Summary of National Guidance for Lipid Management for Primary And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Educational Booklet for Patients with Familial Hypercholesterolemia
Illustrations > Jean Lambert Illustrations graphic design > www.mine-de-rien.net graphic Chol/29/P030/01-01/10 NLA An educational booklet for patients with familial hypercholesterolemia This brochure was provided by Genzyme Corporation for use by the Foundation of the National Lipid Association. DR. LEIV OSE www.learnyourlipids.com CONTENTS PART 1 What will you learn from this booklet? 02 FAMILIAL HYPERCHOLESTEROLEMIA PART 1: FAMILIAL HYPERCHOLESTEROLEMIA 03 1 - What is Familial Hypercholesterolemia? 03 WHAT WILL YOU 2 - What is LDL-Cholesterol? 04 3 - What are the causes of FH? 05 LEARN FROM THIS GREAT GRANDMOTHER GREAT GRANDFATHER 4 - When should FH be suspected? 07 FH NON FH BOOKLET? 5 - How is FH diagnosed? 09 6 - How early can FH be diagnosed? 09 Woman You will learn about Familial PART 2: TREATMENT 10 GRANDMOTHER GRANDFATHER Hypercholesterolemia, NON FH FH Woman with FH 1 - How can LDL-Cholesterol be reduced? 10 its cause, and the potential 2 - Step 1: Dietary management of FH 11 Man consequences of this a) How does diet affect LDL-Cholesterol? 11 disease. You will learn b) What sort of diet? 11 Man with FH about high cholesterol 3 - Step 2: Using medication 12 AUNT MOTHER FATHER UNCLE and what this might mean a) How does medication affect LDL-Cholesterol? 12 NON FH FH NON FH FH for your heart and blood b) Which drug treatments reduce LDL-Cholesterol and how? 13 FIGURE 1: 4 - Why is lifelong treatment important? vessels. Most importantly 15 FH is an inherited disease, you will learn how to find PART 3: CARDIOVASCULAR DISEASE AND LIPOPROTEINS 16 which can usually be traced out whether someone in 1 - What is cardiovascular disease? 16 DAUGTER SON over several generations. -
Core Laboratory
Performance of the vast majority of Hematology, Coagulation, Urinalysis, Clinical Chemistry and Toxicology testing procedures is conducted in the CORE LABORATORY - an advanced, highly automated area where whole blood, serum, plasma, urine and other biological fluid specimens are tested for a comprehensive menu of state-of-the-art laboratory procedures. Significant testing procedures for Clinical Chemistry and Toxicology includes panels currently approved by the Centers for Medicare and Medicaid Services: Basic Metabolic Panel; Comprehensive Metabolic Panel; Liver Function Panel; Renal Function Panel; and Electrolyte Panel. Other key tests include the Lipid Profile (Cholesterol, Triglyceride, HDL- Cholesterol and LDL-Cholesterol), major markers of cardiovascular disease and risk [such as Troponin I, Myoglobin and Beta-type natriuretic peptide (commonly referred to as BNAT or BNP)], critical care analytes, beta-HCG, and significant therapeutic drug levels. Urinary toxicology screens for major drugs of abuse (and/or key metabolites) are also performed. The cornerstones of Hematology testing are analyses of the complete blood count (CBC) and the differential (DIFF). These include evaluation of: (1) white blood cell count and differential with percentage and absolute value given for the leukocyte components; (2) circulating erythrocytes by means of hemoglobin, hematocrit, red blood cell count, and red blood cell indices; and (3) measurement of platelet concentration by count and/or estimation. Morphological variations and changes of cellular constituents are reported. Alteration of any aspect of the hemostatic mechanism may cause abnormal bleeding in a wide variety of familial and acquired disorders. These defects may be differentiated by a profile of significant Coagulation laboratory tests that includes PT, PTT, Fibrinogen, FDP, and D-Dimer for monitoring anticoagulant therapy. -
Genetic Testing for Familial Hypercholesterolemia AHS – M2137
Corporate Medical Policy Genetic Testing for Familial Hypercholesterolemia AHS – M2137 File Name: genetic_testing_for_familial_hypercholesterolemia Origination: 01/01/2019 Last CAP Review: 07/2021 Next CAP Review: 07/2022 Last Review: 07/2021 Description of Procedure or Service Definitions Familial hypercholesterolemia (FH) is a genetic condition that results in premature atherosclerotic cardiovascular disease due to lifelong exposure to elevated low-density lipoprotein cholesterol (LDL-C) levels (Sturm et al., 2018). FH encompasses multiple clinical phenotypes associated with distinct molecular etiologies. The most common is an autosomal dominant disorder caused by mutations in one of three genes, low-density lipoprotein receptor (LDLR), apolipoprotein B-100 (APOB), and proprotein convertase subtilisin-like kexin type 9 (PCSK9) (Ahmad et al., 2016; Goldberg et al., 2011). Rare autosomal recessive disease results from mutation in low-density lipoprotein receptor adaptor protein (LDLRAP) (Garcia et al., 2001). Related Policies Cardiovascular Disease Risk Assessment AHS – G2050 ***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician. Policy BCBSNC will provide coverage for genetic testing for familial hypercholesterolemia when it is determined the medical criteria or reimbursement guidelines below are met. Benefits Application This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy. When Genetic Testing for Familial Hypercholesterolemia is covered 1. Genetic testing to establish a molecular diagnosis of Familial Hypercholesterolemia is considered medically necessary when BOTH of the following criteria are met: A. -
Inflammatory Mechanisms Affecting the Lipid Profile in Patients with Systemic Lupus Erythematosus CECILIA P
Inflammatory Mechanisms Affecting the Lipid Profile in Patients with Systemic Lupus Erythematosus CECILIA P. CHUNG, ANNETTE OESER, JOSEPH SOLUS, INGRID AVALOS, TEBEB GEBRETSADIK, AYUMI SHINTANI, MacRAE F. LINTON, SERGIO FAZIO, and C. MICHAEL STEIN ABSTRACT. Objective. Increased low density lipoprotein (LDL) cholesterol and triglycerides, and decreased high density lipoprotein (HDL) cholesterol concentrations are associated with adverse cardiovascular risk in the general population. Patients with systemic lupus erythematosus (SLE) have an altered lipid profile characterized by increased triglycerides and decreased HDL cholesterol concentrations. We examined the relationships between lipid concentrations, cytokines, and inflammatory markers in patients with SLE. Methods. Fasting lipid concentrations, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) were measured in 110 patients with SLE. Disease activity was quantified by the SLE Disease Activity Index (SLEDAI), and disease damage by the Systemic Lupus International Collaborating Clinics (SLICC) score. Concentrations of circulating tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and insulin were measured and insulin sensitivity calculated. Results. Lower concentrations of HDL cholesterol were independently associated with higher ESR (p < 0.001), IL-6 (p = 0.02), SLEDAI (p = 0.04), and TNF-α (p = 0.04) after adjustment for age, sex, race, body mass index, insulin sensitivity, and current use of corticosteroids or hydroxychloroquine. Triglyceride concentrations were -
Lipid Profile and Its Relationship with Blood
Onkar Singh et al. Lipid profile and blood glucose levels in MetS National Journal of Physiology, DOI: 10.5455/njppp.2015.5.051120141 NJPPP Pharmacy & Pharmacology http://www.njppp.com/ RESEARCH ARTICLE Correspondence LIPID PROFILE AND ITS RELATIONSHIP Onkar Singh ([email protected]) WITH BLOOD GLUCOSE LEVELS IN Received 27.08.2014 METABOLIC SYNDROME Accepted 09.09.2014 1 1 2 Onkar Singh , Mrityunjay Gupta , Vijay Khajuria Key Words Metabolic Syndrome; 1 Department of Physiology, Government Medical College, Jammu, India Dyslipidemia; Lipid Pattern; 2 Department of Pharmacology, Government Medical College, Jammu, India Type 2 Diabetes Mellitus Background: Metabolic syndrome (MetS) and its associated factors such as dyslipidemia and hyperglycemia are associated with increased risk of cardiovascular disease (CVD). Aims and Objective: To assess lipid profile and its relation with blood glucose levels in patients with MetS. Materials and Methods: This cross-sectional study included 72 male patients with MetS. Anthropometry, lipid profile, blood glucose, and presence of MetS (JIS criteria) were determined. Results: High triglyceride (TG) level (>200 mg/dL, 44.4%) was the most common dyslipidemia followed by low levels of high-density lipoprotein cholesterol (<40 mg/dL, 19.4%). High total cholesterol levels (>240 mg/dL, 13.8%) and high low- density lipoprotein cholesterol levels (>160 mg/dL, 9.7%) were observed. On comparison, no significant differences in lipid levels of MetS patients with normal fasting glucose, impaired fasting glucose, and type 2 diabetes mellitus were observed. Conclusions: Dyslipidemia was frequent in patients with MetS. High TG was the most common lipid abnormality, and a large number of patients had more than one abnormal lipid parameter. -
Community Lab Costs
Sickle Cell This tests for the genetic trait which may lead to sickle cell anemia. Osteoporosis Screening This uses ultrasound to screen people for low bone density or osteoporosis and is completed by painlessly scanning the heel. Because osteoporosis rarely causes signs or symptoms until it’s advanced, the National Osteoporosis Foundation recommends a bone density test if you are: • A woman older than age 65 or a man older than age 70 • A postmenopausal woman with at least one risk factor for osteoporosis Community Lab Costs • A man between age 50 and 70 who has at least one osteoporosis (greatly reduced rates) risk factor • Older than age 50 with a history of a broken bone • Taking medications, such as prednisone, aromatase inhibitors or Wellness Panel........................................................................ $20 Fasting anti-seizure drugs, that are associated with osteoporosis Includes screening for glucose, electrolytes, kidney, liver and • A postmenopausal woman who has recently stopped taking thyroid, plus complete blood count and lipid profile hormone therapy • A woman who experienced early menopause Diabetic Screening (A1c)...................................................... $5 The results of this test will indicate if you have or at risk for osteoporosis. Sickle Cell................................................................................ $6 If so, your doctor can offer treatment. PSA (Prostate Screening)...................................................... $8 Breathing Test This measures airflow and lung -
Commonly Used Lipidcentric ICD-10 (ICD-9) Codes
Commonly Used Lipidcentric ICD-10 (ICD-9) Codes *This is not an all inclusive list of ICD-10 codes R.LaForge 11/2015 E78.0 (272.0) Pure hypercholesterolemia E78.3 (272.3) Hyperchylomicronemia (Group A) (Group D) Familial hypercholesterolemia Grütz syndrome Fredrickson Type IIa Chylomicronemia (fasting) (with hyperlipoproteinemia hyperprebetalipoproteinemia) Hyperbetalipoproteinemia Fredrickson type I or V Hyperlipidemia, Group A hyperlipoproteinemia Low-density-lipoid-type [LDL] Lipemia hyperlipoproteinemia Mixed hyperglyceridemia E78.4 (272.4) Other hyperlipidemia E78.1 (272.1) Pure hyperglyceridemia Type 1 Diabetes Mellitus (DM) with (Group B) hyperlipidemia Elevated fasting triglycerides Type 1 DM w diabetic hyperlipidemia Endogenous hyperglyceridemia Familial hyperalphalipoproteinemia Fredrickson Type IV Hyperalphalipoproteinemia, familial hyperlipoproteinemia Hyperlipidemia due to type 1 DM Hyperlipidemia, Group B Hyperprebetalipoproteinemia Hypertriglyceridemia, essential E78.5 (272.5) Hyperlipidemia, unspecified Very-low-density-lipoid-type [VLDL] Complex dyslipidemia hyperlipoproteinemia Elevated fasting lipid profile Elevated lipid profile fasting Hyperlipidemia E78.2 (272.2) Mixed hyperlipidemia (Group C) Hyperlipidemia (high blood fats) Broad- or floating-betalipoproteinemia Hyperlipidemia due to steroid Combined hyperlipidemia NOS Hyperlipidemia due to type 2 diabetes Elevated cholesterol with elevated mellitus triglycerides NEC Fredrickson Type IIb or III hyperlipoproteinemia with E78.6 (272.6) -
Cost-Effectiveness Analysis: Treatment Initiation Threshold for People with Stage 1 Hypertension
National Institute for Health and Care Excellence FINAL Hypertension in adults: diagnosis and management Cost-effectiveness analysis: Treatment initiation threshold for people with stage 1 hypertension NICE guideline NG136 Economic analysis report August 2019 Final This guideline was developed by the National Guideline Centre Hypertension in adults: FINAL Contents Disclaimer The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and, where appropriate, their carer or guardian. Local commissioners and providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties. NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the Welsh Government, Scottish Government, and Northern Ireland Executive. -
Lipid Profile Abnormalities Seen in T2DM Patients in Primary Healthcare in Turkey: a Cross-Sectional Study Aclan Ozder
Ozder Lipids in Health and Disease 2014, 13:183 http://www.lipidworld.com/content/13/1/183 RESEARCH Open Access Lipid profile abnormalities seen in T2DM patients in primary healthcare in Turkey: a cross-sectional study Aclan Ozder Abstract Background: Diabetes is characterized by chronic hyperglycemia and disturbances of carbohydrate, lipid and protein metabolism. We aimed to research association between serum lipid profile and blood glucose, hypothesizing that early detection and treatment of lipid abnormalities can minimize the risk for atherogenic cardiovascular disorder and cerebrovascular accident in patients with type 2 diabetes mellitus. Methods: Fasting blood glucose (FBG), total cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL), triglyceride (TG) and glycated haemoglobin (HbA1c) levels were evaluated. A hepatic ultrasound was performed for every diabetic to evaluate hepatosteatosis. The study was done from January 2014 to June 2014 among 132 patients with T2DM who were admitted to outpatient clinic of Family Medicine department in a university hospital. The patients whose taking multi-vitamin supplementation or having hepatic, renal or metabolic bone disorders (including parathyroid related problems) were excluded from the study for the reason that those conditions might affect the carbohydrate and lipid metabolism in diabetes. Test of significance was calculated by unpaired student’s t test between cases and controls. Correlation studies (Pearson’s correlation) were performed between the variables of blood glucose and serum lipid profile. Significance was set at p<0.05. Results: Results of serum lipid profile showed that the mean values for TC, TG, HDL and LDL in female patients were 227.6 ± 57.7 mg/dl, 221.6 ± 101.1 mg/dl, 31.5 ± 6.7 mg/dl and 136.5 ± 43.7 mg/dl, respectively. -
Derivation and Validation of QRISK, a New Cardiovascular Disease Risk Score for the United Kingdom: Prospective Open Cohort Study
RESEARCH BMJ: first published as 10.1136/bmj.39261.471806.55 on 5 July 2007. Downloaded from 8 Bergenstal RM, Gavin III JR. The role of self-monitoring of blood practices and recommendations from the NIH Behavior Change glucose in the care of people with diabetes: report of a global Consortium. Health Psychol 2004;23:443-51. consensus conference. Am J Med 2005;118(9, suppl 1):1-6. 14 Davidson MB, Castellanos M, Kain D, Duran P. The effect of self 9 Gerich JE. Clinicians can help their patients control postprandial monitoring of blood glucose concentrations on glycated hemoglobin hyperglycemia as a means of reducing cardiovascular risk. Diabetes levels in diabetic patients not taking insulin: a blinded, randomized Educator 2006;32:513-22. trial. Am J Med 2005;118:422-5. 10 Farmer A, Wade A, French DP, Goyder E, Kinmonth AL, Neil A. The DiGEM trial protocol—a randomised controlled trial to determine the 15 Guerci B, Drouin P, Grange V, Bougneres P, Fontaine P, Kerlan V, et al. effect on glycaemic control of different strategies of blood glucose Self-monitoring of blood glucose significantly improves metabolic self-monitoring in people with type 2 diabetes [ISRCTN47464659]. control in patients with type 2 diabetes mellitus: the auto- BMC Fam Pract 2005;6:25. surveillance intervention active (ASIA) study. Diabetes Metab 11 Owens DR, Barnett AH, Pickup J, Kerr D, Bushby P, Hicks D, et al. 2003;29:587-94. Blood glucose self-monitoring in type 1 and type 2 diabetes: 16 Schwedes U, Siebolds M, Mertes G. Meal-related structured self- reaching a multi-disciplinary consensus. -
Lipid Guidelines 2018: Updates from ACC/AHA Guidelines 2013
Lipid Guidelines 2018: Updates from ACC/AHA Guidelines 2013 Allen Adolphe M.D., Ph.D. FACP Professor and Vice Chief General Internal Medicine, University of New Mexico Objectives and Disclosures • Disclosures: NIH GRADE Study; Pharmaceutical Trials, none active now • Objectives – Know the four categories of high CVD risk from the ACC/AHA 2013 Lipid Guidelines (ATP IV) – Know what the major philosophical change between ATP III and ATP IV – Know what the ACC Expert Consensus Decision Pathway is and what changes in the ACC/AHA guidelines are suggested ATP IV: a little more abstract ATP III ATP IV • RISK FACTOR COUNTING • THERE IS NO TARGET • TREAT TO LDL GOAL • THE OF • ADDRESS NON-HDL TARGET INTENSITY STATIN THERAPY IS THE FOCUS OF TREATMENT ATP-IV (ACC-AHA 2013 Guidelines) • How many of you have adopted the ATP IV guidelines in your lipid practice by reducing the LDL-C by >50% for those at high risk of CVD? • How many of you believe that if the LDL-C too low it will place patients at risk for adverse effects? • How many of you treat patient with Familial Hyperlipidemia? A Comparative Analysis of Current Lipid Treatment Guidelines RISK ESTIMATORS • Risk estimators are derived from large studies in the United States or Europe. All include age, sex, total cholesterol, HDL-C, and systolic blood pressure as predictors. • However, ethnicity, treatment for hypertension, diabetes, and smoking status are only included in some; thus, patient risk may vary with different estimators. Outcomes are different between risk estimators • Outcome for the FRS is the most inclusive, predicting 10-year risk of coronary heart disease, cerebrovascular events, peripheral artery disease, or heart failure. -
Factors Predicting Statin Prescribing for Primary Prevention: an Historical Cohort Study
Accepted Manuscript British Journal of General Practice Factors predicting statin prescribing for primary prevention: an historical cohort study Finnikin Samuel; Willis Brian; Ryan Ronan; Evans Tim; Marshall Tom DOI: https://doi.org/10.3399/bjgp20X714065 To access the most recent version of this article, please click the DOI URL in the line above. Received 08 May 2020 Revised 13 August 2020 Accepted 17 August 2020 © 2020 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/). Published by British Journal of General Practice. For editorial process and policies, see: https: https://bjgp.org/authors/bjgp-editorial-process-and-policies When citing this article please include the DOI provided above. Author Accepted Manuscript This is an ‘author accepted manuscript’: a manuscript that has been accepted for publication in British Journal of General Practice, but which has not yet undergone subediting, typesetting, or correction. Errors discovered and corrected during this process may materially alter the content of this manuscript, and the latest published version (the Version of Record) should be used in preference to any preceding versions Factors predicting statin prescribing for primary prevention: an historical cohort study Samuel Finnikin1 MSc, MRCGP, Brian H Willis1 MSc, PhD, MRCP, MRCGP, Ronan Ryan2 MA, MSc, PhD, Tim Evans3 PhD, Tom Marshall1 MSc, PhD, MRCGP, FFPH 1. Institute of Applied Health Research, University of Birmingham, England 2. Devon, UK 3. Public Health England, London, England Corresponding Author Dr Samuel Finnikin bjgp20X714065 – Address: Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, England, B15 2TT Telephone: 0121 414 3344 Email: [email protected] BJGP Twitter: @sfinnikin – Manuscript Accepted Abstract Background Initiation of statins for the primary prevention of cardiovascular disease (CVD) should be based on CVD risk estimates but their use is sub-optimal.