Bridgin Connects the Outer Kinetochore to Centromeric Chromatin ✉ ✉ Shreyas Sridhar 1,4, Tetsuya Hori2, Reiko Nakagawa 3, Tatsuo Fukagawa 2 & Kaustuv Sanyal 1,2

Total Page:16

File Type:pdf, Size:1020Kb

Bridgin Connects the Outer Kinetochore to Centromeric Chromatin ✉ ✉ Shreyas Sridhar 1,4, Tetsuya Hori2, Reiko Nakagawa 3, Tatsuo Fukagawa 2 & Kaustuv Sanyal 1,2 ARTICLE https://doi.org/10.1038/s41467-020-20161-9 OPEN Bridgin connects the outer kinetochore to centromeric chromatin ✉ ✉ Shreyas Sridhar 1,4, Tetsuya Hori2, Reiko Nakagawa 3, Tatsuo Fukagawa 2 & Kaustuv Sanyal 1,2 The microtubule-binding outer kinetochore is coupled to centromeric chromatin through CENP-CMif2, CENP-TCnn1, and CENP-UAme1 linker pathways originating from the constitutive centromere associated network (CCAN) of the inner kinetochore. Here, we demonstrate the 1234567890():,; recurrent loss of most CCAN components, including certain kinetochore linkers during the evolution of the fungal phylum of Basidiomycota. By kinetochore interactome analyses in a model basidiomycete and human pathogen Cryptococcus neoformans, a forkhead-associated domain containing protein “bridgin” was identified as a kinetochore component along with other predicted kinetochore proteins. In vivo and in vitro functional analyses of bridgin reveal its ability to connect the outer kinetochore with centromeric chromatin to ensure accurate chromosome segregation. Unlike established CCAN-based linkers, bridgin is recruited at the outer kinetochore establishing its role as a distinct family of kinetochore proteins. Presence of bridgin homologs in non-fungal lineages suggests an ancient divergent strategy exists to bridge the outer kinetochore with centromeric chromatin. 1 Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research (JNCASR), Bangalore, India 560064. 2 Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan. 3 Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan. 4Present address: Graduate School of Frontier ✉ Biosciences, Osaka University, Suita, Osaka 565-0871, Japan. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:146 | https://doi.org/10.1038/s41467-020-20161-9 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20161-9 ccurate chromosome segregation ensures faithful trans- prediction. Species representing 31 fungal orders across the three Amission of the genetic material to progeny. The kine- subphyla, Pucciniomycotina, Ustilagomycotina, and Agar- tochore is a multicomplex protein structure assembled on icomycotina, were considered. Additionally, representative spe- centromere DNA of each eukaryotic chromosome1–4 and is cies across 7 fungal phyla were included48. CENP-ACse4, the 16- attached to the spindle microtubules for accurate chromosome member CCAN, and the 10-member KMN network were chosen segregation5. Components involved in error correction mechan- for this study (Fig. 1a and Supplementary Data 1). Our analysis, isms, including the spindle assembly checkpoint (SAC), are in accordance with the previous reports25,26,29, indicates the recruited at kinetochores to ensure the biorientation of robust conservation of CENP-ACse4 and the KMN network sister chromatids in mitosis6–8. The inner kinetochore is com- proteins across basidiomycetes. On the other hand, we observed posed of centromeric histone H3 variant CENP-ACse4 9–11 and recurrent loss of most CCAN proteins across 23 of the 31 basi- the 16-member constitutive centromere-associated network diomycete orders (Fig. 1a). In the subphylum of Agar- (CCAN)12–16. The outer kinetochore members of the KMN icomycotina, to which C. neoformans belongs, the loss event may (Knl1, Mis12, and Ndc80 complexes) network1,17 are recruited to have occurred early at the time of divergence of Wallemiales from CCAN to form the kinetochore ensemble across eukaryotes, other orders. Retention of CCAN proteins in a few discrete orders including budding yeast and vertebrates18. Additional compo- in the subphyla of Pucciniomycotina and Ustilogamycotina sug- nents such as the 10-member Dam1 complex (Dam1C) in fungi gests the occurrence of multiple independent loss events of most and the three-member Ska complex in vertebrates localize to the CCAN subunits (Fig. 1a). The kinetochore linker CENP-CMif2 outer kinetochore to ensure accurate kinetochore–microtubule was the only conserved CCAN component across basidiomycetes. interactions19–24. Other known linker proteins, CENP-TCnn1 and CENP-UAme1, Genome sequencing data reveal that while the KMN network were often lost together. Although the primary protein sequence components are highly conserved25–27, the inner kinetochore conservation is low among CENP-TCnn1 homologs, they share a composition is variable across eukaryotes25–29. The Ndc80 typical protein architecture: an N-terminal α-helix composed of complex (Ndc80C) of the KMN network directly binds to spindle conserved hydrophobic residues, observed to occur within the microtubules30–32. CCAN proteins, CENP-CMif2 and CENP- PITH domain in Ustilaginales, and the CENP-TCnn1 motif at the TCnn1, have been shown to independently link centromeric C terminus (Fig. 1b). As a result, the CENP-CMif2 pathway chromatin with the KMN network33–38. In addition, CENP- remains the only known linker pathway among 23 of the 31 UAme1 functions as a linker in budding yeast39,40. CENP-CMif2 basidiomycete orders investigated. These observations suggest and CENP-TCnn1, through their amino(N)-termini, interact with that additional factors may exist to compensate for the recurrent the KMN network, while their carboxy(C)-termini interact with loss of most CCAN proteins in Basidiomycota. centromeric chromatin41–43. CENP-UAme1 cooperatively with CENP-CMif2 also binds to Mis12C, to ensure a linker function in budding yeast39,40. These three critical kinetochore linker pro- Identification of the kinetochore interactome in C. neoformans. teins, CENP-CMif2, CENP-TCnn1, and CENP-UAme1, are often In search of such unknown kinetochore proteins, we attempted to lost or significantly diverged during evolution. Despite the analyze the kinetochore composition in the fungal phylum of observed loss or functional divergence of linker proteins, the Basidiomycota using a relatively well-studied model basidiomy- existence of other molecular innovations to bridge centromeric cetous yeast C. neoformans (Fig. 1a). To comprehensively deter- chromatin with the outer kinetochore to ensure accurate chro- mine the constitution of the kinetochore and its interactome mosome segregation remains largely unknown21,28,44. Although in vivo, C. neoformans strains expressing 3×FLAG-tagged CENP- each of the kinetochore linker pathways has been shown to play CMif2, Dsn1 (Mis12C), and Spc25 (Ndc80C) under control of the important roles in chromosome segregation, the architectural native promoter were generated. The functionality of the dependence on a specific pathway varies across species34,35,37. 3×FLAG-tagged proteins was validated by chromatin immuno- Cryptococcus neoformans is a ubiquitous environmental fungus precipitation (ChIP) and co-immunoprecipitation (co-IP) assays and an opportunistic pathogen causing fatal cryptococcal (Supplementary Fig. 1a–c). meningitis45,46. Our previous studies using this model basidio- Mass-spectrometry (MS) analyses were performed after FLAG- mycete suggested a stepwise kinetochore assembly on a long IP for CENP-CMif2, Dsn1, and Spc25 from metaphase-enriched repetitive regional centromere24,47. (mitotic index > 90%) cell population (Fig. 1c and Supplementary In this work, by analyzing a number of fungal genomes, we Data 2). Nearly all predicted inner kinetochore proteins (CENP- strikingly find the recurrent absence of most CCAN components, ACse4 and CENP-CMif2) and outer kinetochore KMN network including certain conventional linker proteins, CENP-TCnn1 and components were identified from each of the FLAG-IPs (Table 1 CENP-UAme1, in the phylum Basidiomycota. We identify “brid- and Supplementary Data 2). Except for CENP-CMif2,no gin”, a previously undescribed protein, in the kinetochore inter- components of the CCAN were identified in the IP–MS (Table 1 actome of C. neoformans. We predict the existence of bridgin and Supplementary Table. 2). Identified KMN network compo- homologs in eukaryotic lineages outside the fungal kingdom as nents included evolutionarily conserved but previously unanno- well. Based on in vivo and in vitro functional analyses, we tated ORFs coding for subunits of Mis12C (CNAG_04300Nsl1, demonstrate that bridgin connects the outer kinetochore with CNAG_04479Nnf1) and Knl1C (CNAG_03715Sos7) (Table 1 and centromeric chromatin revealing the existence of a distinct Supplementary Data 2). CNAG_03715Sos7 (Knl1C) was used as a strategy to bridge the outer kinetochore and centromeric chro- candidate to authenticate the predicted ORFs as bona fide matin across eukaryotes. kinetochore proteins. CNAG_03715Sos7 was bioinformatically identified as the Sos7 homolog in C. neoformans using Schizosaccharomyces pombe Sos749 (Supplementary Fig. 1d, e). Results Microscopic observations of GFP-CnSos7 suggested a cell-cycle- Recurrent independent loss events of CCAN proteins in Basi- dependent kinetochore-exclusive localization in C. neoformans diomycota. To have a comprehensive understanding of the (Fig. 1d and Supplementary Fig. 1f). Further analysis confirmed kinetochore composition in Basidiomycota, we analyzed putative that while Sos7 was dispensable for cell viability, yet was essential kinetochore homologs using high-confidence protein homology for accurate chromosome segregation in C. neoformans (Supple- searches combined with secondary and tertiary structure
Recommended publications
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Distribution of Methionine Sulfoxide Reductases in Fungi and Conservation of the Free- 2 Methionine-R-Sulfoxide Reductase in Multicellular Eukaryotes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution of methionine sulfoxide reductases in fungi and conservation of the free- 2 methionine-R-sulfoxide reductase in multicellular eukaryotes 3 4 Hayat Hage1, Marie-Noëlle Rosso1, Lionel Tarrago1,* 5 6 From: 1Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, 7 Marseille, France. 8 *Correspondence: Lionel Tarrago ([email protected]) 9 10 Running title: Methionine sulfoxide reductases in fungi 11 12 Keywords: fungi, genome, horizontal gene transfer, methionine sulfoxide, methionine sulfoxide 13 reductase, protein oxidation, thiol oxidoreductase. 14 15 Highlights: 16 • Free and protein-bound methionine can be oxidized into methionine sulfoxide (MetO). 17 • Methionine sulfoxide reductases (Msr) reduce MetO in most organisms. 18 • Sequence characterization and phylogenomics revealed strong conservation of Msr in fungi. 19 • fRMsr is widely conserved in unicellular and multicellular fungi. 20 • Some msr genes were acquired from bacteria via horizontal gene transfers. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • The MIS12 Complex Is a Protein Interaction Hub for Outer Kinetochore Assembly
    JCB: Article The MIS12 complex is a protein interaction hub for outer kinetochore assembly Arsen Petrovic,1 Sebastiano Pasqualato,1 Prakash Dube,3 Veronica Krenn,1 Stefano Santaguida,1 Davide Cittaro,4 Silvia Monzani,1 Lucia Massimiliano,1 Jenny Keller,1 Aldo Tarricone,1 Alessio Maiolica,1 Holger Stark,3 and Andrea Musacchio1,2 1Department of Experimental Oncology, European Institute of Oncology (IEO) and 2Research Unit of the Italian Institute of Technology, Italian Foundation for Cancer Research Institute of Molecular Oncology–IEO Campus, I-20139 Milan, Italy 33D Electron Cryomicroscopy Group, Max Planck Institute for Biophysical Chemistry, and Göttingen Center for Microbiology, University of Göttingen, 37077 Göttingen, Germany 4Consortium for Genomic Technologies, I-20139 Milan, Italy inetochores are nucleoprotein assemblies responsi­ axis of 22 nm. Through biochemical analysis, cross- ble for the attachment of chromosomes to spindle linking–based methods, and negative-stain electron mi­ K microtubules during mitosis. The KMN network, croscopy, we investigated the reciprocal organization of a crucial constituent of the outer kinetochore, creates an the subunits of the MIS12 complex and their contacts with interface that connects microtubules to centromeric chro­ the rest of the KMN network. A highlight of our findings matin. The NDC80, MIS12, and KNL1 complexes form the is the identification of the NSL1 subunit as a scaffold core of the KMN network. We recently reported the struc­ supporting interactions of the MIS12 complex with the tural organization of the human NDC80 complex. In this NDC80 and KNL1 complexes. Our analysis has important study, we extend our analysis to the human MIS12 com­ implications for understanding kinetochore organization in plex and show that it has an elongated structure with a long different organisms.
    [Show full text]
  • Identification of Conserved Genes Triggering Puberty in European Sea
    Blázquez et al. BMC Genomics (2017) 18:441 DOI 10.1186/s12864-017-3823-2 RESEARCHARTICLE Open Access Identification of conserved genes triggering puberty in European sea bass males (Dicentrarchus labrax) by microarray expression profiling Mercedes Blázquez1,2* , Paula Medina1,2,3, Berta Crespo1,4, Ana Gómez1 and Silvia Zanuy1* Abstract Background: Spermatogenesisisacomplexprocesscharacterized by the activation and/or repression of a number of genes in a spatio-temporal manner. Pubertal development in males starts with the onset of the first spermatogenesis and implies the division of primary spermatogonia and their subsequent entry into meiosis. This study is aimed at the characterization of genes involved in the onset of puberty in European sea bass, and constitutes the first transcriptomic approach focused on meiosis in this species. Results: European sea bass testes collected at the onset of puberty (first successful reproduction) were grouped in stage I (resting stage), and stage II (proliferative stage). Transition from stage I to stage II was marked by an increase of 11ketotestosterone (11KT), the main fish androgen, whereas the transcriptomic study resulted in 315 genes differentially expressed between the two stages. The onset of puberty induced 1) an up-regulation of genes involved in cell proliferation, cell cycle and meiosis progression, 2) changes in genes related with reproduction and growth, and 3) a down-regulation of genes included in the retinoic acid (RA) signalling pathway. The analysis of GO-terms and biological pathways showed that cell cycle, cell division, cellular metabolic processes, and reproduction were affected, consistent with the early events that occur during the onset of puberty.
    [Show full text]
  • Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement
    School of Natural Sciences and Mathematics Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement UT Dallas Author(s): Michael Q. Zhang Rights: CC BY 4.0 (Attribution) ©2017 The Authors Citation: Liu, Zehua, Huazhe Lou, Kaikun Xie, Hao Wang, et al. 2017. "Reconstructing cell cycle pseudo time-series via single-cell transcriptome data." Nature Communications 8, doi:10.1038/s41467-017-00039-z This document is being made freely available by the Eugene McDermott Library of the University of Texas at Dallas with permission of the copyright owner. All rights are reserved under United States copyright law unless specified otherwise. File name: Supplementary Information Description: Supplementary figures, supplementary tables, supplementary notes, supplementary methods and supplementary references. CCNE1 CCNE1 CCNE1 CCNE1 36 40 32 34 32 35 30 32 28 30 30 28 28 26 24 25 Normalized Expression Normalized Expression Normalized Expression Normalized Expression 26 G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage CCNE1 CCNE1 CCNE1 CCNE1 40 32 40 40 35 30 38 30 30 28 36 25 26 20 20 34 Normalized Expression Normalized Expression Normalized Expression 24 Normalized Expression G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Supplementary Figure 1 | High stochasticity of single-cell gene expression means, as demonstrated by relative expression levels of gene Ccne1 using the mESC-SMARTer data. For every panel, 20 sample cells were randomly selected for each of the three stages, followed by plotting the mean expression levels at each stage.
    [Show full text]
  • Congenital Microcephaly
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sussex Research Online American Journal of Medical Genetics Part C (Seminars in Medical Genetics) ARTICLE Congenital Microcephaly DIANA ALCANTARA AND MARK O'DRISCOLL* The underlying etiologies of genetic congenital microcephaly are complex and multifactorial. Recently, with the exponential growth in the identification and characterization of novel genetic causes of congenital microcephaly, there has been a consolidation and emergence of certain themes concerning underlying pathomechanisms. These include abnormal mitotic microtubule spindle structure, numerical and structural abnormalities of the centrosome, altered cilia function, impaired DNA repair, DNA Damage Response signaling and DNA replication, along with attenuated cell cycle checkpoint proficiency. Many of these processes are highly interconnected. Interestingly, a defect in a gene whose encoded protein has a canonical function in one of these processes can often have multiple impacts at the cellular level involving several of these pathways. Here, we overview the key pathomechanistic themes underlying profound congenital microcephaly, and emphasize their interconnected nature. © 2014 Wiley Periodicals, Inc. KEY WORDS: cell division; mitosis; DNA replication; cilia How to cite this article: Alcantara D, O'Driscoll M. 2014. Congenital microcephaly. Am J Med Genet Part C Semin Med Genet 9999:1–16. INTRODUCTION mid‐gestation although glial cell division formation of the various cortical layers. and consequent brain volume enlarge- Furthermore, differentiating and devel- Congenital microcephaly, an occipital‐ ment does continue after birth [Spalding oping neurons must migrate to their frontal circumference of equal to or less et al., 2005]. Impaired neurogenesis is defined locations to construct the com- than 2–3 standard deviations below the therefore most obviously reflected clini- plex architecture and laminar layered age‐related population mean, denotes cally as congenital microcephaly.
    [Show full text]
  • Type Studies in Polyporaceae 27. Species Described by P. Ch
    CZECH MYCOLOGY 64(1): 13–21, JULY 2, 2012 (ONLINE VERSION, ISSN 1805-1421) Type studies in Polyporaceae 27. Species described by P. Ch. Hennings LEIF RYVARDEN Biological Institute, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo, Norway; [email protected] Ryvarden L. (2012): Type studies in Polyporaceae 27. Species described by P. Ch. Hennings. – Czech Mycol. 64(1): 13–21. 103 polypores described by P. Ch. Hennings have been examined based on the available types. Nine- teen species are accepted, 63 species are reduced to synonymy, the types of 19 species could not be found, while two names are illegitimate. Two new combinations are proposed: Tyromyces aquosus (Henn.) Ryvarden and Diplomitoporus daedaleiformis (Henn.) Ryvarden. These two species are provided with de- scriptions, while published recent descriptions are referred to for the other 17 accepted species. Key words: Polyporaceae, types, taxonomy, nomenclature, Berlin herbarium. Ryvarden L. (2012): Typové studie chorošů 27. Druhy popsané P. Ch. Henning- sem – Czech Mycol. 64(1): 13–21. Na základě studia dostupných typů bylo revidováno 103 druhů chorošů popsaných P. Ch. Henning- sem. 19 druhů je akceptováno, 63 zařazeno do synonymiky, typy 19 druhů nebyly nalezeny, jména 2 dru- hů jsou ilegitimní. Jsou publikovány dvě nové kombinace: Tyromyces aquosus (Henn.) Ryvarden a Di- plomitoporus daedaleiformis (Henn.) Ryvarden. Tyto dva druhy jsou podrobně popsány a u 17 dalších akceptovaných druhů jsou připojeny odkazy na již publikované revize. INTRODUCTION Paul Christoph Hennings (1841–1908) was a productive mycologist, who de- scribed besides other species 109 polypores, mostly from Africa and South Amer- ica.
    [Show full text]
  • Real-Time Dynamics of Plasmodium NDC80 Reveals Unusual Modes of Chromosome Segregation During Parasite Proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2021) 134, jcs245753. doi:10.1242/jcs.245753 RESEARCH ARTICLE SPECIAL ISSUE: CELL BIOLOGY OF HOST–PATHOGEN INTERACTIONS Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J. P. Ferguson2,3, Eelco C. Tromer4, Robert Markus1, Steven Abel5, Declan Brady1, Emilie Daniel1, Rebecca Limenitakis6, Andrew R. Bottrill7, Karine G. Le Roch5, Anthony A. Holder8, Ross F. Waller4, David S. Guttery9 and Rita Tewari1,‡ ABSTRACT eukaryotic organisms to proliferate, propagate and survive. During Eukaryotic cell proliferation requires chromosome replication and these processes, microtubular spindles form to facilitate an equal precise segregation to ensure daughter cells have identical genomic segregation of duplicated chromosomes to the spindle poles. copies. Species of the genus Plasmodium, the causative agents of Chromosome attachment to spindle microtubules (MTs) is malaria, display remarkable aspects of nuclear division throughout their mediated by kinetochores, which are large multiprotein complexes life cycle to meet some peculiar and unique challenges to DNA assembled on centromeres located at the constriction point of sister replication and chromosome segregation. The parasite undergoes chromatids (Cheeseman, 2014; McKinley and Cheeseman, 2016; atypical endomitosis and endoreduplication with an intact nuclear Musacchio and Desai, 2017; Vader and Musacchio, 2017). Each membrane and intranuclear mitotic spindle. To understand these diverse sister chromatid has its own kinetochore, oriented to facilitate modes of Plasmodium cell division, we have studied the behaviour movement to opposite poles of the spindle apparatus. During and composition of the outer kinetochore NDC80 complex, a key part of anaphase, the spindle elongates and the sister chromatids separate, the mitotic apparatus that attaches the centromere of chromosomes to resulting in segregation of the two genomes during telophase.
    [Show full text]
  • Molecular Cloning and Optimization for High Level Expression of Cold-Adapted Serine Protease from Antarctic Yeast Glaciozyma Antarctica PI12
    Hindawi Publishing Corporation Enzyme Research Volume 2014, Article ID 197938, 20 pages http://dx.doi.org/10.1155/2014/197938 Research Article Molecular Cloning and Optimization for High Level Expression of Cold-Adapted Serine Protease from Antarctic Yeast Glaciozyma antarctica PI12 Norsyuhada Alias,1 Mu’adz Ahmad Mazian,1 Abu Bakar Salleh,1 Mahiran Basri,2 and Raja Noor Zaliha Raja Abd. Rahman1 1 Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia 2 EnzymeandMicrobialTechnologyResearchCentre,FacultyofScience,UniversitiPutraMalaysia(UPM),43400Serdang, Selangor, Malaysia Correspondence should be addressed to Raja Noor Zaliha Raja Abd. Rahman; [email protected] Received 4 March 2014; Revised 6 May 2014; Accepted 14 May 2014; Published 30 June 2014 Academic Editor: Raffaele Porta Copyright © 2014 Norsyuhada Alias et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Psychrophilic basidiomycete yeast, Glaciozyma antarctica strain PI12, was shown to be a protease-producer. Isolation of the PI12 protease gene from genomic and mRNA sequences allowed determination of 19 exons and 18 introns. Full-length cDNA of PI12 protease gene was amplified by rapid amplification of cDNA ends (RACE) strategy with an open reading frame (ORF) of 2892 bp, coded for 963 amino acids. PI12 protease showed low homology with the subtilisin-like protease from fungus Rhodosporidium toruloides (42% identity) and no homology to other psychrophilic proteases. The gene encoding mature PI12 protease was cloned into Pichia pastoris expression vector, pPIC9, and positioned under the induction of methanol-alcohol oxidase (AOX)promoter.
    [Show full text]
  • Molecular Genetics of Microcephaly Primary Hereditary: an Overview
    brain sciences Review Molecular Genetics of Microcephaly Primary Hereditary: An Overview Nikistratos Siskos † , Electra Stylianopoulou †, Georgios Skavdis and Maria E. Grigoriou * Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; [email protected] (N.S.); [email protected] (E.S.); [email protected] (G.S.) * Correspondence: [email protected] † Equal contribution. Abstract: MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate. Keywords: microcephaly; MCPH; MCPH1–MCPH27; molecular genetics; cell cycle 1. Introduction Citation: Siskos, N.; Stylianopoulou, Microcephaly, from the Greek word µικρoκεϕαλi´α (mikrokephalia), meaning small E.; Skavdis, G.; Grigoriou, M.E. head, is a term used to describe a cranium with reduction of the occipitofrontal head circum- Molecular Genetics of Microcephaly ference equal, or more that teo standard deviations
    [Show full text]
  • Discovery of Novel Putative Tumor Suppressors from CRISPR Screens Reveals Rewired 2 Lipid Metabolism in AML Cells 3 4 W
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.332023; this version posted August 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Discovery of novel putative tumor suppressors from CRISPR screens reveals rewired 2 lipid metabolism in AML cells 3 4 W. Frank Lenoir1,2, Micaela Morgado2, Peter C DeWeirdt3, Megan McLaughlin1,2, Audrey L 5 Griffith3, Annabel K Sangree3, Marissa N Feeley3, Nazanin Esmaeili Anvar1,2, Eiru Kim2, Lori L 6 Bertolet2, Medina Colic1,2, Merve Dede1,2, John G Doench3, Traver Hart2,4,* 7 8 9 1 - The University of Texas MD Anderson Cancer Center UTHealth Graduate School of 10 Biomedical Sciences; The University of Texas MD Anderson Cancer Center, Houston, TX 11 12 2 - Department of Bioinformatics and Computational Biology, The University of Texas MD 13 Anderson Cancer Center, Houston, TX, USA 14 15 3 - Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA 16 17 4 - Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 18 Houston, TX, USA 19 20 21 22 23 * - Corresponding author: [email protected] 24 25 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.332023; this version posted August 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Bub1 Positions Mad1 Close to KNL1 MELT Repeats to Promote Checkpoint Signalling
    ARTICLE Received 14 Dec 2016 | Accepted 3 May 2017 | Published 12 June 2017 DOI: 10.1038/ncomms15822 OPEN Bub1 positions Mad1 close to KNL1 MELT repeats to promote checkpoint signalling Gang Zhang1, Thomas Kruse1, Blanca Lo´pez-Me´ndez1, Kathrine Beck Sylvestersen1, Dimitriya H. Garvanska1, Simone Schopper1, Michael Lund Nielsen1 & Jakob Nilsson1 Proper segregation of chromosomes depends on a functional spindle assembly checkpoint (SAC) and requires kinetochore localization of the Bub1 and Mad1/Mad2 checkpoint proteins. Several aspects of Mad1/Mad2 kinetochore recruitment in human cells are unclear and in particular the underlying direct interactions. Here we show that conserved domain 1 (CD1) in human Bub1 binds directly to Mad1 and a phosphorylation site exists in CD1 that stimulates Mad1 binding and SAC signalling. Importantly, fusion of minimal kinetochore-targeting Bub1 fragments to Mad1 bypasses the need for CD1, revealing that the main function of Bub1 is to position Mad1 close to KNL1 MELTrepeats. Furthermore, we identify residues in Mad1 that are critical for Mad1 functionality, but not Bub1 binding, arguing for a direct role of Mad1 in the checkpoint. This work dissects functionally relevant molecular interactions required for spindle assembly checkpoint signalling at kinetochores in human cells. 1 The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark. Correspondence and requests for materials should be addressed to G.Z.
    [Show full text]