Lattices and Polyhedra from Graphs

Total Page:16

File Type:pdf, Size:1020Kb

Lattices and Polyhedra from Graphs LATTICES AND POLYHEDRA FROM GRAPHS vorgelegt von Diplom-Mathematiker Kolja Knauer aus Oldenburg Von der Fakultat¨ II – Mathematik und Naturwissenschaften der Technischen Universitat¨ Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften – Dr. rer. nat. – genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. rer. nat. Jorg¨ Liesen Berichter: Prof. Dr. rer. nat. Stefan Felsner Prof. Dr. rer. nat. Michael Joswig Tag der wissenschaftlichen Aussprache: 9. November 2010 Berlin 2010 D 83 ACKNOWLEDGEMENTS My work related to this thesis was mainly done in Berlin – me being a part of the research group Diskrete Strukturen. This was really nice mainly because of the members of this group and the communicative, relaxed, and productive atmosphere in the group. Thank you a lot: Daniel Heldt, Stefan Felsner, Andrea Hoffkamp, Mareike Massow, Torsten Ueckerdt, Florian Zickfeld. I am thankful for Stefan’s helpful advice on how to do, write and talk math. I really enjoyed working with him as my advisor and also as my coauthor. I also want to thank my Mexican coauthors Ricardo Gomez,´ Juancho Montellano-Ballesteros and Dino Strausz for the nice time working and discussing at UNAM in Mexico. My stays in Mexico would not have been possible without the help of Isidoro Gitler. Ulrich Knauer, Torsten, Gunter¨ Rote, Eric´ Fusy made helpful comments and fruitful discussions. Ulrich and Torsten moreover helped me a big deal by proofreading parts of the thesis. Another big helper who made this work possible was SOLAC with its 18bar of pure pressure and many cups of coffee. I should also mention that this work would not have been possible without the funding by the DFG Research Training Group “Methods for Discrete Structures”. Finally, I want to express my gratitude again to Stefan and also to Michael Joswig for reading this thesis. I hope you enjoy some of it, but I know this is quite some work and so I stumbled over something that Douglas Adams [1] said and which seemed adequate to me: “Would it save you a lot of time if I just gave up and went mad now?” Thanks a lot, Kolja Contents What is this thesis about? 1 1 Lattices 5 1.1 PreliminariesforPosetsandLattices . ...... 9 1.2 GeneralizingBirkhoff’sTheorem. .... 13 1.2.1 Applications ............................. 24 1.2.2 Duality ................................ 26 1.3 Hasse Diagrams of Upper Locally Distributive Lattices . .......... 28 1.4 TheLatticeofTensions. 38 1.4.1 Applications ............................. 44 1.4.2 The latticeof c-orientations(Propp[92]) . 44 1.4.3 The lattice of flows in planar graphs (Khuller, Naor and Klein[66]) 46 1.4.4 Planar orientations with prescribed outdegree (Felsner [39], Ossona deMendez[88]) ........................... 48 1.5 Chip-Firing Games, Vector Addition Languages, and Upper Locally Dis- tributiveLattices ............................... 50 1.6 Conclusions.................................. 61 2 Polyhedra 65 2.1 PolyhedraandPosetProperties . ... 68 2.2 AffineSpace.................................. 71 2.3 UpperLocallyDistributivePolyhedra . ..... 75 i ii 2.3.1 FeasiblePolytopesofAntimatroids . .. 80 2.4 DistributivePolyhedra . 84 2.4.1 TowardsaCombinatorialModel . 85 2.4.2 TensionsandAlcovedPolytopes . 87 2.4.3 GeneralParameters. 90 2.4.4 PlanarGeneralizedFlow . 96 2.5 Conclusions.................................. 98 3 CocircuitGraphsofUniformOrientedMatroids 103 3.1 PropertiesofCocircuitGraphs . 105 3.2 TheAlgorithm ................................ 108 3.3 Antipodality.................................. 110 Bibliography 112 Notation Index ................................... 121 Index ........................................ 123 What is this thesis about? The title “Lattices and Polyhedra from Graphs” of this thesis is general though describes quite well the aim of this thesis. Among the most important objects of this work are dis- tributive lattices and upper locally distributive lattices. While distributive lattices certainly are one of the most studied lattice classes, also upper locally distributive lattices enjoy fre- quent reappearance in combinatorial order theory under many different names. Upper locally distributive lattices correspond to antimatroids and abstract convex geometries – objects of major importance in combinatorics. Besides results of a purely lattice or order theoretic kind we present new characterizations of (upper locally) distributive lattices in terms of antichain-covers of posets, arc-colorings of digraphs, point sets in Nd, vector addition languages, chip-firing games, and vertex and (integer) point sets of polyhedra. We exhibit links to a wide range of graph theoretical, combinatorial, and geometrical objects. With respect to the latter we study and characterize polyhedra which seen as subposets of the componentwise ordering of Euclidean space form (upper locally) distributive lattices. Distributive lattice structures have been constructed on many sets of combinatorial objects, such as lozenge tilings, planar bipartite perfect matchings, pla- nar orientations with prescribed outdegree, domino tilings, planar circu- lar flow, orientations with prescribed number of backward arcs on cycles and several more. A common feature of all of them is that the Hasse di- agram of the distributive lattice may be constructed applying local trans- formations to the objects. These local transformations lead to a natural arc-coloring of the diagram. For an example see the distributive lattice on the domino-tilings of a rectangular region on the side. The local transfor- mation consists in flipping two tiles, which share a long side. In this work we present the first unifying generalization of all such instances of graph- related distributive lattices. We obtain a distributive lattice structure on the tensions of a digraph. In order to provide a flavor of what we refer to as “unifying generalization”, we show two consecutive steps of generalizing the domino tilings of a plane region, see the figure. 1 2 The left-most part of the figure shows two domino tilings, which can be transformed into each other by a single flip of two neighboring tiles. In the middle of the figure we show how planar bipartite perfect matchings model domino tilings. The local transformation now cor- responds to switching the matching on an alter- nating facial cycle. More generally, the right-most part of the figure shows how to interpet the pre- ceeding objects as orientations of prescribed out- degree of a bipartite planar graph. Every yellow vertex has outdegree 1 and every blue vertex has outdegree (deg − 1). Reversing the orientation on directed facial cycles yields a distributive lattice structure on the set of orientations with these outdegree constraints. A particular interest of this work lies in embedding lattices into Euclidean space. The motivation is to combine geometrical and order-theoretical methods and perspectives. We investigate polyhedra, which seen as subposets of the componentwise ordering of Euclidean space form upper locally distributive or distributive lattices. In both cases we obtain full characterizations of these classes of polyhedra in terms of their description as intersection of bounded halfspaces. In particular we obtain a polyhedral structure on known discrete distributive lattices on combinatorial objects as those mentioned above as integer points of distributive polytopes. A classical polytope which was defined in the spirit of combining discrete geometry and order-theory appears as a special case of our considerations, and thus might provide an idea of what kind of objects we will study: Given a poset P, Stanley’s order polytope PP may be defined as the convex hull of the characteristic vectors of the ideals of a poset P. z y z y x x Figure 1: A poset P with an ideal on the left with its order polytope PP and the vertex the corresponding to the ideal, on the right. Our characterization of upper locally distributive polyhedra opens connections to the the- ory of feasible polytopes of antimatroids. In the setting of distributive polyhedra we find graph objects that might be considered as the most general ones, which form a distributive lattice and carry a polyhedral structure. The connection to polytope theory links distributive lattices to generalized flows on digraphs. Thus, there is a link to important objects of com- INTRODUCTION 3 binatorial optimization. Moreover we exhibit new contributions to the theory of bicircular oriented matroids. Large parts of the thesis are based on publications between 2008 and 2010 [40, 43, 41, 42, 54, 69]. In the following we give a rough overview over each single chapter. For more detailed introductions we refer to the first pages of the individual chapters. Chapter 1: Lattices The first chapter of the thesis is about lattices. It is based on papers [41, 42, 69] and includes joint work with Stefan Felsner. After giving a more detailed introduction into lattice theory and the chapter itself, we present some basic notation and vocabulary in Section 1.1. The main result of Section 1.2 is a new representation result for general finite lattices. We provide a one-to-one correspondence between finite lattices and antichain-covered posets. As an application we strengthen a characterization of upper locally distributive lattices in terms of antichain-partitioned posets due to Nourine. The “smallest” special case of our the- orem is the Fundamental Theorem of Finite Distributive Lattices alias Birkhoff’s Theorem. Section 1.3 proves three classes of combinatorial objects to be equivalent. We show that
Recommended publications
  • Knowledge Spaces Applications in Education Knowledge Spaces
    Jean-Claude Falmagne · Dietrich Albert Christopher Doble · David Eppstein Xiangen Hu Editors Knowledge Spaces Applications in Education Knowledge Spaces Jean-Claude Falmagne • Dietrich Albert Christopher Doble • David Eppstein • Xiangen Hu Editors Knowledge Spaces Applications in Education Editors Jean-Claude Falmagne Dietrich Albert School of Social Sciences, Department of Psychology Dept. Cognitive Sciences University of Graz University of California, Irvine Graz, Austria Irvine, CA, USA Christopher Doble David Eppstein ALEKS Corporation Donald Bren School of Information Irvine, CA, USA & Computer Sciences University of California, Irvine Irvine, CA, USA Xiangen Hu Department of Psychology University of Memphis Memphis, TN, USA ISBN 978-3-642-35328-4 ISBN 978-3-642-35329-1 (eBook) DOI 10.1007/978-3-642-35329-1 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2013942001 © Springer-Verlag Berlin Heidelberg 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Two Poset Polytopes
    Discrete Comput Geom 1:9-23 (1986) G eometrv)i.~.reh, ~ ( :*mllmlati~ml © l~fi $1~ter-Vtrlq New Yorklu¢. t¢ Two Poset Polytopes Richard P. Stanley* Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 Abstract. Two convex polytopes, called the order polytope d)(P) and chain polytope <~(P), are associated with a finite poset P. There is a close interplay between the combinatorial structure of P and the geometric structure of E~(P). For instance, the order polynomial fl(P, m) of P and Ehrhart poly- nomial i(~9(P),m) of O(P) are related by f~(P,m+l)=i(d)(P),m). A "transfer map" then allows us to transfer properties of O(P) to W(P). In particular, we transfer known inequalities involving linear extensions of P to some new inequalities. I. The Order Polytope Our aim is to investigate two convex polytopes associated with a finite partially ordered set (poset) P. The first of these, which we call the "order polytope" and denote by O(P), has been the subject of considerable scrutiny, both explicit and implicit, Much of what we say about the order polytope will be essentially a review of well-known results, albeit ones scattered throughout the literature, sometimes in a rather obscure form. The second polytope, called the "chain polytope" and denoted if(P), seems never to have been previously considered per se. It is a special case of the vertex-packing polytope of a graph (see Section 2) but has many special properties not in general valid or meaningful for graphs.
    [Show full text]
  • Drawing Graphs and Maps with Curves
    Report from Dagstuhl Seminar 13151 Drawing Graphs and Maps with Curves Edited by Stephen Kobourov1, Martin Nöllenburg2, and Monique Teillaud3 1 University of Arizona – Tucson, US, [email protected] 2 KIT – Karlsruhe Institute of Technology, DE, [email protected] 3 INRIA Sophia Antipolis – Méditerranée, FR, [email protected] Abstract This report documents the program and the outcomes of Dagstuhl Seminar 13151 “Drawing Graphs and Maps with Curves”. The seminar brought together 34 researchers from different areas such as graph drawing, information visualization, computational geometry, and cartography. During the seminar we started with seven overview talks on the use of curves in the different communities represented in the seminar. Abstracts of these talks are collected in this report. Six working groups formed around open research problems related to the seminar topic and we report about their findings. Finally, the seminar was accompanied by the art exhibition Bending Reality: Where Arc and Science Meet with 40 exhibits contributed by the seminar participants. Seminar 07.–12. April, 2013 – www.dagstuhl.de/13151 1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and Problems Keywords and phrases graph drawing, information visualization, computational cartography, computational geometry Digital Object Identifier 10.4230/DagRep.3.4.34 Edited in cooperation with Benjamin Niedermann 1 Executive Summary Stephen Kobourov Martin Nöllenburg Monique Teillaud License Creative Commons BY 3.0 Unported license © Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud Graphs and networks, maps and schematic map representations are frequently used in many fields of science, humanities and the arts.
    [Show full text]
  • Double Posets and Real Invariant Varieties Dissertation
    Fachbereich Mathematik und Informatik der Freien Universität Berlin Double posets and real invariant varieties Two interactions between combinatorics and geometry Dissertation eingereicht von Tobias Friedl Berlin 2017 Advisor and first reviewer: Prof. Dr. Raman Sanyal Second reviewer: Prof. Dr. Francisco Santos Third reviewer: Priv.-Doz. Dr. Christian Stump Date of the defense: May 19, 2017 Acknowledgements My deepest thanks go to my advisor Raman Sanyal. A PhD-student can only hope for an advisor who is as dedicated and enthusiastic about mathematics as you are. Thank you for getting your hands dirty and spending many hours in front of the blackboard teaching me how to do research. I spent the last years in the amazing and inspiring work group directed by Günter Ziegler at FU Berlin. Thank you for providing such a welcoming and challenging work environment. I really enjoyed the time with my friends and colleagues at the "villa", most of all Francesco Grande, Katharina Jochemko, Katy Beeler, Albert Haase, Lauri Loiskekoski, Philip Brinkmann, Nevena Palić and Jean-Philippe Labbé. Thanks also to Elke Pose, who provides valuable support and keeps bureaucracy at a low level. I want to thank my coauthor Cordian Riener for many fruitful mathematical discussions and for an interesting and enjoyable week of research in Helsinki at Aalto University. Moreover, I’d like to express my gratitude towards my coauthor and friend Tom Chappell. Thanks to the reviewers Paco Santos and Christian Stump for their helpful com- ments and to Christian additionally for many discussions regarding the combinatorics of reflection groups and posets throughout the last years.
    [Show full text]
  • Arxiv:1902.07301V3 [Math.CO] 13 Feb 2020 Which N H Itiuinwhere Distribution the and of Ojcuefo 8]Wihhsntbe Eovd H Oere Sole the Resolved
    MINUSCULE DOPPELGANGERS,¨ THE COINCIDENTAL DOWN-DEGREE EXPECTATIONS PROPERTY, AND ROWMOTION SAM HOPKINS Abstract. We relate Reiner, Tenner, and Yong’s coincidental down-degree expec- tations (CDE) property of posets to the minuscule doppelg¨anger pairs studied by Hamaker, Patrias, Pechenik, and Williams. Via this relation, we put forward a series of conjectures which suggest that the minuscule doppelg¨anger pairs behave “as if” they had isomorphic comparability graphs, even though they do not. We further explore the idea of minuscule doppelg¨anger pairs pretending to have isomor- phic comparability graphs by considering the rowmotion operator on order ideals. We conjecture that the members of a minuscule doppelg¨anger pair behave the same way under rowmotion, as they would if they had isomorphic comparability graphs. Moreover, we conjecture that these pairs continue to behave the same way under the piecewise-linear and birational liftings of rowmotion introduced by Einstein and Propp. This conjecture motivates us to study the homomesies (in the sense of Propp and Roby) exhibited by birational rowmotion. We establish the birational analog of the antichain cardinality homomesy for the major examples of posets known or conjectured to have finite birational rowmotion order (namely: minuscule posets and root posets of coincidental type). 1. Introduction Let P be a finite poset. The down-degree of p ∈ P is the number of elements of P which p covers. Consider two probability distributions on P : the uniform distribution; and the distribution where p ∈ P occurs proportional to the number of maximal chains of P containing p. We say that P has the coincidental down-degree expectations (CDE) property if the expected value of the down-degree statistic is the same for these two distributions.
    [Show full text]
  • Arxiv:1508.05446V2 [Math.CO] 27 Sep 2018 02,5B5 16E10
    CELL COMPLEXES, POSET TOPOLOGY AND THE REPRESENTATION THEORY OF ALGEBRAS ARISING IN ALGEBRAIC COMBINATORICS AND DISCRETE GEOMETRY STUART MARGOLIS, FRANCO SALIOLA, AND BENJAMIN STEINBERG Abstract. In recent years it has been noted that a number of combi- natorial structures such as real and complex hyperplane arrangements, interval greedoids, matroids and oriented matroids have the structure of a finite monoid called a left regular band. Random walks on the monoid model a number of interesting Markov chains such as the Tsetlin library and riffle shuffle. The representation theory of left regular bands then comes into play and has had a major influence on both the combinatorics and the probability theory associated to such structures. In a recent pa- per, the authors established a close connection between algebraic and combinatorial invariants of a left regular band by showing that certain homological invariants of the algebra of a left regular band coincide with the cohomology of order complexes of posets naturally associated to the left regular band. The purpose of the present monograph is to further develop and deepen the connection between left regular bands and poset topology. This allows us to compute finite projective resolutions of all simple mod- ules of unital left regular band algebras over fields and much more. In the process, we are led to define the class of CW left regular bands as the class of left regular bands whose associated posets are the face posets of regular CW complexes. Most of the examples that have arisen in the literature belong to this class. A new and important class of ex- amples is a left regular band structure on the face poset of a CAT(0) cube complex.
    [Show full text]
  • The $ H^* $-Polynomial of the Order Polytope of the Zig-Zag Poset
    THE h∗-POLYNOMIAL OF THE ORDER POLYTOPE OF THE ZIG-ZAG POSET JANE IVY COONS AND SETH SULLIVANT Abstract. We describe a family of shellings for the canonical tri- angulation of the order polytope of the zig-zag poset. This gives a new combinatorial interpretation for the coefficients in the numer- ator of the Ehrhart series of this order polytope in terms of the swap statistic on alternating permutations. 1. Introduction and Preliminaries The zig-zag poset Zn on ground set {z1,...,zn} is the poset with exactly the cover relations z1 < z2 > z3 < z4 > . That is, this partial order satisfies z2i−1 < z2i and z2i > z2i+1 for all i between n−1 1 and ⌊ 2 ⌋. The order polytope of Zn, denoted O(Zn) is the set n of all n-tuples (x1,...,xn) ∈ R that satisfy 0 ≤ xi ≤ 1 for all i and xi ≤ xj whenever zi < zj in Zn. In this paper, we introduce the “swap” permutation statistic on alternating permutations to give a new combinatorial interpretation of the numerator of the Ehrhart series of O(Zn). We began studying this problem in relation to combinatorial proper- ties of the Cavender-Farris-Neyman model with a molecular clock (or CFN-MC model) from mathematical phylogenetics [4]. We were inter- ested in the polytope associated to the toric variety obtained by ap- plying the discrete Fourier transform to the Cavender-Farris-Neyman arXiv:1901.07443v2 [math.CO] 1 Apr 2020 model with a molecular clock on a given rooted binary phylogenetic tree. We call this polytope the CFN-MC polytope.
    [Show full text]
  • Forbidden Configurations in Discrete Geometry
    FORBIDDEN CONFIGURATIONS IN DISCRETE GEOMETRY This book surveys the mathematical and computational properties of finite sets of points in the plane, covering recent breakthroughs on important problems in discrete geometry and listing many open prob- lems. It unifies these mathematical and computational views using for- bidden configurations, which are patterns that cannot appear in sets with a given property, and explores the implications of this unified view. Written with minimal prerequisites and featuring plenty of fig- ures, this engaging book will be of interest to undergraduate students and researchers in mathematics and computer science. Most topics are introduced with a related puzzle or brain-teaser. The topics range from abstract issues of collinearity, convexity, and general position to more applied areas including robust statistical estimation and network visualization, with connections to related areas of mathe- matics including number theory, graph theory, and the theory of per- mutation patterns. Pseudocode is included for many algorithms that compute properties of point sets. David Eppstein is Chancellor’s Professor of Computer Science at the University of California, Irvine. He has more than 350 publications on subjects including discrete and computational geometry, graph the- ory, graph algorithms, data structures, robust statistics, social network analysis and visualization, mesh generation, biosequence comparison, exponential algorithms, and recreational mathematics. He has been the moderator for data structures and algorithms
    [Show full text]
  • The Minkowski Property and Reflexivity of Marked Poset Polytopes
    The Minkowski property and reflexivity of marked poset polytopes Xin Fang Ghislain Fourier Mathematical Institute Lehrstuhl B f¨ur Mathematik University of Cologne RWTH Aachen University Cologne, Germany Aachen, Germany [email protected] [email protected] Christoph Pegel Institute for Algebra, Number Theory, and Discrete Mathematics Leibniz University Hannover Hannover, Germany [email protected] Submitted: Sep 3, 2018; Accepted: Jan 14, 2020; Published: Jan 24, 2020 c The authors. Released under the CC BY-ND license (International 4.0). Abstract We provide a Minkowski sum decomposition of marked chain-order polytopes into building blocks associated to elementary markings and thus give an explicit minimal set of generators of an associated semi-group algebra. We proceed by characterizing the reflexive polytopes among marked chain-order polytopes as those with the underlying marked poset being ranked. Mathematics Subject Classifications: 52B20, 06A07 1 Introduction To a given finite poset, Stanley [22] associated two polytopes|the order polytope and the chain polytope, which are lattice polytopes having the same Ehrhart polynomial. When the underlying poset is a distributive lattice, Hibi studied in [15] the geometry of the toric variety associated to the order polytope, nowadays called Hibi varieties. Together with Li, they also initiated the study of the toric variety associated to the chain polytope [17]. The singularities of Hibi varieties arising from Gelfand-Tsetlin degenerations of Grassmann varieties are studied by Brown and Lakshmibai in [5] (see also the references therein). Motivated by the representation theory of complex semi-simple Lie algebras, namely the framework of PBW-degenerations, Ardila, Bliem and Salazar [1] introduced the notion the electronic journal of combinatorics 27(1) (2020), #P1.27 1 of marked order polytopes and marked chain polytopes, defined on marked posets.
    [Show full text]
  • Graphs in Nature
    Graphs in Nature David Eppstein University of California, Irvine Symposium on Geometry Processing, July 2019 Inspiration: Steinitz's theorem Purely combinatorial characterization of geometric objects: Graphs of convex polyhedra are exactly the 3-vertex-connected planar graphs Image: Kluka [2006] Overview Cracked surfaces, bubble foams, and crumpled paper also form natural graph-like structures What properties do these graphs have? How can we recognize and synthesize them? I. Cracks and Needles Motorcycle graphs: Canonical quad mesh partitioning Paper at SGP'08 [Eppstein et al. 2008] Problem: partition irregular quad-mesh into regular submeshes Inspiration: Light cycle game from TRON movies Mesh partitioning method Grow cut paths outwards from each irregular (non-degree-4) vertex Cut paths continue straight across regular (degree-4) vertices They stop when they run into another path Result: approximation to optimal partition (exact optimum is NP-complete) Mesh-free motorcycle graphs Earlier... Motorcycles move from initial points with given velocities When they hit trails of other motorcycles, they crash [Eppstein and Erickson 1999] Application of mesh-free motorcycle graphs Initially: A simplified model of the inward movement of reflex vertices in straight skeletons, a rectilinear variant of medial axes with applications including building roof construction, folding and cutting problems, surface interpolation, geographic analysis, and mesh construction Later: Subroutine for constructing straight skeletons of simple polygons [Cheng and Vigneron 2007; Huber and Held 2012] Image: Huber [2012] Construction of mesh-free motorcycle graphs Main ideas: Define asymmetric distance: Time when one motorcycle would crash into another's trail Repeatedly find closest pair and eliminate crashed motorcycle Image: Dancede [2011] O(n17=11+) [Eppstein and Erickson 1999] Improved to O(n4=3+) [Vigneron and Yan 2014] Additional log speedup using mutual nearest neighbors instead of closest pairs [Mamano et al.
    [Show full text]
  • Gelfand-Tsetlin Polytopes: a Story of Flow and Order Polytopes
    GELFAND-TSETLIN POLYTOPES: A STORY OF FLOW & ORDER POLYTOPES RICKY INI LIU, KAROLA MESZ´ AROS,´ AND AVERY ST. DIZIER Abstract. Gelfand-Tsetlin polytopes are prominent objects in algebraic combinatorics. The number of integer points of the Gelfand-Tsetlin polytope GT(λ) is equal to the dimension of the corresponding ir- reducible representation of GL(n). It is well-known that the Gelfand-Tsetlin polytope is a marked order polytope; the authors have recently shown it to be a flow polytope. In this paper, we draw corollaries from this result and establish a general theory connecting marked order polytopes and flow polytopes. 1. Introduction n Given a partition λ = (λ1; : : : ; λn) 2 Z≥0, the Gelfand-Tsetlin polytope GT(λ) is the set of all nonnegative triangular arrays x11 x12 ··· x1n x22 x23 ··· x2n ······ xn−1;n−1 xn−1;n xnn such that xin = λi for all 1 ≤ i ≤ n; xi−1;j−1 ≥ xij ≥ xi−1;j for all 1 ≤ i ≤ j ≤ n: The integer points of GT(λ) are in bijection with semistandard Young tableaux of shape λ on the alphabet [n]. Moreover, the integer point transform of GT(λ) projects to the Schur function sλ. The latter beautiful result generalizes to Minkowski sums of Gelfand-Tsetlin polytopes and certain Schubert polynomials as well [4]. In this paper we will be interested in the Gelfand-Tsetlin polytope GT(λ) from a purely discrete geometric point of view: we will explore it as a marked order polytope and as a flow polytope. Ardila et. al introduced marked order polytopes and showed that Gelfand-Tsetlin polytopes are examples of them in [1]; the present authors have recently shown that Gelfand-Tsetlin polytopes are flow polytopes [4].
    [Show full text]
  • What Convex Geometries Tell About Shattering-Extremal Systems Bogdan Chornomaz
    What convex geometries tell about shattering-extremal systems Bogdan Chornomaz To cite this version: Bogdan Chornomaz. What convex geometries tell about shattering-extremal systems. 2020. hal- 02869292 HAL Id: hal-02869292 https://hal.archives-ouvertes.fr/hal-02869292 Preprint submitted on 15 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. What convex geometries tell about shattering-extremal systems Bogdan Chornomaz [email protected] Vanderbilt University 1 Introduction Convex geometries admit many seemingly distinct yet equivalent characteriza- tions. Among other things, they are known to be exactly shattering-extremal closure systems [2]. In this paper we exploit this connection and generalize some known characterizations of convex geometries to shattering-extremal set families, which are a subject of intensive study in their own right. Our first main result is Theorem 2 in Section 4, which characterizes shattering- extremal set families in terms of forbidden projections, similar to the character- ization of convex geometries by Dietrich [3], discussed in Section 3. Another known characterization of convex geometries, given in Theorem 3, is that they are exactly closure systems in which any non-maximal set can be extended by one element.
    [Show full text]