Degrees and Radians . 2 7.3 Law of Tangents . 9 1.4 Signs and Variations . 2 7.4 Law of Cotangents . 9 7.5 Mollweide’s Formula . 9 2 Properties and General Forms 3 7.6 Stewart’s Theorem . 9 2.1 Properties . 3 7.7 Angles in Terms of Sides . 9 2.1.1 sin x ................... 3 2.1.2 cos x ................... 3 8 Solving Triangles 10 2.1.3 tan x ................... 3 8.1 AAS/ASA Triangle . 10 2.1.4 csc x ................... 3 8.2 SAS Triangle . 10 2.1.5 sec x ................... 3 8.3 SSS Triangle . 10 2.1.6 cot x ................... 3 8.4 SSA Triangle . 11 2.2 General Forms of Trigonometric Functions . 3 8.5 Right Triangle . 11 3 Identities 4 9 Polar Coordinates 11 3.1 Basic Identities . 4 9.1 Properties . 11 3.2 Sum and Difference . 4 9.2 Coordinate Transformation . 11 3.3 Double Angle . 4 3.4 Half Angle . 4 10 Special Polar Graphs 11 3.5 Multiple Angle . 4 10.1 Limaçon of Pascal . 12 3.6 Power Reduction . 5 10.2 Rose . 13 3.7 Product to Sum . 5 10.3 Spiral of Archimedes . 13 3.8 Sum to Product . 5 10.4 Lemniscate of Bernoulli . 13 3.9 Linear Combinations .
    [Show full text]
  • Study of Spiral Transition Curves As Related to the Visual Quality of Highway Alignment
    A STUDY OF SPIRAL TRANSITION CURVES AS RELA'^^ED TO THE VISUAL QUALITY OF HIGHWAY ALIGNMENT JERRY SHELDON MURPHY B, S., Kansas State University, 1968 A MJvSTER'S THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Civil Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas 1969 Approved by P^ajQT Professor TV- / / ^ / TABLE OF CONTENTS <2, 2^ INTRODUCTION 1 LITERATURE SEARCH 3 PURPOSE 5 SCOPE 6 • METHOD OF SOLUTION 7 RESULTS 18 RECOMMENDATIONS FOR FURTHER RESEARCH 27 CONCLUSION 33 REFERENCES 34 APPENDIX 36 LIST OF TABLES TABLE 1, Geonetry of Locations Studied 17 TABLE 2, Rates of Change of Slope Versus Curve Ratings 31 LIST OF FIGURES FIGURE 1. Definition of Sight Distance and Display Angle 8 FIGURE 2. Perspective Coordinate Transformation 9 FIGURE 3. Spiral Curve Calculation Equations 12 FIGURE 4. Flow Chart 14 FIGURE 5, Photograph and Perspective of Selected Location 15 FIGURE 6. Effect of Spiral Curves at Small Display Angles 19 A, No Spiral (Circular Curve) B, Completely Spiralized FIGURE 7. Effects of Spiral Curves (DA = .015 Radians, SD = 1000 Feet, D = l** and A = 10*) 20 Plate 1 A. No Spiral (Circular Curve) B, Spiral Length = 250 Feet FIGURE 8. Effects of Spiral Curves (DA = ,015 Radians, SD = 1000 Feet, D = 1° and A = 10°) 21 Plate 2 A. Spiral Length = 500 Feet B. Spiral Length = 1000 Feet (Conpletely Spiralized) FIGURE 9. Effects of Display Angle (D = 2°, A = 10°, Ig = 500 feet, = SD 500 feet) 23 Plate 1 A. Display Angle = .007 Radian B. Display Angle = .027 Radiaji FIGURE 10.
    [Show full text]
  • The Chiral De Rham Complex of Tori and Orbifolds
    The Chiral de Rham Complex of Tori and Orbifolds Dissertation zur Erlangung des Doktorgrades der Fakult¨atf¨urMathematik und Physik der Albert-Ludwigs-Universit¨at Freiburg im Breisgau vorgelegt von Felix Fritz Grimm Juni 2016 Betreuerin: Prof. Dr. Katrin Wendland ii Dekan: Prof. Dr. Gregor Herten Erstgutachterin: Prof. Dr. Katrin Wendland Zweitgutachter: Prof. Dr. Werner Nahm Datum der mundlichen¨ Prufung¨ : 19. Oktober 2016 Contents Introduction 1 1 Conformal Field Theory 4 1.1 Definition . .4 1.2 Toroidal CFT . .8 1.2.1 The free boson compatified on the circle . .8 1.2.2 Toroidal CFT in arbitrary dimension . 12 1.3 Vertex operator algebra . 13 1.3.1 Complex multiplication . 15 2 Superconformal field theory 17 2.1 Definition . 17 2.2 Ising model . 21 2.3 Dirac fermion and bosonization . 23 2.4 Toroidal SCFT . 25 2.5 Elliptic genus . 26 3 Orbifold construction 29 3.1 CFT orbifold construction . 29 3.1.1 Z2-orbifold of toroidal CFT . 32 3.2 SCFT orbifold . 34 3.2.1 Z2-orbifold of toroidal SCFT . 36 3.3 Intersection point of Z2-orbifold and torus models . 38 3.3.1 c = 1...................................... 38 3.3.2 c = 3...................................... 40 4 Chiral de Rham complex 41 4.1 Local chiral de Rham complex on CD ...................... 41 4.2 Chiral de Rham complex sheaf . 44 4.3 Cechˇ cohomology vertex algebra . 49 4.4 Identification with SCFT . 49 4.5 Toric geometry . 50 5 Chiral de Rham complex of tori and orbifold 53 5.1 Dolbeault type resolution . 53 5.2 Torus .
    [Show full text]
  • Arxiv:1910.11630V1 [Math.AG] 25 Oct 2019 3 Geometric Invariant Theory 10 3.1 Quotients and the Notion of Stability
    Geometric Invariant Theory, holomorphic vector bundles and the Harder–Narasimhan filtration Alfonso Zamora Departamento de Matem´aticaAplicada y Estad´ıstica Universidad CEU San Pablo Juli´anRomea 23, 28003 Madrid, Spain e-mail: [email protected] Ronald A. Z´u˜niga-Rojas Centro de Investigaciones Matem´aticasy Metamatem´aticas CIMM Escuela de Matem´atica,Universidad de Costa Rica UCR San Jos´e11501, Costa Rica e-mail: [email protected] Abstract. This survey intends to present the basic notions of Geometric Invariant Theory (GIT) through its paradigmatic application in the construction of the moduli space of holomorphic vector bundles. Special attention is paid to the notion of stability from different points of view and to the concept of maximal unstability, represented by the Harder-Narasimhan filtration and, from which, correspondences with the GIT picture and results derived from stratifications on the moduli space are discussed. Keywords: Geometric Invariant Theory, Harder-Narasimhan filtration, moduli spaces, vector bundles, Higgs bundles, GIT stability, symplectic stability, stratifications. MSC class: 14D07, 14D20, 14H10, 14H60, 53D30 Contents 1 Introduction 2 2 Preliminaries 4 2.1 Lie groups . .4 2.2 Lie algebras . .6 2.3 Algebraic varieties . .7 2.4 Vector bundles . .8 arXiv:1910.11630v1 [math.AG] 25 Oct 2019 3 Geometric Invariant Theory 10 3.1 Quotients and the notion of stability . 10 3.2 Hilbert-Mumford criterion . 14 3.3 Symplectic stability . 18 3.4 Examples . 21 3.5 Maximal unstability . 24 2 git, hvb & hnf 4 Moduli Space of vector bundles 28 4.1 GIT construction of the moduli space . 28 4.2 Harder-Narasimhan filtration .
    [Show full text]
  • The Ordered Distribution of Natural Numbers on the Square Root Spiral
    The Ordered Distribution of Natural Numbers on the Square Root Spiral - Harry K. Hahn - Ludwig-Erhard-Str. 10 D-76275 Et Germanytlingen, Germany ------------------------------ mathematical analysis by - Kay Schoenberger - Humboldt-University Berlin ----------------------------- 20. June 2007 Abstract : Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the “Square Root Spiral“ ( also named as “Spiral of Theodorus” or “Wurzel Spirale“ or “Einstein Spiral” ). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers 4, 9, 16, 25, 36 … form a highly three-symmetrical system of three spiral graphs, which divide the square-root-spiral into three equal areas. A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials. The Square Root Spiral is a geometrical structure which is based on the three basic constants: 1, sqrt2 and π (pi) , and the continuous application of the Pythagorean Theorem of the right angled triangle. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the “golden mean” ( golden section ), which behaves as a self-avoiding-walk- constant in the lattice-like structure of the square root spiral. Contents of the general section Page 1 Introduction to the Square Root Spiral 2 2 Mathematical description of the Square Root Spiral 4 3 The distribution
    [Show full text]
  • On Hodge Theory and Derham Cohomology of Variétiés
    On Hodge Theory and DeRham Cohomology of Vari´eti´es Pete L. Clark October 21, 2003 Chapter 1 Some geometry of sheaves 1.1 The exponential sequence on a C-manifold Let X be a complex manifold. An amazing amount of geometry of X is encoded in the long exact cohomology sequence of the exponential sequence of sheaves on X: exp £ 0 ! Z !OX !OX ! 0; where exp takes a holomorphic function f on an open subset U to the invertible holomorphic function exp(f) := e(2¼i)f on U; notice that the kernel is the constant sheaf on Z, and that the exponential map is surjective as a morphism of sheaves because every holomorphic function on a polydisk has a logarithm. Taking sheaf cohomology we get exp £ 1 1 1 £ 2 0 ! Z ! H(X) ! H(X) ! H (X; Z) ! H (X; OX ) ! H (X; OX ) ! H (X; Z); where we have written H(X) for the ring of global holomorphic functions on X. Now let us reap the benefits: I. Because of the exactness at H(X)£, we see that any nowhere vanishing holo- morphic function on any simply connected C-manifold has a logarithm – even in the complex plane, this is a nontrivial result. From now on, assume that X is compact – in particular it homeomorphic to a i finite CW complex, so its Betti numbers bi(X) = dimQ H (X; Q) are finite. This i i also implies [Cartan-Serre] that h (X; F ) = dimC H (X; F ) is finite for all co- herent analytic sheaves on X, i.e.
    [Show full text]
  • AN EXPLORATION of COMPLEX JACOBIAN VARIETIES Contents 1
    AN EXPLORATION OF COMPLEX JACOBIAN VARIETIES MATTHEW WOOLF Abstract. In this paper, I will describe my thought process as I read in [1] about Abelian varieties in general, and the Jacobian variety associated to any compact Riemann surface in particular. I will also describe the way I currently think about the material, and any additional questions I have. I will not include material I personally knew before the beginning of the summer, which included the basics of algebraic and differential topology, real analysis, one complex variable, and some elementary material about complex algebraic curves. Contents 1. Abelian Sums (I) 1 2. Complex Manifolds 2 3. Hodge Theory and the Hodge Decomposition 3 4. Abelian Sums (II) 6 5. Jacobian Varieties 6 6. Line Bundles 8 7. Abelian Varieties 11 8. Intermediate Jacobians 15 9. Curves and their Jacobians 16 References 17 1. Abelian Sums (I) The first thing I read about were Abelian sums, which are sums of the form 3 X Z pi (1.1) (L) = !; i=1 p0 where ! is the meromorphic one-form dx=y, L is a line in P2 (the complex projective 2 3 2 plane), p0 is a fixed point of the cubic curve C = (y = x + ax + bx + c), and p1, p2, and p3 are the three intersections of the line L with C. The fact that C and L intersect in three points counting multiplicity is just Bezout's theorem. Since C is not simply connected, the integrals in the Abelian sum depend on the path, but there's no natural choice of path from p0 to pi, so this function depends on an arbitrary choice of path, and will not necessarily be holomorphic, or even Date: August 22, 2008.
    [Show full text]
  • Abelian Varieties
    Abelian Varieties J.S. Milne Version 2.0 March 16, 2008 These notes are an introduction to the theory of abelian varieties, including the arithmetic of abelian varieties and Faltings’s proof of certain finiteness theorems. The orginal version of the notes was distributed during the teaching of an advanced graduate course. Alas, the notes are still in very rough form. BibTeX information @misc{milneAV, author={Milne, James S.}, title={Abelian Varieties (v2.00)}, year={2008}, note={Available at www.jmilne.org/math/}, pages={166+vi} } v1.10 (July 27, 1998). First version on the web, 110 pages. v2.00 (March 17, 2008). Corrected, revised, and expanded; 172 pages. Available at www.jmilne.org/math/ Please send comments and corrections to me at the address on my web page. The photograph shows the Tasman Glacier, New Zealand. Copyright c 1998, 2008 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permis- sion from the copyright holder. Contents Introduction 1 I Abelian Varieties: Geometry 7 1 Definitions; Basic Properties. 7 2 Abelian Varieties over the Complex Numbers. 10 3 Rational Maps Into Abelian Varieties . 15 4 Review of cohomology . 20 5 The Theorem of the Cube. 21 6 Abelian Varieties are Projective . 27 7 Isogenies . 32 8 The Dual Abelian Variety. 34 9 The Dual Exact Sequence. 41 10 Endomorphisms . 42 11 Polarizations and Invertible Sheaves . 53 12 The Etale Cohomology of an Abelian Variety . 54 13 Weil Pairings . 57 14 The Rosati Involution . 61 15 Geometric Finiteness Theorems . 63 16 Families of Abelian Varieties .
    [Show full text]
  • Curvature Theorems on Polar Curves
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES Volume 33 March 15, 1947 Number 3 CURVATURE THEOREMS ON POLAR CUR VES* By EDWARD KASNER AND JOHN DE CICCO DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YoRK Communicated February 4, 1947 1. The principle of duality in projective geometry is based on the theory of poles and polars with respect to a conic. For a conic, a point has only one kind of polar, the first polar, or polar straight line. However, for a general algebraic curve of higher degree n, a point has not only the first polar of degree n - 1, but also the second polar of degree n - 2, the rth polar of degree n - r, :. ., the (n - 1) polar of degree 1. This last polar is a straight line. The general polar theory' goes back to Newton, and was developed by Bobillier, Cayley, Salmon, Clebsch, Aronhold, Clifford and Mayer. For a given curve Cn of degree n, the first polar of any point 0 of the plane is a curve C.-1 of degree n - 1. If 0 is a point of C, it is well known that the polar curve C,,- passes through 0 and touches the given curve Cn at 0. However, the two curves do not have the same curvature. We find that the ratio pi of the curvature of C,- i to that of Cn is Pi = (n -. 2)/(n - 1). For example, if the given curve is a cubic curve C3, the first polar is a conic C2, and at an ordinary point 0 of C3, the ratio of the curvatures is 1/2.
    [Show full text]