Regional Estimates of Ecological Services Derived from U.S

Total Page:16

File Type:pdf, Size:1020Kb

Regional Estimates of Ecological Services Derived from U.S U.S. GEOLOGICAL SURVEY NATIONAL WETLANDS RESEARCH CENTER FINAL REPORT REGIONAL ESTIMATES OF ECOLOGICAL SERVICES DERIVED FROM U.S. DEPARTMENT OF AGRICULTURE CONSERVATION PROGRAMS IN THE MISSISSIPPI ALLUVIAL VALLEY Stephen Faulkner1, Michael Baldwin1, Wylie Barrow1, Hardin Waddle1, Bobby Keeland1, Susan Walls1, Dale James2, and Tom Moorman2 1 U.S. Geological Survey National Wetlands Research Center 700 Cajundome Blvd Lafayette, LA 70506 2 Ducks Unlimited, Inc. 193 Business Park Drive, Suite E Ridgeland MS 39157 i Table of Contents List of Figures .....................................................................................................................................iii List of Tables .......................................................................................................................................v Executive Summary ............................................................................................................................1 Chapter I. Introduction .......................................................................................................................4 Chapter II. Biogeochemically Related Services: Carbon sequestration, Nutrient Retention, and Sediment Reduction .........................................................................................................9 Introduction .............................................................................................................................9 Methods .................................................................................................................................10 Results and Discussion ..........................................................................................................14 Conclusions ...........................................................................................................................16 Chapter III. Biological Conservation, Sustainability, and Habitat Quality ......................................17 Introduction ...........................................................................................................................17 Methods .................................................................................................................................18 Results and Discussion ..........................................................................................................30 Conclusions ...........................................................................................................................40 Acknowledgements ...............................................................................................................40 References .........................................................................................................................................42 ii List of Figures I.1. Location of study sites in the Lower White/Cache River Basin, Arkansas ..........................50 I.2. Location of study sites in the Tensas River Basin, Louisiana ..............................................51 I.3. Location of study sites in the Yazoo River Basin, Mississippi ............................................52 II.1. Plot design for vegetation sampling .....................................................................................53 II.2. Total carbon stored aboveground (tree, understory, and forest floor) and belowground (soil 0- 10 cm depth) in active crop land, Wetlands Reserve Program, and natural forest sites ......54 II.3. Total soil carbon at study sites in the Yazoo River Basin, Mississippi by ridge versus swale .....................................................................................................................................55 II.4. Differences in total soil carbon by land use type and river basin .........................................56 II.5. Differences in total soil carbon by land use type ..................................................................57 II.6. Regression analysis of total soil carbon and the number of years since tree planting on the Wetlands Reserve Program sites ...........................................................................................58 II.7. Sediment erosion losses by soil texture class from active crop land and Wetlands Reserve Program sites .........................................................................................................................59 II.8. Soil denitrification potentials by land use type .....................................................................60 II.9. Differences in soil denitrification potentials by river basin ..................................................61 III.1. Tree species importance values (IV300) for species detected in the natural forest and Wetlands Reserve Program study sites .................................................................................62 III.2. Mean basal area of trees and shrubs by size class in Wetlands Reserve Program and natural forest stands by river basin ....................................................................................................63 III.3. Mean stem density of woody species by size class in Wetlands Reserve Program and natural forest sites in each river basin ...............................................................................................64 iii III.4. Mean number of woody species detected by size class in Wetlands Reserve Program and natural forest in each river basin ...........................................................................................65 III.5. Mean species diversity using Jost’s method for measuring diversity. Means presented by land use type and river basin .........................................................................................................66 III.6. Importance values (IV300) of trees and shrubs on Wetlands Reserve Program sites in the Yazoo River Basin, Mississippi by strata: swale and ridge ..................................................67 III.7. Mean percent herbaceous cover in Wetlands Reserve Program and natural forest sites by river basin ......................................................................................................................................68 III.8. Mean observed bird species richness by land use type and sampling period in the Tensas, Louisiana and Lower White/Cache, Arkansas River Basins .................................................69 III.9. Mean observed bird species richness in the Tensas, Louisiana and Lower White/Cache, Arkansas River Basins by land use type and sampling period for resident species, nearctic- neotropical migrants, and temperate migrants .......................................................................70 III.10. Mean observed bird species richness in the Yazoo River Basin, Mississippi by sampling period for nearctic-neotropical migrants, resident species, and temperate migrants ............71 III.11. Estimates of probability of occurrence, , in each of the 3 land-use categories ..................72 iv List of Tables I.1. Summary information about the Wetlands Reserve Program easements used in this study. Variables include WRP size, tree planting date, species planted, and dominant soil map unit names .....................................................................................................................................73 III.1. Number of easements, total hectares of easements, and number of hectares within high, medium, and low flood frequencies for a sample of lands enrolled in the Wetlands Reserve Program in Arkansas, Louisiana, and Mississippi .................................................................76 III.2. Trees and shrubs detected in the natural forests and Wetlands Reserve Program sites in each river basin ...............................................................................................................................77 III.3. Bird species detected on agricultural, Wetlands Reserve Program, and natural forest sites in the Tensas, Louisiana and Lower White/Cache, Arkansas River Basins ..............................81 III.4. Bird species that were only detected on agricultural, Wetlands Reserve Program or natural forest sites in the Tensas, Louisiana and Lower White/Cache, Arkansas River Basins .......85 III.5. Repeated measures analysis of variance for mean observed bird species richness in agricultural, Wetlands Reserve Program or natural forest sites in the Tensas, Louisiana and Lower White/Cache, Arkansas River Basins .........................................................................87 III.6. Bird species detected on Wetlands Reserve Program sites in the Yazoo River Basin, Mississippi .............................................................................................................................88 III.7. Estimated contribution of Wetlands Reserve Program Hydrology Management Units to Lower Mississippi Valley Joint Venture population-based foraging habitat objectives for Arkansas, Louisiana, and Mississippi, 2001-2005 .................................................................................91 v III.8. Estimated contribution of Wetlands Reserve Program reforested lands under intensive moist soil management to Lower Mississippi Valley Joint Venture population-based foraging habitat objectives for Arkansas, Louisiana, and Mississippi, 2001-2005 .............................92 III.9. Amphibian species detected on agricultural, Wetlands Reserve Program, and natural forest sites in the Tensas, Louisiana and
Recommended publications
  • Field Release of the Leaf-Feeding Moth, Hypena Opulenta (Christoph)
    United States Department of Field release of the leaf-feeding Agriculture moth, Hypena opulenta Marketing and Regulatory (Christoph) (Lepidoptera: Programs Noctuidae), for classical Animal and Plant Health Inspection biological control of swallow- Service worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Field release of the leaf-feeding moth, Hypena opulenta (Christoph) (Lepidoptera: Noctuidae), for classical biological control of swallow-worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action.
    [Show full text]
  • Guidance for Conserving Oregon's Native Turtles Including Best Management Practices
    GUIDANCE FOR CONSERVING OREGON’S NATIVE TURTLES INCLUDING BEST MANAGEMENT PRACTICES the OREGON CONSERVATION STRATEGY the intent of this document is to facilitate better protection and conservation of oregon’s native turtles and their habitats. This document includes recommended Best Management Practices (BMPs) for protecting and conserving Oregon’s two native turtle species, the western painted turtle and the western pond turtle. While there are opportunities for all Oregonians to become more knowledgeable about and participate in turtle conservation efforts, this document is intended primarily for use by natural resource and land managers, land use planners, and project managers. The document has been peer-reviewed and the BMPs are supported by scientifically sound information. The BMPs are intended to be practical and cost-effective so that they can be readily used. Adherence to these BMPs does not necessarily constitute compliance with all applicable federal, state, or local laws. Acknowledgements This document was produced by the Oregon Department of Fish and Wildlife (ODFW) with significant financial and design contributions from The Port of Portland. Input and technical review was provided by the Oregon Native Turtle Working Group which is comprised of representatives from a variety of natural resource agencies, organizations, and institutions. This document arose out of a recommendation from the 2009 Native Turtle Conservation Forum, organized by the Oregon Native Turtle Working Group and hosted by the Oregon Zoo. More information
    [Show full text]
  • Trees, Shrubs and Vines of Huntley Meadows Park
    I 0 _Blueberry, Highbush----Vaccinium corymbosum Hickory, Sweet Pignut Catya ova/is (Walnut (Heath family) family) Box Elder (Ashleaf Maple) Acer negunda Holly, American----//ex opaca (Holly family) TREES, SHRUBS AND (Maple family) Honeysuckle, Bella----Lonicera be/la (Honeysuckle Buttonbush Cephalanthus occidentalis (Madder family) VINES OF HUNTLEY family) Honeysuckle, Japanese Lonicera japonica Cedar, Red----Juruperus virginiana (Pine family) (Honeysuckle family) MEADOWS PARK Cherry, Black----Prunus serotina (Rose family) Honeysuckle, Morrow----Lonicera Morrowii Cherry, Choke Prunus virginiana (Rose family) (Honeysuckle family) Huntley Meadows Park contains over 1,400 acres of Chokeberry, Purple---Pyrus floribunda (Rose Huckleberry, Black Gaylussacia baccata (Heath diverse habitat including meadows, wetlands and family) family) forests. Chokeberry, Red----Pyrus, arbutifolia (Rose Ironwood (American Hornbeam)----Carpinus This checklist is based on the observations of both family) caroliniana (Birch family) paid and volunteer staff. Special thanks to Karen Dangleberry----Gaylusaccia frondosa (Heath _Juneberry (Shadbush, Serviceberry)---- Goodlatte and Janet Meisenhelder. family) Almelanchier arborea (Rose family) Deerberry--- Vaccinium stamineum (Heath family) Lilac---Syringa vulgaris (Olive family) Alder, Smooth Alnus serrulata (Birch family) Dewberry, Prickly---Rubrus jlagellaris (Rose Locust, Black Robinia pseudo-acacia (Legume _Apple, Domestic Pyrus malus (Rose family) family) family) Arrowwood-- Viburnum dentatum (Honeysuckle Dogwood,
    [Show full text]
  • Native Trees of Georgia
    1 NATIVE TREES OF GEORGIA By G. Norman Bishop Professor of Forestry George Foster Peabody School of Forestry University of Georgia Currently Named Daniel B. Warnell School of Forest Resources University of Georgia GEORGIA FORESTRY COMMISSION Eleventh Printing - 2001 Revised Edition 2 FOREWARD This manual has been prepared in an effort to give to those interested in the trees of Georgia a means by which they may gain a more intimate knowledge of the tree species. Of about 250 species native to the state, only 92 are described here. These were chosen for their commercial importance, distribution over the state or because of some unusual characteristic. Since the manual is intended primarily for the use of the layman, technical terms have been omitted wherever possible; however, the scientific names of the trees and the families to which they belong, have been included. It might be explained that the species are grouped by families, the name of each occurring at the top of the page over the name of the first member of that family. Also, there is included in the text, a subdivision entitled KEY CHARACTERISTICS, the purpose of which is to give the reader, all in one group, the most outstanding features whereby he may more easily recognize the tree. ACKNOWLEDGEMENTS The author wishes to express his appreciation to the Houghton Mifflin Company, publishers of Sargent’s Manual of the Trees of North America, for permission to use the cuts of all trees appearing in this manual; to B. R. Stogsdill for assistance in arranging the material; to W.
    [Show full text]
  • Halesia Spp. Family: Styracaceae Silverbell
    Halesia spp. Family: Styracaceae Silverbell The genus Halesia is composed of about 4 species native to: the United States [3] and China [1]. The word halesia is named after Stephen Hales (1677-1761), British clergyman and author of Vegetable Staticks (1722). Halesia carolina-Bell-tree, Bell Olivetree, Bellwood, Box-elder, Carolina Silverbell, Catbell, Florida Silverbell, Four-winged Halesia, Little Silverbell, No-name-tree, Opossum, Opossumwood, Mountain Silverbell, Rattle-box, Silverbell-tree, Silver-tree, Snowdrop-tree, Tisswood, Wild Olivetree Halesia diptera-Cowlicks, Silverbell-tree, Snowdrop-tree, Southern Silverbell-tree, Two Wing Silverbell Halesia parviflora-Florida Silverbell, Little Silverbell. Distribution Southeastern United States and China. The Tree Silverbells are shrubs or trees with scaly reddish brown bark. The leaves and small branches are covered with stellate (star shaped) hairs. The showy white flowers are produced in small, pendulous clusters. They produce dry, winged fruits (samara). Silverbells can reach a height of 100 feet, although they normally grow to 40 feet. The bark is thin, separating into slightly ridged, reddish brown scales. The Wood General The wood of Silverbell is brown, strong, dense and close grained. It has a wide white sapwood and a pale brown heartwood. The luster is medium and it has no odor or taste. The texture is fine and uniform, with a straight grain. Mechanical Properties (2-inch standard) Compression Specific MOE MOR Parallel Perpendicular WMLa Hardness Shear gravity GPa MPa MPa MPa kJ/m3 N MPa Green .42 8.0 11.8 19.5 3.0 60.7 2090 6.4 Dry .48 9.1 59.3 35.4 4.7 47.6 2624 8.1 aWML = Work to maximum load.
    [Show full text]
  • Native Plants for Your Backyard
    U.S. Fish & Wildlife Service Native Plants for Your Backyard Native plants of the Southeastern United States are more diverse in number and kind than in most other countries, prized for their beauty worldwide. Our native plants are an integral part of a healthy ecosystem, providing the energy that sustains our forests and wildlife, including important pollinators and migratory birds. By “growing native” you can help support native wildlife. This helps sustain the natural connections that have developed between plants and animals over thousands of years. Consider turning your lawn into a native garden. You’ll help the local environment and often use less water and spend less time and money maintaining your yard if the plants are properly planted. The plants listed are appealing to many species of wildlife and will look attractive in your yard. To maximize your success with these plants, match the right plants with the right site conditions (soil, pH, sun, and moisture). Check out the resources on the back of this factsheet for assistance or contact your local extension office for soil testing and more information about these plants. Shrubs Trees Vines Wildflowers Grasses American beautyberry Serviceberry Trumpet creeper Bee balm Big bluestem Callicarpa americana Amelanchier arborea Campsis radicans Monarda didyma Andropogon gerardii Sweetshrub Redbud Carolina jasmine Fire pink Little bluestem Calycanthus floridus Cercis canadensis Gelsemium sempervirens Silene virginica Schizachyrium scoparium Blueberry Red buckeye Crossvine Cardinal flower
    [Show full text]
  • Black-Gum Ridgetop Forest This Community Type Occurs on Fairly Dry Ridgetops
    Black-gum ridgetop forest This community type occurs on fairly dry ridgetops. The canopy may be somewhat open; tree growth is somewhat suppressed. These ridgetops may have been exposed to repeated fires. Nyssa sylvatica is the dominant species; Betula lenta (sweet birch), Sassafras albidum (sassafras), Acer rubrum (red maple), Quercus montana (chestnut oak), Q. velutina (black oak), and Q. rubra (red oak) are often present. The shrub layer is dominantly ericaceous; common species include Kalmia latifolia (mountain laurel), Gaylussacia baccata (black huckleberry), Vaccinium spp. (blueberry), and Hamamelis virginiana (witch- hazel). The herbaceous layer is generally sparse. Common constituents include Carex pensylvanica (Pennsylvania sedge), Carex communis (a sedge), Epigaea repens (trailing arbutus), Gaultheria procumbens (teaberry), Aralia nudicaulis (wild sarsaparilla), and Pteridium aquilinum (bracken fern). Related types: This type is fairly uniform in composition and is restricted to ridgetops and high shoulders. The "Birch (black-gum) rocky slope woodland" occurs on talus or scree slopes and boulderfields, has an open canopy, and has a wide range of possible associates depending on aspect and location. Range: Ridge and Valley. Selected references: Daniel Devlin—personal communication. [Crosswalk: none.] Vascular plant nomenclature follows Rhoads and Klein (1993). Bryophyte nomenclature follows Crum and Anderson (1981). Species not native to Pennsylvania are indicated by a superscript "I." The aggressive species Phalaris arundinacea (reed canary-grass) and Phragmites australis (common reed) are marked with a superscript "(I)", as their native status is unclear. Pennsylvania species of special concern are indicated by a superscript "S." .
    [Show full text]
  • Pages 121-166
    Cost Analysis Figure 21. Estimated Unit Costs for Installation and Maintenance Procedures (2004) Costs are based on average conditions calculated from research plot applications. Costs can vary considerably depending on specific site conditions. These examples are intended for comparison purposes and should not be used as bid prices. Note: Estimated costs do not include bark mulch applied as a continuous bed. If that is the desired treatment, an additional mulch materials and application cost would apply. Estimated costs do not include plant or installation warranties. Enhancing Delaware Highways Cost Analysis 122 Figure 21. Estimated Costs for Installation and Maintenance, for comparison (2004) Drilling holes prior to planting quart containers. Note: Estimated costs do not include bark mulch applied as a continuous bed. If that is the desired treatment, an additional mulch materials and application cost would apply. Estimated costs do not include plant or installation warranties. Enhancing Delaware Highways Cost Analysis 124 Appendix A: Checklists–Inventory of Site Conditions 2. Roadway Limitations Checklist Check the roadside zone(s) included in the location to be landscaped: J Back slope or cut slope J Swale or ditch zone 1. Climate and Growth Conditions Checklist J Approach or shoulder zone J Edge or border zone J Front or fill slope Check the appropriate clear zone requirement: Check the appropriate cold hardiness zone: J Standard 30 feet J Other ( feet) J Zone 6 or J Zone 7 Presence of guard rail and/or barrier curb: Guard rail
    [Show full text]
  • St. Joseph Bay Native Species List
    Status Common Name Species Name State Federal Amphibians Salamanders Flatwoods Salamander Ambystoma cingulatum SSC T Marbled Salamander Ambystoma opacum Mole Salamander Ambystoma talpoideum Eastern Tiger Salamander Ambystoma tigrinum tigrinum Two-toed Amphiuma Amphiuma means One-toed Amphiuma Amphiuma pholeter Southern Dusky Salamander Desmognathus auriculatus Dusky Salamander Desmognathus fuscus Southern Two-lined Salamander Eurycea bislineata cirrigera Three-lined Salamander Eurycea longicauda guttolineata Dwarf Salamander Eurycea quadridigitata Alabama Waterdog Necturus alabamensis Central Newt Notophthalmus viridescens louisianensis Slimy Salamander Plethodon glutinosus glutinosus Slender Dwarf Siren Pseudobranchus striatus spheniscus Gulf Coast Mud Salamander Pseudotriton montanus flavissimus Southern Red Salamander Pseudotriton ruber vioscai Eastern Lesser Siren Siren intermedia intermedia Greater Siren Siren lacertina Toads Oak Toad Bufo quercicus Southern Toad Bufo terrestris Eastern Spadefoot Toad Scaphiopus holbrooki holbrooki Frogs Florida Cricket Frog Acris gryllus dorsalis Eastern Narrow-mouthed Frog Gastrophryne carolinensis Western Bird-voiced Treefrog Hyla avivoca avivoca Cope's Gray Treefrog Hyla chrysoscelis Green Treefrog Hyla cinerea Southern Spring Peeper Hyla crucifer bartramiana Pine Woods Treefrog Hyla femoralis Barking Treefrog Hyla gratiosa Squirrel Treefrog Hyla squirella Gray Treefrog Hyla versicolor Little Grass Frog Limnaoedus ocularis Southern Chorus Frog Pseudacris nigrita nigrita Ornate Chorus Frog Pseudacris
    [Show full text]
  • Florida Installation Guide
    Hedgerow Planting (422) for Pollinators Florida Installation Guide February 2015 The Xerces Society for Invertebrate Conservation Brown-belted bumble bee (Bombus griseocollis) heading to highbush blueberry (Vaccinium corymbosum). (Photograph by www.xerces.org Nancy Lee Adamson, The Xerces Society.) Acknowledgements This material is based upon work supported by the Natural Resources Conservation Service, U.S. Department of Agriculture, under number 69-3A75-12-253. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the U.S. Department of Agriculture. Financial support to the Xerces Society for the development of this guide was provided by the Audrey & J.J. Martindale Foundation, Aveda, Cascadian Farm, Ceres Trust, CS Fund, Disney Worldwide Conservation Fund, The Dudley Foundation, The Elizabeth Ordway Dunn Foundation, Endangered Species Chocolate, General Mills, SeaWorld & Busch Gardens Conservation Fund, Turner Foundation, Inc., The White Pine Fund, Whole Foods Market and its vendors, Whole Systems Foundation, the Natural Resources Conservation Service (NRCS), and Xerces Society members. The authors would like to thank Bob Glennon, Ernst Conservation Seed Company, Gil Nelson, Mark Garland (USDA–NRCS), Drs. Cory Stanley-Stahr, Jamie Ellis, and Jaret Daniels (University of Florida–Gainesville), Straughn Farms, and the USDA–NRCS Brooksville Plant Materials Center. Authors This guide was written in November 2012 by Mace Vaughan, Eric Lee-Mäder, Jessa Kay Cruz, Jolie Goldenetz-Dollar, and Brianna Borders of the Xerces Society for Invertebrate Conservation. Please contact Mace Vaughan ([email protected]) to improve this publication. Revised edition Updated in November 2014 by Dr.
    [Show full text]
  • Buttonbush, Cephalanthus Occidentalis
    Buttonbush, Cephalanthus occidentalis Buttonbush is a deciduous, multi-stemmed, loose shrub or small tree in the coffee family (Rubiaceae). Generally reaching no more than 12 feet in height, the plant is frequently wider than it is tall. It is native to North America from Nova Scotia and Ontario south to Mexico. It is found in the Florida Everglades. A key characteristic of the Buttonbush is its flower heads which consist of fragrant, tiny, tubular, white flowers compacted into 1-inch diameter spheres. Each flower has a projecting style which gives the flower head a pincushion-like appearance. The long- lasting blooms (June – August) give way to hard, spherical clusters of nutlets that resemble old-time dress buttons; hence its common name. The fruit matures in fall and can stay on the plant through winter, providing interest for the garden and food for wildlife. The beautiful dark green, glossy foliage is another ornamental feature of Buttonbush. The leaves, which emerge late in spring, are opposite or in whorls of three, ovate in shape, 2-6 inches long, 1-3 inches wide, with a smooth edge and short petiole. The leaves turn yellow- green in the fall. Other identifying features of Buttonbush are prominent lenticels on coarse stems, absent terminal buds, and pith that is solid and light brown. Buttonbush occurs as a non-dominant midstory species in mixed riparian forests, pond or stream margins, and swamps. They prefer moist, humusy soils and full to partial sunlight. Buttonbush in the wild is an indicator of an area’s wetland status. The plant will tolerate water depths up to three feet and long durations of flooding.
    [Show full text]
  • Holly - Ilex Sp
    Holly - Ilex sp. General Information: Available in both evergreen and deciduous species, holly is grown for its toothed glossy green leaves and its showy berries, which are red in most popular varieties, but can also be a showy yellow. Holly can range from under one foot to over 80, and is found in both temperate and tropical regions. Both male and female plants are needed for fruiting. Family: Aquifoliaceae Lighting: Can tolerate both sun and shade, although semi-shade is preferable in midsummer. Increased light tends to produce dense foliage. Temperature: In general, evergreen varieties are hardy to zone 7, deciduous varieties to zone 5. Most varieties will require some frost protection, and all varieties should be sheltered from strong or cold winds. Watering: Needs a fair amount of water, especially before fruit production. Holly can be badly damaged by draught. Reduce watering in winter. Likes misting, unless it is in full sun. Feeding: Every two weeks during growth, using half strength liquid plant food, or bonsai food. Pruning and wiring: Cut back new shoots to the one or two nodes closest to the trunk. Branches can be very brittle, so shaping is best done by pruning rather than wiring. If wiring must be done, it is best to wire in spring- summer, taking care to protect the bark. Leaf pruning to reduce leaf size is possible. Suitable for all sizes and styles, although the evergreen varieties do not take as well to broom style. Ilex asprella has a tendency towards horzontal growth which must be compensated for; Ilex vomitoria, on the other hand, has a strong inclination to grow upwards.
    [Show full text]