Permafrost and Related Engineering Problems in Alaska

Total Page:16

File Type:pdf, Size:1020Kb

Permafrost and Related Engineering Problems in Alaska Permafrost and Related Engineering Problems in Alaska GEOLOGICAL SURVEY PROFESSIONAL PAPER 678 Permafrost and Related Engineering Problems in Alaska By OSCAR J. FERRIANS, JR., REUBEN KACHADOORIAN, and GORDON W. GREENE GEOLOGICAL SURVEY PROFESSIONAL PAPER 678 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 76-602920 First printing 1969 Second printing 1970 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 55 cents (paper cover) CONTENTS I 'age Abstract- ____ _________________________ 1 Engineering geology Continued Introduction. _ ________________________ 1 Engineering problems ____________________ 15 Permafrost- __ ________________________ 4 Thawing of permafrost ________________ 15 Definitions ________________________ 4 Frost heaving- _______________---__-- 17 Origin and thermal regime _________________ 5 Frost heaving of piles __________________ 17 Areal distribution and thickness ______________ 6 Specific structure- _______________------_ 17 Related geomorphic features ___________________ 8 Railroads- _________________________ 18 Polygonal ground- ______________________ 8 Highways and roads_ __________________ 21 Stone nets_ ___________________________ 8 Airfields ____^_____________________ 28 Solif luction_ __________________________ 9 Buildings- _ ________________________ 29 Thaw or thermokarst pits __________________ 12 Dams ____________________________ 32 Thaw lakes- __________________________ 12 Telephone and power transmission lines ______ 33 Beaded drainage ________________________ 12 Pipelines __________________________ 33 Pingos_ _ ____________________________ 12 Utilidors __________________________ 34 Muck deposits _________________________ 12 Icings- ______________________________ 34 Summary of geomorphic features- ____________ 14 Conclusions _____________________________ 36 Engineering geology-_______________________ 14 References cited _________________________ 37 ILLUSTRATIONS Page FIGURE 1. Map showing extent of permafrost zones in Northern Hemisphere ____________________________ 2 2. Map showing distribution of permafrost in Alaska- _____________________________________ 3 3. Block diagram showing where taliks can occur in relation to the active layer, suprapermafrost zone, permafrost table, and permafrost- ______________________________________________ 4 4. Diagrammatic sketch showing the effect of surface features on the distribution of permafrost in the con­ tinuous permafrost zone_ ____________________________________________________ 6 5. Diagram showing relation of amplitude of ground-surface temperature fluctuations to amount of thawing- _ _ 6 6. Diagrammatic sketch showing the distribution of permafrost in the discontinuous permafrost zone, Fairbanks area_ ___________________________________________________________ 7 7. Aerial photograph of coastal plain near Barrow, showing polygonal markings on ground surface caused by underlying ice-wedge polygons ______________________________________________ 8 8. Aerial photograph showing polygonal markings on ground surface (caused by ice-wedge polygons) in the vicinity of Meade River_ ____________________________________________________ 9 9. Photograph of ice wedge (ground ice) in permafrost exposed by placer mining near Livengood_ ________ 10 10. Aerial photograph of thermokarst mounds near Fairbanks- _________________--__----____--__ 11 11-15. Photographs of 11. Thermokarst mounds near Fairbanks-_________________________________________ 11 12. Sorted stone circles caused by frost action in Alaska Range _ __________________________ 11 13. Large mass of ground ice in silt bluff near Fairbanks- ______________________________ 12 14. Thaw or thermokarst pit near Fairbanks ________________________________________ 13 15. Shoreline of a thaw lake about 40 miles northwest of Glennallen ________________________ 13 16. Aerial photograph of pingo in Yukon-Tanana Upland- _____________________-___--------__ 13 17. Diagram showing effect of gravel fill upon thermal regime. ________________________________ 16 18. Map showing location of transportation routes in Alaska ___________________-_-_____---_--- 19 19. Photograph of differential subsidence of roadbed along the Murphy Dome Spur of The Alaska Railroad caused by thawing permafrost-_____________________________________ __________ 20 in IV CONTENTS Page FIGURE 20. Photograph of differential subsidence of roadbed of Copper River and Northwestern Railway-_ ________ 21 21. Map of the Moody area on The Alaska Railroad showing landslides and slumps caused by thawing of permafrost and remedial measures taken to combat them_ ______________________________ 22 22-27. Photographs of 22. Landslide area at mile 353.5, The Alaska Railroad- _________________________________ 23 23. Polygonal ground in permafrost exposed by removal of vegetation by a highway crew_ _________ 24 24. Thawed lake sediments flowing around blade of bulldozer- ___________________________ 25 25. Gravel road near Umiat showing severe differential subsidence caused by thawing of ice-wedge polygons in permafrost________________________________________________ 26 26. Slump block of fine-grained highway fill material near mile 113 on the Richardson Highway. _____ 27 27. Gully along edge of road caused by surface drainage thawing the permafrost in loess deposits- _ _ _ _ 28 28. Oblique aerial photograph of Chariot Site, northwestern Alaska- ____________________________ 29 29. Oblique photograph of tractor trail near Canning River, North Slope __________________________ 30 30. Photograph of frost-heaved piling of bridge ___________________________________________ 31 31. Geologic sketch of foundation conditions of frost-heaved bridge- _____________________________ 31 32-36. Photographs of 32. Frost-heaved steel-pile bridge- ______________________________________________ 32 33. Roadhouse, mile 278.5, Richardson Highway- _____________________________________ 33 34. The schoolhouse at Glennallen ______________________________________________ 34 35. Fracture due to frost heaving of 4-inch concrete foundation of apartment house, Fairbanks- _ _ _ _ _ 35 36. Utilidor under construction at Fort Wainwright __________________________________ 35 TABLES Page TABLE 1. Mean annual temperature and precipitation data from representative stations in Alaska- ____________ 7 2. Common topographic features that indicate ground conditions in arctic and near arctic regions- ________ 14 3. Hypothetical example of seasonal frost penetration into silt in central Alaska and possible upward push on 40-inch-perimeter pile (ground temperature constant) _______________________________ 17 4. Comparison of construction costs between permafrost and permafrost-free areas of the highway between Rex and Lignite, Alaska- ____________________________________________________ 22 PERMAFROST AND RELATED ENGINEERING PROBLEMS IN ALASKA By OSCAR J. FERRIANS, JR., REUBEN KACHADOORIAN, and GORDON W. GREENE ABSTRACT this remote and presently inaccessible region. Pre­ Permafrost, or perennially frozen ground, is a wide­ paratory work is under way for the construction of an spread natural phenomenon. It underlies approxi- 800-mile-long pipeline extending from the oil fields nately 20 percent of the land area of the world. The to Valdez, a year-round seaport. A winter road >ermaf rost region of Alaska, which includes 85 percent connecting Fairbanks with Sagwon on the Arctic >f the State, is characterized by a variety of perma- North Slope has been completed. These major engi­ 'rost-related geomorphic features including patterned neering activities are just a part of the overall con­ ground, pingos, thaw lakes, beaded drainage, thaw or struction effort that will take place in northern Alaska thermokarst pits, and muck deposits. Known perma­ because of the recent oil discovery and because of frost thickness ranges from about 1,300 feet near potential future discoveries of other natural resources. Barrow in northern Alaska to less than a foot at the All this activity requires an understanding of the southern margin of the permafrost region. The dis­ arctic environment, to establish sound cost-saving tribution of permafrost is controlled by climatic, engineering procedures and to preserve the natural geologic, hydrologic, topographic, and botanic factors. environment insofar as possible. In most areas The extensive permafrost region of Alaska poses where roads or buildings are constructed on perma­ special engineering problems for the design, construc­ frost, the procedures that cost the least in the long tion, and maintenance of all types of structures. Lack run are those that disturb the natural environment of knowledge about permafrost has resulted in tre­ the least, and therefore, are conservation oriented. mendous maintenance costs and even in relocation or Generally, the initial capital investment is greater abandonment of highways, railroads, and other struc­ when correct procedures are used; however, mainte­ tures. Because of the unique geologic-environmental nance cost is considerably less. If improper procedures conditions that exist in permafrost areas, special are used, expensive maintenance cost far exceeds the engineering procedures should be used, not only to additional expense of the initial investment, and in minimize disruption of the natural environment, but some cases, structures
Recommended publications
  • A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used As a Training Tool
    A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Item Type Report Authors Darrow, Margaret M.; Huang, Scott L.; Obermiller, Kyle Publisher Alaska University Transportation Center Download date 26/09/2021 04:55:55 Link to Item http://hdl.handle.net/11122/7546 A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Final Report December 2011 Prepared by PI: Margaret M. Darrow, Ph.D. Co-PI: Scott L. Huang, Ph.D. Co-author: Kyle Obermiller Institute of Northern Engineering for Alaska University Transportation Center REPORT CONTENTS TABLE OF CONTENTS 1.0 INTRODUCTION ................................................................................................................ 1 2.0 REVIEW OF UNSTABLE SOIL SLOPES IN PERMAFROST AREAS ............................... 1 3.0 THE NELCHINA SLIDE ..................................................................................................... 2 4.0 THE RICH113 SLIDE ......................................................................................................... 5 5.0 THE CHITINA DUMP SLIDE .............................................................................................. 6 6.0 SUMMARY ......................................................................................................................... 9 7.0 REFERENCES ................................................................................................................. 10 i A STUDY OF UNSTABLE SLOPES IN PERMAFROST AREAS 1.0 INTRODUCTION
    [Show full text]
  • Open Research Online Oro.Open.Ac.Uk
    Open Research Online The Open University’s repository of research publications and other research outputs Molards as an indicator of permafrost degradation and landslide processes Journal Item How to cite: Morino, Costanza; Conway, Susan J.; Sæmundsson, Þorsteinn; Kristinn Helgason, Jón; Hillier, John; Butcher, Frances E.G.; Balme, Matthew R.; Jordan, Colm and Argles, Tom (2019). Molards as an indicator of permafrost degradation and landslide processes. Earth and Planetary Science Letters, 516 pp. 136–147. For guidance on citations see FAQs. c 2019 Elsevier B.V. https://creativecommons.org/licenses/by/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1016/j.epsl.2019.03.040 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Earth and Planetary Science Letters 516 (2019) 136–147 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Molards as an indicator of permafrost degradation and landslide processes ∗ Costanza Morino a,b, , Susan J. Conway b, Þorsteinn Sæmundsson c, Jón Kristinn Helgason d, John Hillier e, Frances E.G. Butcher f, Matthew R. Balme f, Colm Jordan g, Tom Argles a a School of Environment, Earth & Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK b Laboratoire de Planétologie et Géodynamique
    [Show full text]
  • The Distribution of Silty Soils in the Grayling Fingers Region of Michigan: Evidence for Loess Deposition Onto Frozen Ground
    Geomorphology 102 (2008) 287–296 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph The distribution of silty soils in the Grayling Fingers region of Michigan: Evidence for loess deposition onto frozen ground Randall J. Schaetzl ⁎ Department of Geography, 128 Geography Building, Michigan State University, East Lansing, MI, 48824-1117, USA ARTICLE INFO ABSTRACT Article history: This paper presents textural, geochemical, mineralogical, soils, and geomorphic data on the sediments of the Received 12 September 2007 Grayling Fingers region of northern Lower Michigan. The Fingers are mainly comprised of glaciofluvial Received in revised form 25 March 2008 sediment, capped by sandy till. The focus of this research is a thin silty cap that overlies the till and outwash; Accepted 26 March 2008 data presented here suggest that it is local-source loess, derived from the Port Huron outwash plain and its Available online 10 April 2008 down-river extension, the Mainstee River valley. The silt is geochemically and texturally unlike the glacial fl Keywords: sediments that underlie it and is located only on the attest parts of the Finger uplands and in the bottoms of Glacial geomorphology upland, dry kettles. On sloping sites, the silty cap is absent. The silt was probably deposited on the Fingers Loess during the Port Huron meltwater event; a loess deposit roughly 90 km down the Manistee River valley has a Permafrost comparable origin. Data suggest that the loess was only able to persist on upland surfaces that were either Kettles closed depressions (currently, dry kettles) or flat because of erosion during and after loess deposition.
    [Show full text]
  • The Pennsylvania State University the Graduate School College of Earth and Mineral Sciences a RECORD of COUPLED HILLSLOPE and CH
    The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences A RECORD OF COUPLED HILLSLOPE AND CHANNEL RESPONSE TO PLEISTOCENE PERIGLACIAL EROSION IN A SANDSTONE HEADWATER VALLEY, CENTRAL PENNSYLVANIA A Thesis in Geosciences by Joanmarie Del Vecchio © 2017 Joanmarie Del Vecchio Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science December 2017 The thesis of Joanmarie Del Vecchio was reviewed and approved* by the following: Roman A. DiBiase Assistant Professor of Geosciences Thesis Advisor Li Li Associate Professor of Civil and Environmental Engineering Susan L. Brantley Professor of Geosciences Tim Bralower Professor of Geosciences Interim Head, Department of Geosciences *Signatures are on file in the Graduate School. ii Abstract Outside of the Last Glacial Maximum ice extent, landscapes in the central Valley and Ridge physiographic province of Appalachia preserve soils and thick colluvial deposits indicating extensive periglacial landscape modification. The preservation of periglacial landforms in the present interglacial suggests active hillslope sediment transport in cold climates followed by limited modification in the Holocene. However, the timing and extent of these processes are poorly constrained, and it is unclear whether, and how much, this signature is due to LGM or older periglaciations. Here, we pair geomorphic mapping with in situ cosmogenic 10Be and 26Al measurements of surface material and buried clasts to estimate the residence time and depositional history of colluvium within Garner Run, a 1 km2 sandstone headwater valley in central Appalachia containing relict Pleistocene periglacial features including solifluction lobes, boulder fields, and thick colluvial footslope deposits. 10Be concentrations of stream sediment and hillslope regolith indicate slow erosion rates (6.3 m ± 0.5 m m.y.-1) over the past 38-140 kyr.
    [Show full text]
  • Response of CO2 Exchange in a Tussock Tundra Ecosystem to Permafrost Thaw and Thermokarst Development Jason Vogel,L Edward A
    Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development Jason Vogel,l Edward A. G. Schuur,2 Christian Trucco,2 and Hanna Lee2 [1] Climate change in high latitudes can lead to permafrost thaw, which in ice-rich soils can result in ground subsidence, or thermokarst. In interior Alaska, we examined seasonal and annual ecosystem CO2 exchange using static and automatic chamber measurements in three areas of a moist acidic tundra ecosystem undergoing varying degrees of permafrost thaw and thermokarst development. One site had extensive thermokarst features, and historic aerial photography indicated it was present at least 50 years prior to this study. A second site had a moderate number of thermokarst features that were known to have developed concurrently with permafrost warming that occurred 15 years prior to this study. A third site had a minimal amount of thermokarst development. The areal extent of thermokarst features reflected the seasonal thaw depth. The "extensive" site had the deepest seasonal thaw depth, and the "moderate" site had thaw depths slightly, but not significantly deeper than the site with "minimal" thermokarst development. Greater permafrost thaw corresponded to significantly greater gross primary productivity (GPP) at the moderate and extensive thaw sites as compared to the minimal thaw site. However, greater ecosystem respiration (Recc) during the spring, fall, and winter resulted in the extensive thaw site being a significant net source of CO2 to the atmosphere over 3 years, while the moderate thaw site was a CO2 sink. The minimal thaw site was near CO2 neutral and not significantly different from the extensive thaw site.
    [Show full text]
  • The Main Features of Permafrost in the Laptev Sea Region, Russia – a Review
    Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 The main features of permafrost in the Laptev Sea region, Russia – a review H.-W. Hubberten Alfred Wegener Institute for Polar and marine Research, Potsdam, Germany N.N. Romanovskii Geocryological Department, Faculty of Geology, Moscow State University, Moscow, Russia ABSTRACT: In this paper the concepts of permafrost conditions in the Laptev Sea region are presented with spe- cial attention to the following results: It was shown, that ice-bearing and ice-bonded permafrost exists presently within the coastal lowlands and under the shallow shelf. Open taliks can develop from modern and palaeo river taliks in active fault zones and from lake taliks over fault zones or lithospheric blocks with a higher geothermal heat flux. Ice-bearing and ice-bonded permafrost, as well as the zone of gas hydrate stability, form an impermeable regional shield for groundwater and gases occurring under permafrost. Emission of these gases and discharge of ground- water are possible only in rare open taliks, predominantly controlled by fault tectonics. Ice-bearing and ice-bonded permafrost, as well as the zone of gas hydrate stability in the northern region of the lowlands and in the inner shelf zone, have preserved during at least four Pleistocene climatic and glacio-eustatic cycles. Presently, they are subject to degradation from the bottom under the impact of the geothermal heat flux. 1 INTRODUCTION extremely complex. It consists of tectonic structures of different ages, including several rift zones (Tectonic This paper summarises the results of the studies of Map of Kara and Laptev Sea, 1998; Drachev et al., both offshore and terrestrial permafrost in the Laptev 1999).
    [Show full text]
  • Virtual Reality Modeling of the CRREL Permafrost Tunnel, Alaska
    VIRTUAL REALITY MODELING OF THE CRREL PERMAFROST TUNNEL, ALASKA Conner Truskowski, Margaret Rudolf, and Cassidy Phillips [email protected] [email protected] [email protected] Background Discussion The main problem faced while taking photos was low and As of today, few real, small-scale locations have been modeled for variable light. While we did have smaller lights to add to what is Virtual Reality (VR). One location, perfect for modeling, is the currently in the tunnel, more would be needed in the future to Permafrost Tunnel between Fairbanks and Fox, Alaska. The improve upon the model. Nevertheless, the end product has Tunnel was originally made between 1963 and 1969 by the Army about 97% coverage with the remining 3% of the tunnel appearing Corps of Engineers as a bunker and storage experiment. Since as holes due to surfaces being too smooth or dark for Metashape then, the tunnel has been used extensively for permafrost, to recognize. A faster, more biology, geology, climate, mining, and engineering research. It is powerful computer would cut currently owned by the U.S. Army Cold Regions Research and down on processing time and Engineering Laboratory (CRREL). We set out to develop a useable could result in a higher VR model of the Permafrost Tunnel for educational use. We used resolution model. a 360-degree camera, Agisoft Metashape, and the Unity game engine to generate a Variable lighting, dust, and smooth Location of the useable model. Upon surfaces in the tunnel tunnel. (Modified completion, students Illustrated goggle view of the tunnel from Explore Fairbanks Photo: (Shelby Lum / Alaska Dispatch News) Aurora Tracker) from around the world and people with disabilities or illnesses Conclusion will have access to the Permafrost Tunnel.
    [Show full text]
  • Changes in Peat Chemistry Associated with Permafrost Thaw Increase Greenhouse Gas Production
    Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production Suzanne B. Hodgkinsa,1, Malak M. Tfailya, Carmody K. McCalleyb, Tyler A. Loganc, Patrick M. Crilld, Scott R. Saleskab, Virginia I. Riche, and Jeffrey P. Chantona,1 aDepartment of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306; bDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721; cAbisko Scientific Research Station, Swedish Polar Research Secretariat, SE-981 07 Abisko, Sweden; dDepartment of Geological Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; and eDepartment of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721 Edited by Nigel Roulet, McGill University, Montreal, Canada, and accepted by the Editorial Board March 7, 2014 (received for review August 1, 2013) 13 Carbon release due to permafrost thaw represents a potentially during CH4 production (10–12, 16, 17), δ CCH4 also depends on 13 major positive climate change feedback. The magnitude of carbon δ CCO2,soweusethemorerobustparameterαC (10) to repre- loss and the proportion lost as methane (CH4) vs. carbon dioxide sent the isotopic separation between CH4 and CO2.Despitethe ’ (CO2) depend on factors including temperature, mobilization of two production pathways stoichiometric equivalence (17), they previously frozen carbon, hydrology, and changes in organic mat- are governed by different environmental controls (18). Dis- ter chemistry associated with environmental responses to thaw. tinguishing these controls and further mapping them is therefore While the first three of these effects are relatively well under- essential for predicting future changes in CH4 formation under stood, the effect of organic matter chemistry remains largely un- changing environmental conditions.
    [Show full text]
  • The Modelling of Freezing Process in Saturated Soil Based on the Thermal-Hydro-Mechanical Multi-Physics Field Coupling Theory
    water Article The Modelling of Freezing Process in Saturated Soil Based on the Thermal-Hydro-Mechanical Multi-Physics Field Coupling Theory Dawei Lei 1,2, Yugui Yang 1,2,* , Chengzheng Cai 1,2, Yong Chen 3 and Songhe Wang 4 1 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221008, China; [email protected] (D.L.); [email protected] (C.C.) 2 School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China 3 State Key Laboratory of Coal Resource and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China; [email protected] 4 Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an 710048, China; [email protected] * Correspondence: [email protected] Received: 2 September 2020; Accepted: 22 September 2020; Published: 25 September 2020 Abstract: The freezing process of saturated soil is studied under the condition of water replenishment. The process of soil freezing was simulated based on the theory of the energy and mass conservation equations and the equation of mechanical equilibrium. The accuracy of the model was verified by comparison with the experimental results of soil freezing. One-side freezing of a saturated 10-cm-high soil column in an open system with different parameters was simulated, and the effects of the initial void ratio, hydraulic conductivity, and thermal conductivity of soil particles on soil frost heave, freezing depth, and ice lenses distribution during soil freezing were explored. During the freezing process, water migrates from the warm end to the frozen fringe under the actions of the temperature gradient and pore pressure.
    [Show full text]
  • Chapter 7 Seasonal Snow Cover, Ice and Permafrost
    I Chapter 7 Seasonal snow cover, ice and permafrost Co-Chairmen: R.B. Street, Canada P.I. Melnikov, USSR Expert contributors: D. Riseborough (Canada); O. Anisimov (USSR); Cheng Guodong (China); V.J. Lunardini (USA); M. Gavrilova (USSR); E.A. Köster (The Netherlands); R.M. Koerner (Canada); M.F. Meier (USA); M. Smith (Canada); H. Baker (Canada); N.A. Grave (USSR); CM. Clapperton (UK); M. Brugman (Canada); S.M. Hodge (USA); L. Menchaca (Mexico); A.S. Judge (Canada); P.G. Quilty (Australia); R.Hansson (Norway); J.A. Heginbottom (Canada); H. Keys (New Zealand); D.A. Etkin (Canada); F.E. Nelson (USA); D.M. Barnett (Canada); B. Fitzharris (New Zealand); I.M. Whillans (USA); A.A. Velichko (USSR); R. Haugen (USA); F. Sayles (USA); Contents 1 Introduction 7-1 2 Environmental impacts 7-2 2.1 Seasonal snow cover 7-2 2.2 Ice sheets and glaciers 7-4 2.3 Permafrost 7-7 2.3.1 Nature, extent and stability of permafrost 7-7 2.3.2 Responses of permafrost to climatic changes 7-10 2.3.2.1 Changes in permafrost distribution 7-12 2.3.2.2 Implications of permafrost degradation 7-14 2.3.3 Gas hydrates and methane 7-15 2.4 Seasonally frozen ground 7-16 3 Socioeconomic consequences 7-16 3.1 Seasonal snow cover 7-16 3.2 Glaciers and ice sheets 7-17 3.3 Permafrost 7-18 3.4 Seasonally frozen ground 7-22 4 Future deliberations 7-22 Tables Table 7.1 Relative extent of terrestrial areas of seasonal snow cover, ice and permafrost (after Washburn, 1980a and Rott, 1983) 7-2 Table 7.2 Characteristics of the Greenland and Antarctic ice sheets (based on Oerlemans and van der Veen, 1984) 7-5 Table 7.3 Effect of terrestrial ice sheets on sea-level, adapted from Workshop on Glaciers, Ice Sheets and Sea Level: Effect of a COylnduced Climatic Change.
    [Show full text]
  • Recent Changes in the Permafrost of Mongolia
    Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Recent changes in the permafrost of Mongolia N. Sharkhuu Institute of Geography, MAS, Ulaanbaatar, Mongolia ABSTRACT: Recent changes in the permafrost of Mongolia have been studied within the CALM and GTN-P programs. In addition, some cryogenic processes and phenomena have been monitored. The results are based on ground temperature measurements in 10–50 m deep boreholes during the last 5 to 30 years. At present, there are 17 CALM active layer sites and 13 GTN-P boreholes with permafrost. Initial data show that average thickness of active layers and mean annual ground (permafrost) temperatures in the Selenge River basin of Central Mongolia have risen at a rate of 0.1–0.6 cm per year and 0.05–0.15°C per decades, respectively. The rate of settling by thermokarst processes (lake and sink) at the Chuluut sites is estimated to be 3–7 cm per year based on visual observation during last 30 years. The results imply that permafrost in Mongolia is changing rapidly, and is influ- enced and increased by human activities such as forest fires, mining operations among others. 1 INTRODUCTION sporadic to continuous in its extent, and occupies the southern fringe of the Siberian permafrost zones. Most Criteria to assess recent changes in permafrost of the permafrost is at temperatures close to 0°C, and are changing values of active-layer thickness and ther- thus, thermally unstable. mal characteristics of permafrost. The International In the continuous and discontinuous permafrost Permafrost Association (IPA) has developed two areas, taliks are found on steep south-facing slopes, interrelated programs for permafrost monitoring: the under large river channels and deep lake bottoms, and Circumpolar Active Layer Monitoring (CALM) and the along tectonic fractures with hydrothermal activity.
    [Show full text]
  • Periglacial Processes, Features & Landscape Development 3.1.4.3/4
    Periglacial processes, features & landscape development 3.1.4.3/4 Glacial Systems and landscapes What you need to know Where periglacial landscapes are found and what their key characteristics are The range of processes operating in a periglacial landscape How a range of periglacial landforms develop and what their characteristics are The relationship between process, time, landforms and landscapes in periglacial settings Introduction A periglacial environment used to refer to places which were near to or at the edge of ice sheets and glaciers. However, this has now been changed and refers to areas with permafrost that also experience a seasonal change in temperature, occasionally rising above 0 degrees Celsius. But they are characterised by permanently low temperatures. Location of periglacial areas Due to periglacial environments now referring to places with permafrost as well as edges of glaciers, this can account for one third of the Earth’s surface. Far northern and southern hemisphere regions are classed as containing periglacial areas, particularly in the countries of Canada, USA (Alaska) and Russia. Permafrost is where the soil, rock and moisture content below the surface remains permanently frozen throughout the entire year. It can be subdivided into the following: • Continuous (unbroken stretches of permafrost) • extensive discontinuous (predominantly permafrost with localised melts) • sporadic discontinuous (largely thawed ground with permafrost zones) • isolated (discrete pockets of permafrost) • subsea (permafrost occupying sea bed) Whilst permafrost is not needed in the development of all periglacial landforms, most periglacial regions have permafrost beneath them and it can influence the processes that create the landforms. Many locations within SAMPLEextensive discontinuous and sporadic discontinuous permafrost will thaw in the summer months.
    [Show full text]