Accretion and Evaporation of Modified Hayward Black Hole

Total Page:16

File Type:pdf, Size:1020Kb

Accretion and Evaporation of Modified Hayward Black Hole Eur. Phys. J. C (2015) 75:129 DOI 10.1140/epjc/s10052-015-3349-1 Regular Article - Theoretical Physics Accretion and evaporation of modified Hayward black hole Ujjal Debnatha,b,c Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India Received: 18 February 2015 / Accepted: 3 March 2015 / Published online: 20 March 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com Abstract We assume the most general static spherically isfies w<−1) [14]. Till now a lot of dark-energy models symmetric black hole metric. The accretion of any general have been considered. A brief review of dark-energy models kind of fluid flow around the black hole is investigated. The is found in Ref. [15]. accretion of the fluid flow around the modified Hayward A condensed object (e.g. a neutron star, a black hole, etc.) black hole is analyzed, and we then calculate the critical surrounded by a fluid can capture particles of the fluid that point, the fluid’s four-velocity, and the velocity of sound dur- pass within a certain distance from the condensed object. This ing the accretion process. Also the nature of the dynamical phenomenon is termed accretion of the fluid by condensed mass of the black hole during accretion of the fluid flow, objects. In Newtonian theory of gravity, the problem of accre- taking into consideration Hawking radiation from the black tion of matter onto the compact object was first formulated by hole, i.e., evaporation of the black hole, is analyzed. Bondi [16]. Michel [17] first obtained an analytic relativis- tic accretion (of gas) solution onto the static Schwarzschild black hole. Such accretion processes are candidates to the 1 Introduction mechanisms of the formation of supermassive black holes (SMBH) in the center of most active galaxies [18]. In partic- At present we live in a Universe which is expanding and ular, it should show some analogies with the process proposed the expansion rate is increasing, i.e., the Universe is accel- by Salpeter et al. [19] where galaxies and quasars could get erating, which was confirmed by recent Supernova type Ia some of their energy from processes of accretion. Using this observations [1,2]. The large scale structure [3–5] and cos- accretion procedure, Babichev et al. [20,21] formulated the mic microwave background radiation [6] WMAP observa- accretion of phantom dark energy onto a static Schwarzschild tions [7–9] also support this acceleration of the Universe. black hole and showed that static Schwarzschild black hole This acceleration is caused by some unknown matter which mass will gradually decrease due to the strong negative pres- produces a sufficiently strong negative pressure (with posi- sure of the phantom energy and finally all the masses tend tive energy density), known as dark energy. The present Uni- to zero near the big rip singularity. Sun [22] discussed phan- verse occupies ∼4 % ordinary matter, ∼74 % dark energy tom energy accretion onto a black hole in the cyclic universe. and ∼22 % dark matter. Dark energy and dark matter are Jamil [23] has investigated accretion of a phantom like mod- the two main components in our universe; the present dark- ified variable Chaplygin gas onto the Schwarzschild black energy and dark-matter densities are 7.01 × 10−27 and hole. Phantom energy accretion by a stringy charged black 2.18 × 10−27 kg/m3, respectively. The simplest candidate hole has been discussed by Sharif et al. [24]. Dark matter of the dark energy is the cosmological constant , which and dark energy accretion onto a static black hole has been obeys the equation of state EoS p = wρ with EoS parameter discussed by Kim et al. [25]. Also the accretion of the dark w =−1[10,11]. Other candidates for the dark energy are energy onto the more general Kerr–Newman black hole was quintessence (where the EoS parameter satisfies −1 <w< studied by Madrid et al. [26]. The new variable modified −1/3) [12,13] and phantom (where the EoS parameter sat- Chaplygin gas and generalized cosmic Chaplygin gas dark- energy accretions and accretions onto a Kerr–Newman black hole and their features were studied Bhadra et al. [27]. Sev- a e-mail: [email protected] eral authors [28–35] have discussed the accretions of var- b e-mail: [email protected] ious components of the dark energy onto several types of c e-mail: [email protected] black holes. 123 129 Page 2 of 5 Eur. Phys. J. C (2015) 75 :129 √ d ( 1 − ) = In the present work, first we assume the most general static obtain dr T0√ g 0, which provides the first integral, 1 spherically symmetric black hole metric in Sect. 2. The accre- (ρ + p)u0u −g = C1. This simplifies to tion of any general kind of the fluid flow around the black − A hole will be investigated. The accretion of the fluid flow ur2 M 2(ρ + p) u2 + B = C (3) B 1 around the modified Hayward black hole will be analyzed in Sect. 3 and we then calculate the critical point, the fluid’s where C1 is an integration constant, which has the dimension four-velocity, and the velocity of sound during the accre- of the energy density. Moreover, the energy flux equation can tion process. Also the nature of the dynamical mass of the be derived by the projection of the conservation law for the black hole during accretion of the fluid flow and taking into energy–momentum tensor onto the fluid four-velocity, i.e., μν μ μ consideration Hawking radiation from the black hole, i.e., uμT;ν = 0, which gives u ρ,μ + (ρ + p)u;μ = 0. From evaporation of the black hole, will be analyzed in Sect. 4. this, we obtain Finally, we shall present fruitful discussions of the accre- ρ − A h dρ tion of the fluids upon the modified Hayward black hole in ur2 M 2 exp =−C (4) B ρ ρ + p(ρ) Sect. 5. ∞ where C is an integration constant (energy flux onto the black hole) and the associated minus sign is taken for convenience. 2 Accretion phenomena of general static spherically Also ρh and ρ∞ represent the energy densities at the black symmetric black hole hole horizon and at infinity, respectively. Combining Eqs. (3) and (4), we obtain First we consider general static spherically symmetric metric ρ h ρ given by 2 A d (ρ + p) u + B exp − = C2 (5) B ρ ρ + p(ρ) 1 ∞ ds2 =−A(r)dt2 + dr 2 + r 2(dθ 2 + sin θdφ2) (1) B(r) where C2 =−C1/C = ρ∞ + p(ρ∞). The equation of mass μ √ flux J = 0 is given by d (J 1 −g) = 0, which integrates where A(r)>0 and B(r)>0 are functions of r only. We ;μ√ dr 1 can choose A(r) and B(r) in such a way that the above metric to ρu −g = A1 and yields represents a black hole metric. Let us assume M is the mass ( ) = ( ) = − 2M ρ 2 −2 A = of the black hole. For instance, if A r B r 1 r , ur M C3 (6) the above metric represents a Schwarzschild black hole. B The energy–momentum tensor for the fluid is given by where C3 is an integration constant. From (3) and (6), we obtain Tμν = (ρ + p)uμuν + pgμν (2) ρ + p A C1 where ρ and p are the energy density and pressure of the u2 + B = = C = constant. (7) ρ B C 4 fluid. The four-velocity vector of the fluid flow is given by 3 μ uμ = dx = (u0, u1, 0, 0) where u0 and u1 are the non- Now let us assume ds μ zero components of velocity vector satisfying uμu =−1. dln(ρ + p) 0 0 1 1 V 2 = − 1. (8) This implies g00u u + g11u u =−1. So we can obtain ρ ( 1)2+ dln (u0)2 = u B and let the radial velocity of the flow u1 = AB √ √ Thus, from Eqs. (6), (7), and (8), we obtain 0 A 2 u, thus we have u0 = g00u = u + B.Here −g = B 2 2 u du 2 1 A B A r 2sinθ. From the above Eq. (2), we obtain T 1 = (ρ + V − + −2V + − B 0 u2 + B u 2 A B p)u u. It is assumed that u < 0 for inward flow of the fluid 0 rB dr toward the black hole. ×(V 2 + 1)r + = 0. (9) 2(u2 + B) r In the fluid flow, we may assume that the fluid is dark matter or any kind of dark energy. A proper dark-energy Now if one or the other of the bracketed terms in (9) vanishes, accretion model for a static spherically symmetric black hole we get a turn-around point, and in this case, the solutions will should be obtained by generalizing Michel’s theory [17]. In be the double-valued in either r or u. There are only solutions the dark-energy accretion onto Schwarzschild black hole, which pass through a critical point that correspond to material Babichev et al. [20,21] have performed the above gener- falling into (or flowing out of) the object with monotonically alization. We shall follow now the above procedure in the increasing velocity along with the particle trajectory. A point case of static spherically symmetric black hole. The rel- where the speed of the flow is equal to the speed of sound is ativistic Bernoulli equation (the time component) of the called a critical point.
Recommended publications
  • Arxiv:1703.04138V2 [Gr-Qc] 26 May 2017
    Classical collapse to black holes and quantum bounces: A review Daniele Malafarina1, ∗ 1Department of Physics, Nazarbayev University, 53 Kabanbay Batyr avenue, 010000 Astana, Kazakhstan In the last four decades different programs have been carried out aiming at understanding the final fate of gravitational collapse of massive bodies once some prescriptions for the behaviour of gravity in the strong field regime are provided. The general picture arising from most of these scenarios is that the classical singularity at the end of collapse is replaced by a bounce. The most striking consequence of the bounce is that the black hole horizon may live for only a finite time. The possible implications for astrophysics are important since, if these models capture the essence of the collapse of a massive star, an observable signature of quantum gravity may be hiding in astrophysical phenomena. One intriguing idea that is implied by these models is the possible existence of exotic compact objects, of high density and finite size, that may not be covered by an horizon. The present article outlines the main features of these collapse models and some of the most relevant open problems. The aim is to provide a comprehensive (as much as possible) overview of the current status of the field from the point of view of astrophysics. As a little extra, a new toy model for collapse leading to the formation of a quasi static compact object is presented. PACS numbers: Keywords: Gravitational collapse, black holes, singularities, quantum gravity, white holes I. INTRODUCTION Our present understanding of the universe and its evolution implies the existence of black holes, bodies whose masses are packed in such small volumes that not even light can escape.
    [Show full text]
  • Arxiv:1712.03730V2 [Gr-Qc] 19 Dec 2017
    NON-POLYNOMIAL LAGRANGIAN APPROACH TO REGULAR BLACK HOLES Aimeric Colléaux,∗ Stefano Chinaglia,† Sergio Zerbini‡ Dipartimento di Fisica, Università di Trento and TIFPA-INFN Via Sommarive 14, 38123 Trento, Italia August 14, 2021 Abstract We present a review on Lagrangian models admitting spherically symmetric regular black holes, and cosmological bounce solutions. Non-linear electrodynamics, non-polynomial gravity, and fluid approaches are explained in details. They consist respectively in a gauge invariant generalization of the Maxwell Lagrangian, in modifications of the Einstein-Hilbert action via non-polynomial curvature invariants, and finally in the reconstruction of density profiles able to cure the central singularity of black holes. The non-polynomial gravity curvature invariants have the special property to be second order and polynomial in the metric field, in spherically symmetric spacetimes. Along the way, other models and results are discussed, and some general properties that regular black holes should satisfy are mentioned. A covariant Sakharov criterion for the absence of singularities in dynamical spherically symmetric spacetimes is also proposed and checked for some examples of such regular metric fields. Keywords: Regular Black Holes; Non-polynomial gravity; Non-linear Electrodynamics; Fluid approaches; Covariant Sakharov Criterion; Cosmological bounce. Contents Introduction 2 arXiv:1712.03730v2 [gr-qc] 19 Dec 2017 1 Non Linear Electrodynamics 5 1.1 Reconstruction .................................. ..... 6 ∗e-mail: [email protected] †e-mail: [email protected] ‡e-mail:[email protected] 1 2 Non-polynomial gravity 8 2.1 Cotton tensor decomposition : order-0 curvaturetensor .. .. .. .. .. .. .. 9 2.2 Action.......................................... .. 9 2.3 Covariant 2-dimensionalEquationsofmotion . 11 2.4 Vacuum solutions : Rational regular black holes .
    [Show full text]
  • Black Holes Beyond General Relativity: Theoretical and Phenomenological Developments
    SISSA Scuola Internazionale Superiore di · Studi Avanzati Sector of Physics PhD Programme in Astroparticle Physics Black holes beyond general relativity: theoretical and phenomenological developments. Supervisor: Submitted by: Prof. Stefano Liberati Costantino Pacilio Academic Year 2017/2018 ii iii Abstract In four dimensions, general relativity is the only viable theory of gravity sat- isfying the requirements of diffeoinvariance and strong equivalence principle. Despite this aesthetic appeal, there are theoretical and experimental reasons to extend gravity beyond GR. The most promising tests and bounds are ex- pected to come from strong gravity observations. The past few years have seen the rise of gravitational wave astronomy, which has paved the way for strong gravity observations. Future GW observations from the mergers of compact objects will be able to constrain much better possible deviations from GR. Therefore, an extensive study of compact objects in modified the- ories of gravitation goes in parallel with these experimental efforts. In this PhD Thesis we concentrate on black holes. Black holes act as testbeds for modifications of gravity in several ways. While in GR they are extremely simple objects, in modified theories their properties can be more complex, and in particular they can have hair. The presence of hair changes the geometry felt by test fields and it modifies the generation of GW signals. Moreover, black holes are the systems in which the presence of singularities is predicted by classical gravity with the highest level of confidence: this is not only true in GR, but also in most of the modified gravity theories formu- lated in classical terms as effective field theories.
    [Show full text]
  • UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations
    UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations Title Evaporating Wormholes Permalink https://escholarship.org/uc/item/6b60h7hc Author Kuttner, Amita Publication Date 2019 Supplemental Material https://escholarship.org/uc/item/6b60h7hc#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SANTA CRUZ EVAPORATING WORMHOLES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ASTRONOMY & ASTROPHYSICS by Amita Kuttner June 2019 The Dissertation of Amita Kuttner is approved: Professor Anthony Aguirre, Chair Professor Enrico Ramirez-Ruiz Professor Michael Dine Lori Kletzer Vice Provost and Dean of Graduate Studies Copyright c by Amita Kuttner 2019 Table of Contents List of Figuresv Abstract viii Dedication ix Acknowledgmentsx 1 Introduction1 1.1 Black Hole Evaporation.......................2 1.2 Wormhole Evaporation........................4 1.3 Our Goals...............................7 2 Static Black and Worm Holes8 2.1 Black Holes..............................8 2.1.1 Schwarzschild Metric.....................8 2.1.2 Conformal Diagram...................... 10 2.1.3 Defining a Black Hole..................... 15 2.1.4 The Einstein-Rosen Bridge.................. 16 2.1.5 Regularized Interior...................... 18 2.2 Wormholes............................... 20 2.2.1 Defining a Wormhole..................... 20 2.2.2 Ellis Metric.......................... 21 3 Matching Metrics 25 3.1 Motivation............................... 25 3.2 Mathematics.............................. 26 3.2.1 Null Match.......................... 27 3.2.2 Energy Conservation..................... 32 3.2.3 Timelike and Spacelike Matching.............. 34 iii 4 Primordial Structures 36 4.1 Black Hole Formation......................... 36 4.2 Inflation................................ 39 4.2.1 Bubble Universes....................... 41 4.3 Primordial Wormholes.......................
    [Show full text]
  • Perturbative Deflection Angles of Timelike Rays
    Perturbative deflection angles of timelike rays Yujie Duan,1, ∗ Weiyu Hu,1, ∗ Ke Huang,1, ∗ and Junji Jia1, 2 1School of Physics and Technology, Wuhan University, Wuhan, 430072, China 2MOE Key Laboratory of Artificial Micro- and Nano-structures, School of Physics and Technology, Wuhan University, Wuhan, 430072, Chinay (Dated: January 14, 2020) Geodesics of both lightrays and timelike particles with nonzero mass are deflected in a gravitational field. In this work we apply the perturbative method developed in Ref. [1] to compute the deflection angle of both null and timelike rays in the weak field limit for four spacetimes. We obtained the deflection angles for the Bardeen spacetime to the eleventh order of m=b where m is the ADM mass and b is the impact parameter, and for the Hayward, Janis-Newman-Winicour and Einstein-Born- Infeld spacetimes to the ninth, seventh and eleventh order respectively. The effect of the impact parameter b, velocity v and spacetime parameters on the deflection angle are analyzed in each of the four spacetimes. It is found that in general, the perturbative deflection angle depends on and only on the asymptotic behavior of the metric functions, and in an order-correlated way. Moreover, it is shown that although these deflection angles are calculated in the large b=m limit, their minimal valid b can be as small as a few m's as long as the order is high enough. At these impact parameters, the deflection angle itself is also found large. As velocity decreases, the deflection angle in all spacetime studied increases.
    [Show full text]
  • Traversable Wormholes, Regular Black Holes, and Black-Bounces
    Traversable Wormholes, Regular Black Holes, and Black-Bounces Alex Simpson VICTORIAUNIVERSITYOFWELLINGTON Te Whare Wananga¯ o te UpokooteIkaaM¯ aui¯ School of Mathematics and Statistics Te Kura Matai¯ Tatauranga A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Master of Science in Mathematics. Victoria University of Wellington 2019 i Abstract Various spacetime candidates for traversable wormholes, regular black holes, and ‘black-bounces’ are presented and thoroughly explored in the context of the gravitational theory of general relativity. All candidate space- times belong to the mathematically simple class of spherically symmet- ric geometries; the majority are static (time-independent as well as non- rotational), with a single dynamical (time-dependent) geometry explored. To the extent possible, the candidates are presented through the use of a global coordinate patch – some of the prior literature (especially con- cerning traversable wormholes) has often proposed coordinate systems for desirable solutions to the Einstein equations requiring a multi-patch atlas. The most interesting cases include the so-called ‘exponential metric’ – well-favoured by proponents of alternative theories of gravity but which actually has a standard classical interpretation, and the ‘black-bounce’ to traversable wormhole case – where a metric is explored which represents either a traversable wormhole or a regular black hole, depending on the value of the newly introduced scalar parameter a. This notion of ‘black- bounce’ is defined as the case where the spherical boundary of a regular black hole forces one to travel towards a one-way traversable ‘bounce’ into a future reincarnation of our own universe.
    [Show full text]
  • 1 Introduction
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 November 2020 Remarks on nonsingular models as Hayward and magnetized black hole with rational nonlinear electrodynamics Sergey Il'ich Kruglov 1 Department of Physics, University of Toronto, 60 St. Georges St., Toronto, ON M5S 1A7, Canada Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada Abstract A Hayward black hole and magnetically charged black hole based on rational nonlinear electrodynamics with the Lagrangian L = −F=(1+ 2βF)(F is a field invariant) are considered. It was shown that the metric function in both models possesses a de Sitter core without sin- gularities as r ! 0. The behavior of the Hawking temperature and the heat capacity in these models are similar. The phase transitions take place when the Hawking temperature has the maximum, and black holes are thermodynamically stable at some event horizon radii when the heat capacity is positive. We show that the source of gravity in the Hayward model is questionable. Keywords: magnetically charged black holes; nonlinear electrodynamics; Hawking temperature; heat capacity; phase transitions 1 Introduction Singularities inside Schwarzschild and Reisner −Nordstr¨omblack holes (BHs) are problems in General Relativity (GR). But singularities can be considered as nonphysical and due to classical GR. It is naturally to think that singu- larities should be avoided. One of successful regular models of BHs, avoiding singularities, was proposed by Hayward [1]. The Hayward metric function contains a length parameter l to smooth singularities. Solutions in the the- ory of GR coupled to nonlinear electrodynamics (NED) have been proposed 1E-mail: [email protected] 1 © 2020 by the author(s).
    [Show full text]
  • Modified Theories and Non-Singular Black Holes
    Physics Area { PhD course in Astroparticle Physics Doctoral Thesis Beyond General Relativity: Modified Theories and Non-Singular Black Holes Candidate: Advisor: Francesco Di Filippo Prof. Stefano Liberati Academic Year 2019 { 2020 ii iii Abstract Einstein's general relativity is an extremely elegant and successful theory. Recent obser- vations coming from the LIGO/VIRGO collaboration as well as from the Event Horizon Telescope give us the possibility to perform precision test of general relativity in regimes never tested before. Even though all the current observations are in perfect agreement with the predictions of general relativity, there are several reasons to study extensions of the theory. From the experimental point of view, we are forced to include a dark sector for the matter and energy content of the universe to explain the cosmological data. Whereas from a conceptual point of view, the theory is not perturbatively renormalizable, and it predicts the formation of spacetime singularities. This thesis studies possible modifications of general relativity both considering spe- cific theories of modified gravity and implementing a model independent approach. In the first part of the thesis, we study a specific class of modified theory of gravity which has the peculiarity of propagating the same number of degrees of freedom of general relativity. The existence of these theories apparently challenges the distinctive role of general relativity as the unique non-linear theory of massless spin-2 particles. However, we provide strong evidence that these theory are actually equivalent to general relativity in vacuum. In the second part of the thesis, we focus on the problem of black hole singularities which are unavoidably present in general relativity.
    [Show full text]
  • On the Effective Metric of a Planck Star
    On the Effective Metric of a Planck Star Tommaso De Lorenzo∗ 1,3, Costantino Pacilioy 2,3, Carlo Rovelli3, and Simone Speziale3 1Università di Pisa, Dipartimento di Fisica “Enrico Fermi”, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy 2SISSA, Via Bonomea 265, 34136 Trieste, Italy 3Aix Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France & Université de Toulon, CNRS, CPT, UMR 7332, 83957 La Garde, France. (Dated: March 11, 2015) Abstract. Spacetime metrics describing ‘non-singular’ black holes are commonly studied in the literature as effective modification to the Schwarzschild solution that mimic quantum gravity effects removing the central singularity. Here we point out that to be physically plausible, such metrics should also incorporate the 1-loop quantum corrections to the Newton potential and a non-trivial time delay between an observer at infinity and an observer in the regular center. We present a modification of the well-known Hayward metric that features these two properties. We discuss bounds on the maximal time delay imposed by conditions on the curvature, and the consequences for the weak energy condition, in general violated by the large transversal pressures introduced by the time delay. Introduction Most metrics in the literature, however, possess two characteristics which we find unphysical: firstly, Spacetime singularities are unavoidable in gravi- a clock in the regular center is not delayed with re- tational collapse, if classical general relativity is spect to a clock at infinity; secondly, they do not re- valid at all scales and the energy-momentum ten- produce the 1-loop quantum corrections computed sor of matter satisfies the classical energy condi- in [21] treating quantum general relativity as an ef- tions [1,2].
    [Show full text]
  • Primordial Regular Black Holes: Thermodynamics and Dark Matter
    Article Primordial Regular Black Holes: Thermodynamics and Dark Matter José Antonio de Freitas Pacheco Observatoire de la Côte d’Azur, Laboratoire Lagrange, 06304 Nice Cedex, France; [email protected]; Tel.: +33-492-003-182 Received: 2 March 2018; Accepted: 2 May 2018; Published: date Abstract: The possibility that dark matter particles could be constituted by extreme regular primordial black holes is discussed. Extreme black holes have zero surface temperature, and are not subjected to the Hawking evaporation process. Assuming that the common horizon radius of these black holes is fixed by the minimum distance that is derived from the Riemann invariant computed from loop quantum gravity, the masses of these non-singular stable black holes are of the order of the Planck mass. However, if they are formed just after inflation, during reheating, their initial masses are about six orders of magnitude higher. After a short period of growth by the accretion of relativistic matter, they evaporate until reaching the extreme solution. Only a fraction of 3.8 × 10−22 of relativistic matter is required to be converted into primordial black holes (PBHs) in order to explain the present abundance of dark matter particles. Keywords: regular black holes; thermodynamics of black holes; dark matter 1. Introduction The detection of gravitational waves emitted during the merger of two black holes [1,2] represents a robust demonstration of the reality of these objects. Previously, the study of the motion of several individual stars around Sgr A*, a radio source located in the galactic center, led to the conclusion that the orbits of those stars are controlled by the gravitation of a “black” object having a 6 mass of about 4 × 10 M [3].
    [Show full text]
  • Strong Deflection Gravitational Lensing by a Modified Hayward Black Hole
    Eur. Phys. J. C (2017) 77:272 DOI 10.1140/epjc/s10052-017-4850-5 Regular Article - Theoretical Physics Strong deflection gravitational lensing by a modified Hayward black hole Shan-Shan Zhao1,2,YiXie1,2,a 1 School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China 2 Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, Nanjing 210093, China Received: 8 January 2017 / Accepted: 20 April 2017 © The Author(s) 2017. This article is an open access publication Abstract A modified Hayward black hole is a nonsingu- Various models of static and spherically symmetric nonsin- lar black hole. It is proposed that it would form when the gular black holes are reviewed in [4,5] and rotating nonsin- pressure generated by quantum gravity can stop matter’s col- gular black holes were also studied [6]. Lots of work [7– lapse as the matter reaches the Planck density. Strong deflec- 21] in string theory and supergravity suggest that the sin- tion gravitational lensing occurring nearby its event horizon gularity in the black hole might be replaced with a horizon might provide some clues of these quantum effects in its sized “fuzzball”, whose nonsingular geometries are related central core. We investigate observables of the strong deflec- to microstates of the black hole, so that the information loss tion lensing, including angular separations, brightness dif- paradox might be evaded. ferences and time delays between its relativistic images, and A nonsingular black hole with a “Planck star” replacing we estimate their values for the supermassive black hole in the singularity was recently proposed [22].
    [Show full text]
  • Non-Singular Model of Magnetized Black Hole Based on Nonlinear Electrodynamics
    universe Article Non-Singular Model of Magnetized Black Hole Based on Nonlinear Electrodynamics Sergey I. Kruglov 1,2 1 Department of Physics, University of Toronto, 60 St. Georges St., Toronto, ON M5S 1A7, Canada; [email protected] 2 Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada Received: 15 October 2019; Accepted: 10 December 2019; Published: 13 December 2019 Abstract: A new modified Hayward metric of magnetically charged non-singular black hole spacetime in the framework of nonlinear electrodynamics is constructed. When the fundamental length introduced, characterising quantum gravity effects, vanishes, one comes to the general relativity coupled with the Bronnikov model of nonlinear electrodynamics. The metric can have one (an extreme) horizon, two horizons of black holes, or no horizons corresponding to the particle-like solution. Corrections to the Reissner–Nordström solution are found as the radius approaches infinity. As r ! 0 the metric has a de Sitter core showing the absence of singularities, the asymptotic of the Ricci and Kretschmann scalars are obtained and they are finite everywhere. The thermodynamics of black holes, by calculating the Hawking temperature and the heat capacity, is studied. It is demonstrated that phase transitions take place when the Hawking temperature possesses the maximum. Black holes are thermodynamically stable at some range of parameters. Keywords: modified Hayward metric; magnetically charged black hole; nonlinear electrodynamics; thermodynamics 1. Introduction It is well-known that General Relativity (GR) is ultraviolet (UV) incomplete. In addition, there is a problem of singularities in the classical Einstein theory of gravity.
    [Show full text]