Modified Theories and Non-Singular Black Holes

Total Page:16

File Type:pdf, Size:1020Kb

Modified Theories and Non-Singular Black Holes Physics Area { PhD course in Astroparticle Physics Doctoral Thesis Beyond General Relativity: Modified Theories and Non-Singular Black Holes Candidate: Advisor: Francesco Di Filippo Prof. Stefano Liberati Academic Year 2019 { 2020 ii iii Abstract Einstein's general relativity is an extremely elegant and successful theory. Recent obser- vations coming from the LIGO/VIRGO collaboration as well as from the Event Horizon Telescope give us the possibility to perform precision test of general relativity in regimes never tested before. Even though all the current observations are in perfect agreement with the predictions of general relativity, there are several reasons to study extensions of the theory. From the experimental point of view, we are forced to include a dark sector for the matter and energy content of the universe to explain the cosmological data. Whereas from a conceptual point of view, the theory is not perturbatively renormalizable, and it predicts the formation of spacetime singularities. This thesis studies possible modifications of general relativity both considering spe- cific theories of modified gravity and implementing a model independent approach. In the first part of the thesis, we study a specific class of modified theory of gravity which has the peculiarity of propagating the same number of degrees of freedom of general relativity. The existence of these theories apparently challenges the distinctive role of general relativity as the unique non-linear theory of massless spin-2 particles. However, we provide strong evidence that these theory are actually equivalent to general relativity in vacuum. In the second part of the thesis, we focus on the problem of black hole singularities which are unavoidably present in general relativity. However, it is reasonable to assume that there will be a mechanism preventing their formation in a full theory of quantum gravity. Without specifying any theory of quantum gravity or the nature of such mech- anism, simply assuming a minimal set of kinematical constraints, we classify and study the properties of non-singular spacetime with a trapping horizon. Contrary to what one might expect, the set of regular geometries that arises is remarkably limited. Further- more we show that it is very difficult to construct a self consistent geometry without any long range effect. This give us further motivation to study the phenomenology of non-singular black holes. To this end, we provide a set of parameters describing the deviations from classical black holes, and we review the possible observational channels that can measure or constrain them. iv Contents Abstract iii Publication list vii Introduction1 1 Minimally modified theories of gravity5 1.1 A class of Hamiltonian theories . .6 1.1.1 Poincar´ealgebra . .8 1.2 A class of Lagrangian theories . .9 1.2.1 Linearized field equations . 10 1.2.2 Propagator . 12 1.2.3 On-shell 3-point amplitudes . 13 1.2.4 Interlude, the most general theories compatible with these results 14 1.3 Higher orders in the perturbative expansion . 15 1.4 Genuinely different theories . 20 1.4.1 Theories with no gravitons . 20 1.4.2 Theories with a modified dispersion relation for gravitons . 21 1.5 Coupling to matter . 23 1.5.1 Algebra of constraints for minimal coupling . 23 1.6 Conclusions . 26 2 Causal hierarchy beyond general relativity. 29 2.1 The standard general relativity causal hierarchy . 29 2.2 Multi-metric frameworks . 31 2.3 Infinite signal velocities . 33 2.3.1 Hypersurface orthogonality of the aether . 34 2.3.2 Uniqueness of the aether field . 35 2.3.3 Universal horizons . 36 2.4 Conclusions . 38 v vi CONTENTS 3 Geodesically complete black holes 39 3.1 Avoiding singularities: Beyond Penrose's theorem . 40 3.2 Geometric setting . 42 3.3 Taxonomy of non-singular geometries . 44 3.4 Conclusions . 58 4 On the viability of non-singular black holes 61 4.1 Evanescent horizons and everlasting horizons . 61 4.1.1 Time independent geometry . 62 4.1.2 Instability of the inner horizon . 64 4.1.3 Time dependent scenario . 68 4.1.4 (Ir)relevance of the cosmological constant . 70 4.2 One way and asymptotic hidden wormholes . 71 4.2.1 One way hidden wormhole . 71 4.2.2 Asymptotic hidden wormhole . 72 4.3 Conclusions . 73 5 Phenomenology of non-singular black holes 75 5.1 A taxonomy of proposals . 75 5.1.1 Regular black holes . 75 5.1.2 Bouncing geometries . 76 5.1.3 Quasi-black holes . 78 5.1.4 Wormholes . 80 5.1.5 From local to global classification on geometries. 81 5.2 Phenomenological parametrization . 82 5.3 Electromagnetic waves . 84 5.3.1 Orbiting stars . 84 5.3.2 Infalling matter close to the gravitational radius . 86 5.3.3 Accretion disks around supermassive black holes . 90 5.3.4 UCOs shadows . 98 5.3.5 Bursts . 99 5.4 Gravitational waves . 100 5.4.1 Coalescence of compact objects . 100 5.4.2 Echoes in the late-time ringdown . 102 5.5 Conclusions . 106 General conclusions and outlook 109 A Extracting the Poincar´ealgebra 113 B Brief review of on-shell techniques 117 C Regularity conditions for vanishing radius 123 D Evaporation time 127 Bibliography 135 Publication list This thesis is based on the following list of publications. P1 R. Carballo Rubio, F. Di Filippo, S. Liberati. Minimally modified theories of gravity: a playground for testing the uniqueness of general relativity. JCAP 06 (2018), 026, (2018), arXiv:1802.02537. P2 R. Carballo Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser. On the viability of regular black holes. JHEP 07 (2018), 023, arXiv:1805.02675. P3 R. Carballo Rubio, F. Di Filippo, S. Liberati, M. Visser. Phenomenological aspects of black holes beyond general relativity. Phys. Rev. D 98 (2018) no.12, 124009, arXiv:1809.08238. P4 R. Carballo Rubio, F. Di Filippo, N. Moynihan. Taming higher-derivative interactions and bootstrapping gravity with soft theorems. JCAP 10 (2019), 030, arXiv:1811.08192. P5 R. Carballo Rubio, F. Di Filippo, S. Liberati, M. Visser. Opening the Pandora's box at the core of black holes. Class. Quant. Grav. 37 (2020) no.14, 145005, arXiv:1908.03261. P6 R. Carballo Rubio, F. Di Filippo, S. Liberati, M. Visser. Geodesically complete black holes. Phys. Rev. D 101 (2020), 084047, arXiv:1911.11200. P7 R. Carballo Rubio, F. Di Filippo, S. Liberati, M. Visser. Causal hierarchy in modified gravity. Preprint, arXiv:2005.08533. vii viii Introduction General relativity represents a very elegant theory from a conceptual point of view and a very successful one from the experimental side. Thanks to the recent observations coming from the LIGO/VIRGO collaboration [1,2,3,4,5,6] as well as from the Event Horizon Telescope [7,8,9, 10, 11, 12], we have the possibility to perform precision test of general relativity in regimes never tested before. Remarkably, the outcomes of all these observations are in perfect agreement with the prediction of general relativity. Regardless of the phenomenological success, there are good reasons to study modi- fications of the theory. From an experimental point of view, cosmological data cannot be explained within general relativity only with the matter and the energy that we observe. The most simple explanation is given by the ΛCDM model where one adds two addiional \dark" cosmological fluids: a pressurless dust and a cosmological con- stant, avoiding any modification of the gravitational interaction. Nonetheless, it is also possible to explain the cosmological data without introducing dark matter and dark energy, but by modifying general relativity. This possibility is reinforced by the fact the ΛCDM is not free from problems. For instance, there is a naturalness problem for the value of the cosmological constant which is very different from the one which can be naively estimated [13] and different measurements of the Hubble constant at different redshifts lead to values in tension with each other [14]. Even stronger reasons to modify general relativity come from theoretical arguments. General relativity predicts the formations of spacetime singularities. In 1939 Oppen- heimer and Snyder studied the gravitational collapse of a spherically symmetric ball of pressureless dust [15], obtaining that the endpoint of the collapse is a singular black hole. However, it was widely believed that the formation of the singularity was simply due to the highly idealized scenario and that a realistic collapse would not end up with the formation of a black hole. In fact, something similar happens in Newtonian gravity, where a spherically symmetric collapse produces a region of infinite density , but an ar- bitrary small amount of angular momentum will prevent the formation of such a region. While preliminary results appeared to confirm this possible resolution of singularities [16], Penrose's 1965 singularity theorem [17] proved them as the natural end points of general relativity. This theorem states that if a trapped region is formed, the spacetime cannot be geodesically complete, implying that there must exist at least one geodesic ending in a Cauchy horizon or in a singularity. If we assume that the spacetime is globally hyperbolic, there cannot be any Cauchy horizon, and thus a singularity has 1 2 to form. Subsequent results extended the theorem to cosmological scenarios [18] and got rid of the global hyperbolicity assumption [19] showing that in general relativity singularities are going to be unavoidably present both as an endpoint in gravitational collapse and in cosmology. A possible approach to accept the presence of singularities in general relativity, is to assume that while the theory will unavoidably produce them, it will also always hide them as well. The precise mathematical formulation of this concept is given by the cosmic censorship conjecture [20].
Recommended publications
  • Universal Thermodynamics in the Context of Dynamical Black Hole
    universe Article Universal Thermodynamics in the Context of Dynamical Black Hole Sudipto Bhattacharjee and Subenoy Chakraborty * Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal, India; [email protected] * Correspondence: [email protected] Received: 27 April 2018; Accepted: 22 June 2018; Published: 1 July 2018 Abstract: The present work is a brief review of the development of dynamical black holes from the geometric point view. Furthermore, in this context, universal thermodynamics in the FLRW model has been analyzed using the notion of the Kodama vector. Finally, some general conclusions have been drawn. Keywords: dynamical black hole; trapped surfaces; universal thermodynamics; unified first law 1. Introduction A black hole is a region of space-time from which all future directed null geodesics fail to reach the future null infinity I+. More specifically, the black hole region B of the space-time manifold M is the set of all events P that do not belong to the causal past of future null infinity, i.e., B = M − J−(I+). (1) Here, J−(I+) denotes the causal past of I+, i.e., it is the set of all points that causally precede I+. The boundary of the black hole region is termed as the event horizon (H), H = ¶B = ¶(J−(I+)). (2) A cross-section of the horizon is a 2D surface H(S) obtained by intersecting the event horizon with a space-like hypersurface S. As event the horizon is a causal boundary, it must be a null hypersurface generated by null geodesics that have no future end points. In the black hole region, there are trapped surfaces that are closed 2-surfaces (S) such that both ingoing and outgoing congruences of null geodesics are orthogonal to S, and the expansion scalar is negative everywhere on S.
    [Show full text]
  • The Revival of White Holes As Small Bangs
    The Revival of White Holes as Small Bangs Alon Retter1 & Shlomo Heller2 1 86a/6 Hamacabim St., P.O. Box 4264, Shoham, 60850, Israel, [email protected] 2 Zuqim, 86833, Israel, [email protected] Abstract Black holes are extremely dense and compact objects from which light cannot escape. There is an overall consensus that black holes exist and many astronomical objects are identified with black holes. White holes were understood as the exact time reversal of black holes, therefore they should continuously throw away material. It is accepted, however, that a persistent ejection of mass leads to gravitational pressure, the formation of a black hole and thus to the "death of while holes". So far, no astronomical source has been successfully tagged a white hole. The only known white hole is the Big Bang which was instantaneous rather than continuous or long-lasting. We thus suggest that the emergence of a white hole, which we name a 'Small Bang', is spontaneous – all the matter is ejected at a single pulse. Unlike black holes, white holes cannot be continuously observed rather their effect can only be detected around the event itself. Gamma ray bursts are the most energetic explosions in the universe. Long γ-ray bursts were connected with supernova eruptions. There is a new group of γ- ray bursts, which are relatively close to Earth, but surprisingly lack any supernova emission. We propose identifying these bursts with white holes. White holes seem like the best explanation of γ- ray bursts that appear in voids. The random appearance nature of white holes can also explain the asymmetry required to form structures in the early universe.
    [Show full text]
  • Expanding Space, Quasars and St. Augustine's Fireworks
    Universe 2015, 1, 307-356; doi:10.3390/universe1030307 OPEN ACCESS universe ISSN 2218-1997 www.mdpi.com/journal/universe Article Expanding Space, Quasars and St. Augustine’s Fireworks Olga I. Chashchina 1;2 and Zurab K. Silagadze 2;3;* 1 École Polytechnique, 91128 Palaiseau, France; E-Mail: [email protected] 2 Department of physics, Novosibirsk State University, Novosibirsk 630 090, Russia 3 Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630 090, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]. Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 5 May 2015 / Accepted: 14 September 2015 / Published: 1 October 2015 Abstract: An attempt is made to explain time non-dilation allegedly observed in quasar light curves. The explanation is based on the assumption that quasar black holes are, in some sense, foreign for our Friedmann-Robertson-Walker universe and do not participate in the Hubble flow. Although at first sight such a weird explanation requires unreasonably fine-tuned Big Bang initial conditions, we find a natural justification for it using the Milne cosmological model as an inspiration. Keywords: quasar light curves; expanding space; Milne cosmological model; Hubble flow; St. Augustine’s objects PACS classifications: 98.80.-k, 98.54.-h You’d think capricious Hebe, feeding the eagle of Zeus, had raised a thunder-foaming goblet, unable to restrain her mirth, and tipped it on the earth. F.I.Tyutchev. A Spring Storm, 1828. Translated by F.Jude [1]. 1. Introduction “Quasar light curves do not show the effects of time dilation”—this result of the paper [2] seems incredible.
    [Show full text]
  • Active Galactic Nuclei: a Brief Introduction
    Active Galactic Nuclei: a brief introduction Manel Errando Washington University in St. Louis The discovery of quasars 3C 273: The first AGN z=0.158 2 <latexit sha1_base64="4D0JDPO4VKf1BWj0/SwyHGTHSAM=">AAACOXicbVDLSgMxFM34tr6qLt0Ei+BC64wK6kIoPtCNUMU+oNOWTJq2wWRmSO4IZZjfcuNfuBPcuFDErT9g+hC09UC4h3PvJeceLxRcg20/W2PjE5NT0zOzqbn5hcWl9PJKUQeRoqxAAxGoskc0E9xnBeAgWDlUjEhPsJJ3d9rtl+6Z0jzwb6ETsqokLZ83OSVgpHo6754xAQSf111JoK1kTChN8DG+uJI7N6buYRe4ZBo7di129hJ362ew5NJGAFjjfm3V4m0nSerpjJ21e8CjxBmQDBogX08/uY2ARpL5QAXRuuLYIVRjooBTwZKUG2kWEnpHWqxiqE+MmWrcuzzBG0Zp4GagzPMB99TfGzGRWnekZya7rvVwryv+16tE0DysxtwPI2A+7X/UjASGAHdjxA2uGAXRMYRQxY1XTNtEEQom7JQJwRk+eZQUd7POfvboej+TOxnEMYPW0DraRA46QDl0ifKogCh6QC/oDb1bj9ar9WF99kfHrMHOKvoD6+sbuhSrIw==</latexit> <latexit sha1_base64="H7Rv+ZHksM7/70841dw/vasasCQ=">AAACQHicbVDLSgMxFM34tr6qLt0Ei+BCy0TEx0IoPsBlBWuFTlsyaVqDSWZI7ghlmE9z4ye4c+3GhSJuXZmxFXxdCDk599zk5ISxFBZ8/8EbGR0bn5icmi7MzM7NLxQXly5slBjGayySkbkMqeVSaF4DAZJfxoZTFUpeD6+P8n79hhsrIn0O/Zg3Fe1p0RWMgqPaxXpwzCVQfNIOFIUro1KdMJnhA+yXfX832FCsteVOOzgAobjFxG+lhGTBxpe+HrBOBNjiwd5rpZsky9rFUn5BXvgvIENQQsOqtov3QSdiieIamKTWNogfQzOlBgSTPCsEieUxZde0xxsOaurMNNPPADK85pgO7kbGLQ34k/0+kVJlbV+FTpm7tr97Oflfr5FAd6+ZCh0nwDUbPNRNJIYI52nijjCcgew7QJkRzitmV9RQBi7zgguB/P7yX3CxVSbb5f2z7VLlcBjHFFpBq2gdEbSLKugUVVENMXSLHtEzevHuvCfv1XsbSEe84cwy+lHe+wdR361Q</latexit> The power source of quasars • The luminosity (L) of quasars, i.e. how bright they are, can be as high as Lquasar ~ 1012 Lsun ~ 1040 W. • The energy source of quasars is accretion power: - Nuclear fusion: 2 11 1 ∆E =0.007 mc =6 10 W s g−
    [Show full text]
  • Searching for Evaporating Primordial Black Holes Using Fermi Gamma Ray Telescope Data
    Searching for Evaporating Primordial Black Holes using Fermi Gamma Ray Telescope Data Jagdev Bains CID 00552650 Horns Group, DESY A thesis submitted for the degree of MSci May 2011 Abstract All confirmed photon event data (≥ 100MeV) recorded by the Fermi Gamma Ray Telescope's (FGRT's) Large Area Telescope (LAT) was used to attempt to locate photons emitted by evaporating primordial black holes (PBHs) via Hawking radiation. An 'event' is a single photon recorded by the LAT. HEALPix was used to group photons spatially into pixels with unique iden- tification numbers, and all events within these pixels were sorted in time. The time interval between subsequent photons in each pixel was calculated and a histogram made for each pixel. The expected time distribution of events was compared with the measured for each pixel to identify any can- didates for further analysis; if the expected varied significantly with the measured at the smallest time intervals (26µs − 10s). Several pixels were found that met the criteria for further analysis, however they were all found to include known high energy photon sources. No pixels were found with extra photons at short time intervals that could not be attributed to gamma- ray bursts (GRBs) or known sources. A limit was calculated on the range at which the LAT could detect a PBH burst, between 16.69 and 289.16pc. Alle photonischen (≥ 100MeV) und vom Large Area Telescope (LAT) des Fermi Gamma Ray Telescope's (FGRT's) dokumentierten, bestaetigten Ereignisse wurden benutzt, um Photonen zu lokalisieren, die durch sich verfluechti- gende primordiale schwarze Loecher (PBHs) mit Hilfe der Hawking Strahlung emittiert wurden.
    [Show full text]
  • Arxiv:1703.04138V2 [Gr-Qc] 26 May 2017
    Classical collapse to black holes and quantum bounces: A review Daniele Malafarina1, ∗ 1Department of Physics, Nazarbayev University, 53 Kabanbay Batyr avenue, 010000 Astana, Kazakhstan In the last four decades different programs have been carried out aiming at understanding the final fate of gravitational collapse of massive bodies once some prescriptions for the behaviour of gravity in the strong field regime are provided. The general picture arising from most of these scenarios is that the classical singularity at the end of collapse is replaced by a bounce. The most striking consequence of the bounce is that the black hole horizon may live for only a finite time. The possible implications for astrophysics are important since, if these models capture the essence of the collapse of a massive star, an observable signature of quantum gravity may be hiding in astrophysical phenomena. One intriguing idea that is implied by these models is the possible existence of exotic compact objects, of high density and finite size, that may not be covered by an horizon. The present article outlines the main features of these collapse models and some of the most relevant open problems. The aim is to provide a comprehensive (as much as possible) overview of the current status of the field from the point of view of astrophysics. As a little extra, a new toy model for collapse leading to the formation of a quasi static compact object is presented. PACS numbers: Keywords: Gravitational collapse, black holes, singularities, quantum gravity, white holes I. INTRODUCTION Our present understanding of the universe and its evolution implies the existence of black holes, bodies whose masses are packed in such small volumes that not even light can escape.
    [Show full text]
  • Undergraduate Thesis on Supermassive Black Holes
    Into the Void: Mass Function of Supermassive Black Holes in the local universe A Thesis Presented to The Division of Mathematics and Natural Sciences Reed College In Partial Fulfillment of the Requirements for the Degree Bachelor of Arts Farhanul Hasan May 2018 Approved for the Division (Physics) Alison Crocker Acknowledgements Writing a thesis is a long and arduous process. There were times when it seemed further from my reach than the galaxies I studied. It’s with great relief and pride that I realize I made it this far and didn’t let it overpower me at the end. I have so many people to thank in very little space, and so much to be grateful for. Alison, you were more than a phenomenal thesis adviser, you inspired me to believe that Astro is cool. Your calm helped me stop freaking out at the end of February, when I had virtually no work to show for, and a back that ached with every step I took. Thank you for pushing me forward. Working with you in two different research projects were very enriching experiences, and I appreciate you not giving up on me, even after all the times I blanked on how to proceed forward. Thank you Johnny, for being so appreciative of my work, despite me bringing in a thesis that I myself barely understood when I brought it to your table. I was overjoyed when I heard you wanted to be on my thesis board! Thanks to Reed, for being the quirky, intellectual community that it prides itself on being.
    [Show full text]
  • Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 Xxneutron-Star Binaries: X-Ray Bursters
    Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 XXNeutron-Star Binaries: X-ray bursters [Look at the slides and the pictures in your book, but I won’t test you on this in detail, and we may skip altogether in class.] 22.4 Gamma-Ray Bursts 22.5 Black Holes 22.6 XXEinstein’s Theories of Relativity Special Relativity 22.7 Space Travel Near Black Holes 22.8 Observational Evidence for Black Holes Tests of General Relativity Gravity Waves: A New Window on the Universe Neutron Stars and Pulsars (sec. 22.1, 2 in textbook) 22.1 Neutron Stars According to models for stellar explosions: After a carbon detonation supernova (white dwarf in binary), little or nothing remains of the original star. After a core collapse supernova, part of the core may survive. It is very dense—as dense as an atomic nucleus—and is called a neutron star. [Recall that during core collapse the iron core (ashes of previous fusion reactions) is disintegrated into protons and neutrons, the protons combine with the surrounding electrons to make more neutrons, so the core becomes pure neutron matter. Because of this, core collapse can be halted if the core’s mass is between 1.4 (the Chandrasekhar limit) and about 3-4 solar masses, by neutron degeneracy.] What do you get if the core mass is less than 1.4 solar masses? Greater than 3-4 solar masses? 22.1 Neutron Stars Neutron stars, although they have 1–3 solar masses, are so dense that they are very small.
    [Show full text]
  • Accretion and Evaporation of Modified Hayward Black Hole
    Eur. Phys. J. C (2015) 75:129 DOI 10.1140/epjc/s10052-015-3349-1 Regular Article - Theoretical Physics Accretion and evaporation of modified Hayward black hole Ujjal Debnatha,b,c Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India Received: 18 February 2015 / Accepted: 3 March 2015 / Published online: 20 March 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com Abstract We assume the most general static spherically isfies w<−1) [14]. Till now a lot of dark-energy models symmetric black hole metric. The accretion of any general have been considered. A brief review of dark-energy models kind of fluid flow around the black hole is investigated. The is found in Ref. [15]. accretion of the fluid flow around the modified Hayward A condensed object (e.g. a neutron star, a black hole, etc.) black hole is analyzed, and we then calculate the critical surrounded by a fluid can capture particles of the fluid that point, the fluid’s four-velocity, and the velocity of sound dur- pass within a certain distance from the condensed object. This ing the accretion process. Also the nature of the dynamical phenomenon is termed accretion of the fluid by condensed mass of the black hole during accretion of the fluid flow, objects. In Newtonian theory of gravity, the problem of accre- taking into consideration Hawking radiation from the black tion of matter onto the compact object was first formulated by hole, i.e., evaporation of the black hole, is analyzed.
    [Show full text]
  • Arxiv:1712.03730V2 [Gr-Qc] 19 Dec 2017
    NON-POLYNOMIAL LAGRANGIAN APPROACH TO REGULAR BLACK HOLES Aimeric Colléaux,∗ Stefano Chinaglia,† Sergio Zerbini‡ Dipartimento di Fisica, Università di Trento and TIFPA-INFN Via Sommarive 14, 38123 Trento, Italia August 14, 2021 Abstract We present a review on Lagrangian models admitting spherically symmetric regular black holes, and cosmological bounce solutions. Non-linear electrodynamics, non-polynomial gravity, and fluid approaches are explained in details. They consist respectively in a gauge invariant generalization of the Maxwell Lagrangian, in modifications of the Einstein-Hilbert action via non-polynomial curvature invariants, and finally in the reconstruction of density profiles able to cure the central singularity of black holes. The non-polynomial gravity curvature invariants have the special property to be second order and polynomial in the metric field, in spherically symmetric spacetimes. Along the way, other models and results are discussed, and some general properties that regular black holes should satisfy are mentioned. A covariant Sakharov criterion for the absence of singularities in dynamical spherically symmetric spacetimes is also proposed and checked for some examples of such regular metric fields. Keywords: Regular Black Holes; Non-polynomial gravity; Non-linear Electrodynamics; Fluid approaches; Covariant Sakharov Criterion; Cosmological bounce. Contents Introduction 2 arXiv:1712.03730v2 [gr-qc] 19 Dec 2017 1 Non Linear Electrodynamics 5 1.1 Reconstruction .................................. ..... 6 ∗e-mail: [email protected] †e-mail: [email protected] ‡e-mail:[email protected] 1 2 Non-polynomial gravity 8 2.1 Cotton tensor decomposition : order-0 curvaturetensor .. .. .. .. .. .. .. 9 2.2 Action.......................................... .. 9 2.3 Covariant 2-dimensionalEquationsofmotion . 11 2.4 Vacuum solutions : Rational regular black holes .
    [Show full text]
  • Arxiv:2105.11481V1 [Astro-Ph.CO] 24 May 2021
    Ultrahigh-energy Gamma Rays and Gravitational Waves from Primordial Exotic Stellar Bubbles Yi-Fu Cai,1, 2, 3, ∗ Chao Chen,1, 2, 3, y Qianhang Ding,4, 5, z and Yi Wang4, 5, x 1Department of Astronomy, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China 2School of Astronomy and Space Science, University of Science and Technology of China, Hefei, Anhui 230026, China 3CAS Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Hefei, Anhui 230026, China 4Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R.China 5Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R.China We put forward a novel class of exotic celestial objects that can be produced through phase transitions occurred in the primordial Universe. These objects appear as bubbles of stellar sizes and can be dominated by primordial black holes (PBHs). We report that, due to the processes of Hawking radiation and binary evolution of PBHs inside these stellar bubbles, both electromagnetic and gravitational radiations can be emitted that are featured on the gamma-ray spectra and stochastic gravitational waves (GWs). Our results reveal that, depending on the mass distribution, the exotic stellar bubbles consisting of PBHs provide not only a decent fit for the ultrahigh-energy gamma-ray spectrum reported by the recent LHAASO experiment, but also predict GW signals that are expected to be tested by the forthcoming GW surveys.
    [Show full text]
  • Primordial Black Holes from Thermal Inflation
    IMPERIAL/TP/2019/TM/01 KCL-PH-TH/2019-33 Primordial Black Holes from Thermal Inflation Konstantinos Dimopoulos,a Tommi Markkanen,b;c Antonio Racioppic and Ville Vaskonend aConsortium for Fundamental Physics, Physics Department, Lancaster University, Lancaster LA1 4YB, UK bDepartment of Physics, Imperial College London, Blackett Laboratory, London, SW7 2AZ, UK cNational Institute of Chemical Physics and Biophysics, R¨avala 10, 10143 Tallinn, Estonia dPhysics Department, King's College London, London WC2R 2LS, UK E-mail: [email protected], [email protected], tommi.markkanen@kbfi.ee, antonio.racioppi@kbfi.ee, [email protected] Abstract. We present a novel mechanism for the production of primordial black holes (PBHs). The mechanism is based on a period of thermal inflation followed by fast-roll inflation due to tachyonic mass of order the Hubble scale. Large perturbations are generated at the end of the thermal inflation as the thermal inflaton potential turns from convex to concave. These perturbations can lead to copious production of PBHs when the relevant scales re-enter horizon. We show that such PBHs can naturally account for the observed dark matter in the Universe when the mass of the thermal inflaton is about 106 GeV and its coupling to the thermal bath preexisting the late inflation is of order unity. We consider also the possibility of forming the seeds of the supermassive black holes. In this case we find that the mass of the thermal inflaton is about 1 GeV, but its couplings have to be very small, ∼ 10−7. Finally we study a concrete realisation of our mechanism through a running mass model.
    [Show full text]