Lesson 2. Antarctic Oceanography: Component I - Ice/Glaciers Component II - Marine Snow

Total Page:16

File Type:pdf, Size:1020Kb

Lesson 2. Antarctic Oceanography: Component I - Ice/Glaciers Component II - Marine Snow ANTARCTIC Lesson 2. Antarctic Oceanography: Component I - Ice/Glaciers Component II - Marine Snow Lesson Objectives: • Introduces students to the different kinds of ice found in Antarctica, • Students will become familiar with ice sheets, icebergs and glaciers. • Marine snow is found in the oceans surround Antarctica. We will discuss what it is and what function it serves to our oceans. Component I - Ice/Glaciers Antarctica's cold, thick hard whose sides are often bounded covering, called an ice sheet, by mountains or the walls of a began to form 25 million years valley. Ice sheets, or caps, ago. Approximately 98% of which are also formed from Antarctica is covered by ice. compacted snow, are so Antarctica actually changes massive that they cover entire size – during the summer landscapes, mountains as well months (October-March), the as valleys. Glaciers and ice coastal ice melts and Antarctica sheets flow slowly toward the "shrinks." sea where the temperature is slightly warmer. This causes Although almost all of chunks of ice to break off; since Antarctica's land mass is ice is lighter than water, it floats covered by ice, in a few places when it reaches the sea. Once on the continent, mountain these chunks of ice are free- peaks poke through. The floating, they are called Transantarctic Mountains icebergs. The process of divide the areas of the "birthing" an iceberg is called continent known as West and calving. Only about one-tenth East Antarctica. of the iceberg is visible above water. The largest iceberg ever A glacier is a huge mass of ice, recorded measured 200 miles formed from compacted snow, by 60 miles. ©PROJECT OCEANOGRAPHY ANTARCTIC OCEANOGRAPHY 100 ANTARCTIC Parts of the West Antarctic ice are less stable than the ice on sheet rest on the sea floor and land. Scientists carefully toward a warmer climate and monitor it to see whether it will begin to melt, leading to a be affected by global warming. sharp increase in sea level If the temperature rises, large which would cause severe parts of the ice sheet will melt flooding on a global scale. and float freely. As they float, these ice sheets will move Component II - Marine Snow Marine snow is the debris or and denser than the dust that falls through the surrounding ocean, but have oceans and settles on the sea many cavities. While the floor, the same way as dust in particles have to be at least the air settles on an object in one-half millimeter in diameter your home. The difference is to be considered snow, they that this ocean dust is full of can grow to be quite large, on nutrients and life. Marine snow the order of feet, but the are helps transport material from rare. Most marine snow in the the surface ocean to the deeper ocean is 1-2mm in size. layers of the sea. Scientists Marine snow plays an important believe marine snow is a major ecological role by moving food source for life in the atmospheric carbon from the abyssal deep, bringing surface of the oceans to the important nutrients into the seafloor. This can affect the deep sea while carrying with it climate over thousands of years diverse populations of by removing carbon from the microorganisms. This marine atmosphere and transporting it snow consists of bits of dead to the deep sea. Atmospheric animals and plants bound carbon dioxide dissolves in the together by mucus, which is ocean water, and algae take up produced by the ocean the gas as they dwellers. The mucus glues photosynthesize, converting the together scraps of crustacean atmospheric carbon into plant shells, remnants of plants and carbon as the algae grow. The excrement of animals. The algae contribute to the particles are all different shapes formation of the debris that ©PROJECT OCEANOGRAPHY ANTARCTIC OCEANOGRAPHY 101 ANTARCTIC sinks through the ocean in abundant krill feeding on the marine snow. Some small blooming algae produce lots percentage of the total carbon and lots of fecal pellets that remains at the bottom of the sink to the deep-sea. This ocean as marine snow and is process of marine snow and largely consumed by benthic krill fecal pellets settling into the (bottom dwelling) organisms. deep Antarctic over millions of This percentage can be as high years has transported huge as ten percent of the total amounts of algal materials to carbon in coastal waters and the Antarctic sediments. The less than one percent in the result is that these sediments deep oceans. contain the world’s largest amounts of algal skeletons Sinking marine snow in the made of silica. Antarctic is primarily made up of algae and so it is an Geological oceanographers important source of organic who study ocean sediments, carbon and silica to the deep study the Antarctic sediments Antarctic waters and the and the algal skeletons in sediments. The silica is sediment cores they obtain contained in the tiny algal cell from the seafloor. The cores skeletons that are of intricate are often many, many feet long, shape and design. There is a and are collected with special very short season between equipment on oceanographic approximately late November research vessels. Sediments and February in the Antarctic and algae in the cores which (called the “austral spring and have been deposited over summer”) when every year millions and millions of years algae grow very rapidly due to are used by scientists to look at the high amount of sunlight at how the algae populations have this time and the supply of changed through time. Such important nutrients from changes are usually the result upwelling deeper waters. of changes in the ocean During this time of rapid algal environment where the algae growth, which we call a lived and are caused by climate “bloom”, large amounts of variations affecting the water marine snow containing algae temperature, circulation are formed and sink rapidly patterns, and nutrient levels. through the ocean. In addition, ©PROJECT OCEANOGRAPHY ANTARCTIC OCEANOGRAPHY 102 ANTARCTIC The Greenhouse Effect The greenhouse effect is a areas and cities. Another effect condition that causes the is a change in weather average global temperature to patterns. rise over a period of time. Carbon dioxide and methane, The increase in CFC's in the air two gases in the atmosphere, also causes a thinning of the absorb heat as it radiates from ozone layer in the air. This the Earth's surface. They act ultimately affects marine life in like the glass in the Antarctica. With less ozone in greenhouse, not allowing the the atmosphere, more outgoing heat to radiate back ultraviolet radiation reaches the out into space, thus the term Earth. Higher ultraviolet may "greenhouse effect". With have damaging effects on the modern industry, we have put ability of phytoplankton to grow new greenhouse gases into the in the Antarctic surface waters. atmosphere, nitrous oxide and If so, there may be less food chlorofluorocarbon. These (algea) for the krill to feed on. gases come from sources such Less food for the krill means as car exhaust and aerosol less krill; less krill means that sprays. As the amount of the Antarctic animals that feed greenhouse gas increases, the on and survive on krill will Earth's temperature will rise. If suffer. Because it is so cold in that happens, some polar ice Antarctica, the ozone thins out can melt and there will be a rise even more than elsewhere on in sea level, flooding coastal the globe. ©PROJECT OCEANOGRAPHY ANTARCTIC OCEANOGRAPHY 103 ANTARCTIC Activity 2-1 Classroom Discussion 1. Describe the experience of Calving by imagining what you would see, hear and feel. 2. What effect would Polar melting have on other continents? (If the Antarctic ice were to melt, the sea would rise almost 200 feet.) 3. For what reasons would Amundsen leave his supplies at the South Pole for Scott? 4. Is Marine Snow really "snow"? (No. Marine snow is the debris or dust that falls through the oceans and settles on the sea floor. Marine snow helps transport material from the surface ocean to the deeper layers of the sea.) ©PROJECT OCEANOGRAPHY ANTARCTIC OCEANOGRAPHY 104 ANTARCTIC Student Information Sheet 2. Antarctica II: Component I Ice/Glaciers Component II Marine Snow Ice/Glaciers Antarctica's cold, thick hard Transantarctic Mountains covering, called an ice sheet, divide the areas of the began to form 25 million years continent known as West and ago. Approximately 98% of East Antarctica. Antarctica is covered by ice. Antarctica actually changes size – during the summer A glacier is a huge mass of ice, months (October-March), the formed from compacted snow, coastal ice melts and Antarctica whose sides are often bounded "shrinks." by mountains or the walls of a valley. Ice sheets, or caps, Although almost all of which are also formed from Antarctica's land mass is compacted snow, are so covered by ice, in a few places massive that they cover entire on the continent, mountain landscapes, mountains as well peaks poke through. The as valleys. What is Marine Snow? Marine snow is the debris or helps helps transport material dust that falls through the from the surface ocean to the oceans and settles on the sea deeper layers of the sea. floor, the same way as dust in Scientists believe marine snow the air settles on an object in is a major food source for life in your home. The difference is the abyssal deep, Marine snow that this ocean dust is full of plays an important ecological nutrients and life. Marine snow role by moving atmospheric ©PROJECT OCEANOGRAPHY STUDENT INFORMATION SHEETS 2 105 ANTARCTIC carbon from the surface of the formation of the debris that oceans to the seafloor.
Recommended publications
  • Methane Cold Seeps As Biological Oases in the High‐
    LIMNOLOGY and Limnol. Oceanogr. 00, 2017, 00–00 VC 2017 The Authors Limnology and Oceanography published by Wiley Periodicals, Inc. OCEANOGRAPHY on behalf of Association for the Sciences of Limnology and Oceanography doi: 10.1002/lno.10732 Methane cold seeps as biological oases in the high-Arctic deep sea Emmelie K. L. A˚ strom€ ,1* Michael L. Carroll,1,2 William G. Ambrose, Jr.,1,2,3,4 Arunima Sen,1 Anna Silyakova,1 JoLynn Carroll1,2 1CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway 2Akvaplan-niva, FRAM – High North Research Centre for Climate and the Environment, Tromsø, Norway 3Division of Polar Programs, National Science Foundation, Arlington, Virginia 4Department of Biology, Bates College, Lewiston, Maine Abstract Cold seeps can support unique faunal communities via chemosynthetic interactions fueled by seabed emissions of hydrocarbons. Additionally, cold seeps can enhance habitat complexity at the deep seafloor through the accretion of methane derived authigenic carbonates (MDAC). We examined infaunal and mega- faunal community structure at high-Arctic cold seeps through analyses of benthic samples and seafloor pho- tographs from pockmarks exhibiting highly elevated methane concentrations in sediments and the water column at Vestnesa Ridge (VR), Svalbard (798 N). Infaunal biomass and abundance were five times higher, species richness was 2.5 times higher and diversity was 1.5 times higher at methane-rich Vestnesa compared to a nearby control region. Seabed photos reveal different faunal associations inside, at the edge, and outside Vestnesa pockmarks. Brittle stars were the most common megafauna occurring on the soft bottom plains out- side pockmarks.
    [Show full text]
  • Brochure.Pdf
    Two Little Fishies Two Little Fishies Inc. 4016 El Prado Blvd., Coconut Grove, Florida 33133 U.S.A. Tel (+01) 305 661.7742 Fax (+01) 305 661.0611 eMail: [email protected] ww w. t w o l i t t l e f i s h i e s . c o m © 2004 Two Little Fishies Inc. Two Little Fishies is a registered trademark of Two Little Fishies Inc.. All illustrations, photos and specifications contained in this broc h u r e are based on the latest pr oduct information available at the time of publication. Two Little Fishies Inc. res e r ves the right to make changes at any time, without notice. Printed in USA V.4 _ 2 0 0 4 Simple, Elegant, Practical,Solutions Useful... Two Little Fishies Two Little Fishies, Inc. was founded in 1991 to pr omote the reef aquarium hobby with its in t ro d u c t o r y video and books about ree f aquariums. The company now publishes and distributes the most popular reef aquarium ref e r ence books and identification guides in English, German French and Italian, under the d.b.a. Ricordea Publishing. Since its small beginning, Two Little Fishies has also grown to become a manufacturer and im p o r ter of the highest quality products for aquariums and water gardens, with interna t i o n a l distribution in the pet, aquaculture, and water ga r den industries. Two Little Fishies’ prod u c t line includes trace element supplements, calcium supplements and buffers, phosphate- fr ee activated carbon, granular iron - b a s e d phosphate adsorption media, underwa t e r bonding compounds, and specialty foods for fish and invertebrates.
    [Show full text]
  • Ch. 9: Ocean Biogeochemistry
    6/3/13 Ch. 9: Ocean Biogeochemistry NOAA photo gallery Overview • The Big Picture • Ocean Circulation • Seawater Composition • Marine NPP • Particle Flux: The Biological Pump • Carbon Cycling • Nutrient Cycling • Time Pemitting: Hydrothermal venting, Sulfur cycling, Sedimentary record, El Niño • Putting It All Together Slides borrowed from Aradhna Tripati 1 6/3/13 Ocean Circulation • Upper Ocean is wind-driven and well mixed • Surface Currents deflected towards the poles by land. • Coriolis force deflects currents away from the wind, forming mid-ocean gyres • Circulation moves heat poleward • River influx is to surface ocean • Atmospheric equilibrium is with surface ocean • Primary productivity is in the surface ocean Surface Currents 2 6/3/13 Deep Ocean Circulation • Deep and Surface Oceans separated by density gradient caused by differences in Temperature and Salinity • This drives thermohaline deep circulation: * Ice forms in the N. Atlantic and Southern Ocean, leaving behind cold, saline water which sinks * Oldest water is in N. Pacific * Distribution of dissolved gases and nutrients: N, P, CO2 Seawater Composition • Salinity is defined as grams of salt/kg seawater, or parts per thousand: %o • Major ions are in approximately constant concentrations everywhere in the oceans • Salts enter in river water, and are removed by porewater burial, sea spray and evaporites (Na, Cl). • Calcium and Sulfate are removed in biogenic sediments • Magnesium is consumed in hydrothermal vents, in ionic exchange for Ca in rock. • Potassium adsorbs in clays. 3 6/3/13 Major Ions in Seawater The Two-Box Model of the Ocean Precipitation Evaporation River Flow Upwelling Downwelling Particle Flux Sedimentation 4 6/3/13 Residence time vs.
    [Show full text]
  • Ocean Primary Production
    Learning Ocean Science through Ocean Exploration Section 6 Ocean Primary Production Photosynthesis very ecosystem requires an input of energy. The Esource varies with the system. In the majority of ocean ecosystems the source of energy is sunlight that drives photosynthesis done by micro- (phytoplankton) or macro- (seaweeds) algae, green plants, or photosynthetic blue-green or purple bacteria. These organisms produce ecosystem food that supports the food chain, hence they are referred to as primary producers. The balanced equation for photosynthesis that is correct, but seldom used, is 6CO2 + 12H2O = C6H12O6 + 6H2O + 6O2. Water appears on both sides of the equation because the water molecule is split, and new water molecules are made in the process. When the correct equation for photosynthe- sis is used, it is easier to see the similarities with chemo- synthesis in which water is also a product. Systems Lacking There are some ecosystems that depend on primary Primary Producers production from other ecosystems. Many streams have few primary producers and are dependent on the leaves from surrounding forests as a source of food that supports the stream food chain. Snow fields in the high mountains and sand dunes in the desert depend on food blown in from areas that support primary production. The oceans below the photic zone are a vast space, largely dependent on food from photosynthetic primary producers living in the sunlit waters above. Food sinks to the bottom in the form of dead organisms and bacteria. It is as small as marine snow—tiny clumps of bacteria and decomposing microalgae—and as large as an occasional bonanza—a dead whale.
    [Show full text]
  • Eukaryotic Microbes, Principally Fungi and Labyrinthulomycetes, Dominate Biomass on Bathypelagic Marine Snow
    The ISME Journal (2017) 11, 362–373 © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow Alexander B Bochdansky1, Melissa A Clouse1 and Gerhard J Herndl2 1Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA, USA and 2Department of Limnology and Bio-Oceanography, Division of Bio-Oceanography, University of Vienna, Vienna, Austria In the bathypelagic realm of the ocean, the role of marine snow as a carbon and energy source for the deep-sea biota and as a potential hotspot of microbial diversity and activity has not received adequate attention. Here, we collected bathypelagic marine snow by gentle gravity filtration of sea water onto 30 μm filters from ~ 1000 to 3900 m to investigate the relative distribution of eukaryotic microbes. Compared with sediment traps that select for fast-sinking particles, this method collects particles unbiased by settling velocity. While prokaryotes numerically exceeded eukaryotes on marine snow, eukaryotic microbes belonging to two very distant branches of the eukaryote tree, the fungi and the labyrinthulomycetes, dominated overall biomass. Being tolerant to cold temperature and high hydrostatic pressure, these saprotrophic organisms have the potential to significantly contribute to the degradation of organic matter in the deep sea. Our results demonstrate that the community composition on bathypelagic marine snow differs greatly from that in the ambient water leading to wide ecological niche separation between the two environments. The ISME Journal (2017) 11, 362–373; doi:10.1038/ismej.2016.113; published online 20 September 2016 Introduction or dense phytodetritus, but a large amount of transparent exopolymer particles (TEP, Alldredge Deep-sea life is greatly dependent on the particulate et al., 1993), which led us to conclude that they organic matter (POM) flux from the euphotic layer.
    [Show full text]
  • And Bathypelagic Fish Interactions with Seamounts and Mid-Ocean Ridges
    Meso- and bathypelagic fish interactions with seamounts and mid-ocean ridges Tracey T. Sutton1, Filipe M. Porteiro2, John K. Horne3 and Cairistiona I. H. Anderson3 1 Harbor Branch Oceanographic Institution, 5600 US Hwy. 1 N, Fort Pierce FL, 34946, USA (Current address: Virginia Institute of Marine Science, P.O.Box 1346, Gloucester Point, Virginia 23062-1346) 2 DOP, University of the Azores, Horta, Faial, the Azores 3 School of Aquatic and Fishery Sciences, University of Washington, Seattle WA, 98195, USA Contact e-mail (Sutton): [email protected]"[email protected] Tracey T. Sutton T. Tracey Abstract The World Ocean's midwaters contain the vast majority of Earth's vertebrates in the form of meso- and bathypelagic ('deep-pelagic,' in the combined sense) fishes. Understanding the ecology and variability of deep-pelagic ecosystems has increased substantially in the past few decades due to advances in sampling/observation technology. Researchers have discovered that the deep sea hosts a complex assemblage of organisms adapted to a “harsh” environment by terrestrial standards (i.e., dark, cold, high pressure). We have learned that despite the lack of physical barriers, the deep-sea realm is not a homogeneous ecosystem, but is spatially and temporally variable on multiple scales. While there is a well-documented reduction of biomass as a function of depth (and thus distance from the sun, ergo primary production) in the open ocean, recent surveys have shown that pelagic fish abundance and biomass can 'peak' deep in the water column in association with abrupt topographic features such as seamounts and mid-ocean ridges. We review the current knowledge on deep-pelagic fish interactions with these features, as well as effects of these interactions on ecosystem functioning.
    [Show full text]
  • Marine Snow Tracking Stereo Imaging System Junsu Jang
    Marine Snow Tracking Stereo Imaging System by Junsu Jang B.Sc., Carnegie Mellon University (2018) Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning in partial fulfillment of the requirements for the degree of Master of Science in Media Arts and Sciences at the Massachusetts Institute of Technology September 2020 © Massachusetts Institute of Technology 2020. All rights reserved. Author.............................................................. Program in Media Arts and Sciences August 17th, 2020 Certified by. Joseph A. Paradiso Professor of Media Arts and Sciences Accepted by . Tod Machover Academic Head, Program in Media Arts and Sciences Marine Snow Tracking Stereo Imaging System by Junsu Jang Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning on August 17th, 2020, in partial fulfillment of the requirements for the degree of Master of Science in Media Arts and Sciences Abstract The transport of particles of organic carbon from the ocean’s surface to its bottom plays a key role in the global carbon cycle and carbon sequestration. Quantifying the rate of this Biological Carbon Pump – the size and velocity distribution of falling particles below the mixing layer, for example – is thus of considerable importance. The complexity of this Pump, however, together with systematic biases in available measurement methodologies and vast spatial and temporal undersampling, makes this quantification difficult. In this thesis I set out to design and build a low-cost underwater stereo-imaging system to remotely measure the flux of sinking particles in the mid-ocean. By record- ing time-lapsed images of marine snow falling through the imaging volume over day- to-week timescales, we can estimate both the particle size distributions and, via 3D particle tracking velocimetry, their velocity distributions too.
    [Show full text]
  • Marine Snow, Zooplankton and Thin Layers: Indications of a Trophic Link from Small-Scale Sampling with the Video Plankton Recorder
    Vol. 468: 57–69, 2012 MARINE ECOLOGY PROGRESS SERIES Published November 14 doi: 10.3354/meps09984 Mar Ecol Prog Ser OPENPEN ACCESSCCESS Marine snow, zooplankton and thin layers: indications of a trophic link from small-scale sampling with the Video Plankton Recorder Klas O. Möller1,*, Michael St. John2,1, Axel Temming1, Jens Floeter1, Anne F. Sell3, Jens-Peter Herrmann1, Christian Möllmann1 1Institute for Hydrobiology and Fisheries Science, Center for Earth System Research and Sustainability (CEN), KlimaCampus, University of Hamburg, Grosse Elbstrasse 133, 22767 Hamburg, Germany 2National Institute of Aquatic Resources at the Technical University of Denmark, Charlottenlund Castle, 2920 Charlottenlund, Denmark 3Johann Heinrich von Thünen-Institut, Institute of Sea Fisheries, Palmaille 9, 22767 Hamburg, Germany ABSTRACT: Marine aggregates of biogenic origin, known as marine snow, are considered to play a major role in the ocean’s particle flux and may represent a concentrated food source for zoo- plankton. However, observing the marine snow−zooplankton interaction in the field is difficult since conventional net sampling does not collect marine snow quantitatively and cannot resolve so-called thin layers in which this interaction occurs. Hence, field evidence for the importance of the marine snow−zooplankton link is scarce. Here we employed a Video Plankton Recorder (VPR) to quantify small-scale (metres) vertical distribution patterns of fragile marine snow aggregates and zooplankton in the Baltic Sea during late spring 2002. By using this non-invasive optical sam- pling technique we recorded a peak in copepod abundance (ca. 18 ind. l−1) associated with a pro- nounced thin layer (50 to 55 m) of marine snow (maximum abundance of 28 particles l−1), a feature rarely resolved.
    [Show full text]
  • Zooplankton Fecal Pellets, Marine Snow and Sinking Phytoplankton Blooms
    AQUATIC MICROBIAL ECOLOGY Vol. 27: 57–102, 2002 Published February 18 Aquat Microb Ecol REVIEW Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms Jefferson T. Turner* School for Marine Science and Technology, University of Massachusetts Dartmouth, 706 South Rodney French Boulevard, New Bedford, Massachusetts 02744-1221, USA ABSTRACT: Zooplankton fecal pellets have long been thought to be a dominant component of the sedimentary flux in marine and freshwater ecosystems, but that view is changing. The last 2 decades have seen publication of >500 studies using sediment traps, which reveal that zooplankton fecal pellets often constitute only a minor or variable proportion of the sedimentary flux. Substantial pro- portions of this flux are from organic aggregates (‘marine snow’) of various origins, including phyto- plankton blooms, which sediment directly to the benthos. It now appears that mainly large fecal pel- lets of macrozooplankton and fish are involved in the sedimentary flux. Smaller fecal pellets of microzooplankton and small mesozooplankton are mostly recycled or repackaged in the water column by microbial decomposition and coprophagy, contributing more to processes in the water column than flux to the benthos. The relative contributions of fecal pellets, marine snow and sinking phytoplankton to the vertical flux and recycling of materials in the water column are highly variable, dependent upon multiple interacting factors. These include variations in productivity, biomass, size spectra and composition of communities
    [Show full text]
  • Deep-Sea Research II 129 (2016) 4–19
    Deep-Sea Research II 129 (2016) 4–19 Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 The Gulf of Mexico ecosystem, six years after the Macondo oil well blowout Samantha B. Joye a,n, Annalisa Bracco b, Tamay M. Özgökmen c, Jeffrey P. Chanton d, Martin Grosell c, Ian R. MacDonald d, Erik E. Cordes e, Joseph P. Montoya f, Uta Passow g a Department of Marine Sciences, University of Georgia, Athens, GA 30602-3636, USA b School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA c Rosensteil School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA d Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA e Department of Biology, Temple University, Philadelphia, PA 19122, USA f College of Marine Sciences, University of South Florida, St. Petersburg, FL 33701, USA g Marine Science Institute, University of California, Santa Barbara, CA 93106, USA article info abstract Article history: The Gulf of Mexico ecosystem is a hotspot for biological diversity and supports a number of industries, Received 27 April 2016 from tourism to fishery production to oil and gas exploration, that serve as the economic backbone of Accepted 28 April 2016 Gulf coast states. The Gulf is a natural hydrocarbon basin, rich with stores of oil and gas that lie in Available online 12 May 2016 reservoirs deep beneath the seafloor. The natural seepage of hydrocarbons across the Gulf system is extensive and, thus, the system's biological components experience ephemeral, if not, frequent, hydro- carbon exposure.
    [Show full text]
  • Davidson Seamount Management Zone
    Monterey Bay National Marine Sanctuary Davidson Seamount Management Zone Management Plan Living Document June 2013 version 6.0 TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................................................................... 1 GOAL ............................................................................................................................................................................ 1 INTRODUCTION ........................................................................................................................................................ 1 CHARACTERISTICS OF SEAMOUNTS AND THE DAVIDSON SEAMOUNT MANAGEMENT ZONE ...................................... 1 NATIONAL SIGNIFICANCE OF DAVIDSON SEAMOUNT ................................................................................................. 3 POTENTIAL THREATS TO THE DAVIDSON SEAMOUNT ................................................................................................ 4 EXPANSION OF THE MBNMS TO INCLUDE DAVIDSON SEAMOUNT MANAGEMENT ZONE ......................................... 5 ACTION PLAN STATUS – STRATEGIES, ACTIVITIES, AND PARTNERS ................................................... 6 STRATEGY DS-1: CONDUCT SITE CHARACTERIZATION ............................................................................................. 6 STRATEGY DS-2: CONDUCT ECOLOGICAL PROCESSES INVESTIGATIONS ................................................................... 9 STRATEGY DS-3: DEVELOP
    [Show full text]
  • Nutrient Cycles in Marine Ecosystems
    Nutrient Cycles in Marine Ecosystems Chapter 4 Nitrogen, Carbon, Magnesium, Calcium, Phophorous Chapter 4 vocabulary 1. Nutrient 6. Assimilation 11.Leaching 2. Decomposer 7. Residence time 12.Marine snow 3. Reservoir 8. Sink 13.Dissociation 4. Run-off 9. Source 14.Diazotroph 5. Upwelling 10.Infiltration 15.Saprophytic Cycling of elements in the ecosystem Nutrient cycles move nutrients that are essential for life through the food chain through feeding. Nutrients: a chemical that provides what is needed for organisms to live and grow. When organisms die, decomposers break down the organic tissue and return it to inorganic forms. (inorganic forms could remain in ecosystem for millions of years before being synthesized into organic forms) Decomposer: bacteria and fungi that break down dead organic matter and release the nutrients back into the environment. The ocean is a reservoir for elements….. Reservoir: part of the abiotic phase of the nutrient cycle where nutrients can remain for long periods of time. Producers and microorganisms are able to fix inorganic molecules to organic substances. In this way… the abiotic part of the cycle can be moved into the biotic. (Fecal matter/dead organisms) Some are added to coral reefs and/or removed from the ocean altogether from harvesting. Molecules are added in through run-off and upwelling. Run-off: the flow of water from land caused by precipitation Upwelling: the movement of cold, nutrient rich water from deep in the ocean to the surface CONSUMERS BIOTIC PHASE PRIMARY DECOMPOSERS PRODUCERS ABIOTIC PHASE Nutrients found as inorganic ions and compounds in the atmosphere, dissolved in water, forming rocks and sediments Nutrient cycles Nutrients move from from the abiotic to the biotic when nutrients are absorbed and assimilated by producers Assimilation: the conversion of a nutrient into a usable form that can be incorporated into the tissues of an organism.
    [Show full text]