Plasma Diagnostic Developments in the UCRL Pyrotron Program

Total Page:16

File Type:pdf, Size:1020Kb

Plasma Diagnostic Developments in the UCRL Pyrotron Program P/381 USA Plasma Diagnostic Developments in the UCRL Pyrotron Program By C. B. Wharton,* J. C. Howard* and O. Heinzf conditions of the plasma are determinable and if the At the outset of the Berkeley and Livermore pro- 4 5 grammes in the study of dense, high temperature, electron energy distribution is known ' a meaningful transient plasmas of large physical extent, it was value for electron kinetic temperature may be cal- apparent that the existing diagnostic techniques culated. could not yield a complete picture of physical processes Since a plasma is highly dispersive in the micro- in the plasma.1 High temperature extensions of wave part of the spectrum the chosen frequency is diagnostic theories were not understood. Few theories determined by the plasma density and size. The had been substantiated experimentally. Worse yet, diversity of experiments undertaken in the Pyrotron some of the instruments which had become standards programme has necessitated utilizing microwave for plasma research (such as Langmuir probes and equipment in the following frequency bands: 8-12 kMc, 19-26 kMc, 32-48 kMc and 68-77 kMc (kMc = probing electron beams) introduced such serious per- 9 turbations by their presence that the validity of the kilomegacycles—10 cycles per second). Very recently results was questionable. some experiments at 130-150 kMc have been contem- This paper describes techniques developed in con- plated. In order to determine density and collision nection with the Pyrotron programme to fill in some frequency, the plasma must be transparent. In order of these voids. to obtain sufficiently intense radiation from the plasma to be measurable the region should be nearly opaque. SURVEY OF DIAGNOSTIC METHODS Therefore, in order to make both measurements During the course of the various experiments simultaneously, they must be performed at different numerous diagnostic approaches were tried. It would frequencies. require considerably more space than the scope of this The pyrotron configuration permits a variety of paper permits to present explicit discussions of more modes of coupling into the discharge. Transmission than a representative group of these techniques. across the discharge region with the rf electric field However, for completeness, a brief tabulation of either parallel or perpendicular to the machine essentially all of the important techniques tried is magnetic field allows coupling with or decoupling presented in Tables 1, 2 and 3. A more complete dis- from the electron cyclotron interactions. Propagation cussion of the most commonly used methods is along the magnetic lines with circularly-polarized presented in the remaining sections of this paper and waves allows coupling to either the œ — шс or o> + coc in a group of papers, P/377-380, of the preceding modes. The inhomogeniety of the magnetic field is session, A-9. usually a source of ambiguity but in some cases it permits the position of the plasma boundary to be Microwave Interactions determined by observing the location at which Diagnostic techniques involving microwave inter- gyroresonance occurs. actions with plasmas2»3 have been in use at this Figure 1 shows a sketch of a typical microwave laboratory since 1952. Our approach has been to diagnostics system. To measure absorption, the measure the phase shift, the absorption and the 60-foot reference path is removed2 and the klystron scattering of a wave propagating through the plasma is modulated by random noise in order to average out region, determine the plasma spatial distribution by a any internal reflections within the discharge chamber. second method (light emission, probes, etc.) and The noise spectrum is some 200 Me wide. calculate the electron density and collision frequency. The radiation receiver is a wide-band (10 Me) Simultaneously the "white" noise radiation from the receiver with a threshold sensitivity of about 0.1 plasma is monitored by a calibrated microwave super- micro-microwatt. Detected noise is viewed directly, heterodyne receiver. If the opacity or geometrical without time averaging, to preserve the wide band- * University of California Radiation Laboratory, Livermore, width. California. In order to seek correlation between the microwave f Stanford Research Institute, Menlo Park, California. and other measurements, a control experiment has 388 PLASMA DIAGNOSTIC DEVELOPMENTS 389 been devised. Plasma is generated within a stable radiation appears only when the plasma becomes PIG (Philips Ion Gauge) configuration by passing opaque,2 even though the electron temperature re- pulses of 4-8 msec duration, 0.1-2 amp magnitude, mains high during a large fraction of the pulse. 60 times per second through a gas (He, Щ, A, etc.) The opacity dependence of the radiation has been at pressures ranging between 0.1 and 20 ¡i Hg. Electron demonstrated also in the high compression pyrotrons. densities as high as 1013 per cm3 are easily obtained, The right-hand circularly polarized wave suffers large and electron kinetic temperatures as high as 25 ev absorption by a plasma at a frequency slightly below have been measured. Figure 2 shows a sketch of the gyrofrequency, even when the density and collision equipment and Fig. 3 shows a composite oscilloscope frequency are relatively low. The absorption (and display of data. It is apparent that the microwave radiation, by Kirchhoff's law) cross sections due to Table 1. Plasma Ion Diagnostics Plasma diagnostic Employed Experimental application Ъпа comments Performance technique on* valuation^ Ion energy- t-t Magnetic momentum analysis, followed by electro- B-l analyzer static energy analysis. Min. ion current 1 ma; ion energy range 16 ev to 20 kev. Yields distributions only if conditions are reproducible from discharge to discharge. Time-of-flight Q-c Velocity measurement of plasma burst from pulsed A-l measurement Fel. source using probe or microwave sampling. Calorimetric P-4 Measures temperature increase of target when im- D measurement T-T mersed in plasma. Employs thermocouples, optical instruments, or rate of deterioration of target. Fel. Determination of plasma position and ion orbit sizes. Fluorescent ALB. Qualitative density measurement. Time-resolved or screen t-t integrated presentation. T-T Charged All Faraday cups, biased and unbiased to determine particle particle escape rates. Single and double probes to collectors determine ion and electron densities. Neutral Fel. Determines high energy neutral particle flux by B-2 particle measurement of secondary electron current. Used for detector determination of charge exchange loss rate. Optical All Doppler shift and broadening measured by spectro- B-2 spectrum but graph or interferometer. Determines random and analysis Fel. collective ion velocities. Stark broadening to deter- mine ion density. Spectral line identification. a Key to apparatus code: b Key to evaluation code: ALB ALBEDO: DC mirrors, ultra high vacuum (no longer active). A Highly reliable. Fel. FELIX: High energy injection, ultra high vacuum. В Moderately reliable. Gup. GUPPY: PIG in DC mirrors. С Poor reproducibility. L-P LITTLE PIG: Diagnostics correlation. D Not sufficiently evaluated P-4 Plasma source experiment. 1 Quantitative results. Q-C DC Variable mirror ratio experiment (no longer active). 2 Semi-quantitative. Sat. SATURN: High compression, radial Injection. 3 Qualitative. t-t TOY TOP: High compression, multiple stage. T-T TABLE TOP: High compression, collision injection. this "cyclotron'' interaction are so large that the electrons reach radiative equilibrium rapidly.4»5 Optical Observations Thus, the thermalizing time for the electrons to assume Spectroscopic measurements have been made, a Maxwellian energy distribution is many orders of wherever possible, in connection with the pyrotron magnitude shorter than that for the ions. In the experiments. The general procedure has been to theories for the microwave transmission and radiation identify first the light emitters in a particular plasma measurements performed on pyrotrons, the assump- by means of photographic spectra covering as wide a tion of a Maxwellian electron distribution, then, seems frequency range as is feasible. Next, the time depen- justified, and the "temperatures" measured have dence of atomic or molecular features to which some meaning. Figures 4 and 5 illustrate the opacity inter- particular interest is attached, e.g. those of D, dependences. The signal amplitudes correspond to He+, C+++, Ti+, C2, CH, etc., is obtained. An attempt electron temperatures of 15 to 25 kev. The electron is then made to learn something about the conditions density before compression was ordinarily between in the plasma from spectral Une intensity ratios or 1012 and 1013/cm3. The collision frequency never the intensity distribution within a given Une. Often exceeded 107 per second. the thermal Doppler broadening in the case of the 390 SESSION A-10 P/381 С. В. WHARTON et al. BALANCED IN26 the high electron kinetic temperatures (1-6 kev) MIXER ф achieved in the Saturn experiment, the high light output during initial ionization makes possible some interesting optical measurements. A determination of DUAL BEAM SCOPE ion density by observation of Stark broadening of the CHAN В Ha line was accomplished by utilizing a Wratten No. 25A filter, as a monochromator, and a Fabry- Perot interferometer. The fringes were observed with a camera directly and also through an image converter to permit time resolution of the fringe broadening. 6254 К — BAÑO Kodak No. IF-3 photographic plates provided KLYSTRON sufficient sensitivity and yet small enough grain size to facilitate microscopic scanning. Since the optical POWEt R SUPPLY system is all transparent, the camera is able also to 381.1 observe the interior of the discharge region to record Figure 1. Microwave diagnostics system. Fringe-shift interfero- the location from which radiation emanates. Figure 6 meter and plasma radiation receiver illustrates the experiment geometry and Fig. 7 shows the broadened fringes with the discharge chamber ELECTROMAGNET visible through the interferometer. Apparently the light comes from a ball at the center of the chamber. A composite data analysis is shown in Fig.
Recommended publications
  • Lecture 5. Interstellar Dust: Optical Properties
    Lecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3. Mie Scattering 4. Dust to Gas Ratio 5. Appendices References Spitzer Ch. 7, Osterbrock Ch. 7 DC Whittet, Dust in the Galactic Environment (IoP, 2002) E Krugel, Physics of Interstellar Dust (IoP, 2003) B Draine, ARAA, 41, 241, 2003 1. Introduction: Brief History of Dust Nebular gas long accepted but existence of absorbing interstellar dust controversial. Herschel (1738-1822) found few stars in some directions, later extensively demonstrated by Barnard’s photos of dark clouds. Trumpler (PASP 42 214 1930) conclusively demonstrated interstellar absorption by comparing luminosity distances & angular diameter distances for open clusters: • Angular diameter distances are systematically smaller • Discrepancy grows with distance • Distant clusters are redder • Estimated ~ 2 mag/kpc absorption • Attributed it to Rayleigh scattering by gas Some of the Evidence for Interstellar Dust Extinction (reddening of bright stars, dark clouds) Polarization of starlight Scattering (reflection nebulae) Continuum IR emission Depletion of refractory elements from the gas Dust is also observed in the winds of AGB stars, SNRs, young stellar objects (YSOs), comets, interplanetary Dust particles (IDPs), and in external galaxies. The extinction varies continuously with wavelength and requires macroscopic absorbers (or “dust” particles). Examples of the Effects of Dust Extinction B68 Scattering - Pleiades Extinction: Some Definitions Optical depth, cross section, & efficiency: ext ext ext τ λ = ∫ ndustσ λ ds = σ λ ∫ ndust 2 = πa Qext (λ) Ndust nd is the volumetric dust density The magnitude of the extinction Aλ : ext I(λ) = I0 (λ) exp[−τ λ ] Aλ =−2.5log10 []I(λ)/I0(λ) ext ext = 2.5log10(e)τ λ =1.086τ λ 2.
    [Show full text]
  • Essay on Optics
    Essay on Optics by Émilie du Châtelet translated, with notes, by Bryce Gessell published by LICENSE AND CITATION INFORMATION 2019 © Bryce Gessell This work is licensed by the copyright holder under a Creative Commons Attribution-NonCommercial 4.0 International License. Published by Project Vox http://projectvox.org How to cite this text: Du Châtelet, Emilie. Essay on Optics. Translated by Bryce Gessell. Project Vox. Durham, NC: Duke University Libraries, 2019. http://projectvox.org/du-chatelet-1706-1749/texts/essay-on-optics This translation is based on the copy of Du Châtelet’s Essai sur l’Optique located in the Universitätsbibliothek Basel (L I a 755, fo. 230–265). The original essay was transcribed and edited in 2017 by Bryce Gessell, Fritz Nagel, and Andrew Janiak, and published on Project Vox (http://projectvox.org/du-chatelet-1706-1749/texts/essai-sur-loptique). 2 This work is governed by a CC BY-NC 4.0 license. You may share or adapt the work if you give credit, link to the license, and indicate changes. You may not use the work for commercial purposes. See creativecommons.org for details. CONTENTS License and Citation Information 2 Editor’s Introduction to the Essay and the Translation 4 Essay on Optics Introduction 7 Essay on Optics Chapter 1: On Light 8 Essay on Optics Chapter 2: On Transparent Bodies, and on the Causes of Transparence 11 Essay on Optics Chapter 3: On Opacity, and on Opaque Bodies 28 Essay on Optics Chapter 4: On the Formation of Colors 37 Appendix 1: Figures for Essay on Optics 53 Appendix 2: Daniel II Bernoulli’s Note 55 Appendix 3: Figures from Musschenbroek’s Elementa Physicae (1734) 56 Appendix 4: Figures from Newton’s Principia Mathematica (1726) 59 3 This work is governed by a CC BY-NC 4.0 license.
    [Show full text]
  • Opacities: Means & Uncertainties
    OPACITIES: MEANS & Previously... UNCERTAINTIES Christopher Fontes Computational Physics Division Los Alamos National Laboratory ICTP-IAEA Advanced School and Workshop on Modern Methods in Plasma Spectroscopy Trieste, March 16-27, 2015 Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 1 Before moving on to the topic of mean opacities, let’s look at Al opacities at different temperatures 19 -3 • Our main example is kT = 40 eV and Ne = 10 cm with <Z> = 10.05 (Li-like ions are dominant) • Consider raising and lowering the temperature: – kT = 400 eV (<Z> = 13.0; fully ionized) – kT = 20 eV (<Z> = 6.1; nitrogen-like stage is dominant) Slide 2 Slide 3 Slide 4 Slide 5 Slide 6 Slide 7 Road map to mean opacities Mean (gray) opacities In order of most to least refined • Under certain conditions, the need to transport a with respect to frequency resolution: frequency-dependent radiation intensity, Iν, can be relaxed in favor of an integrated intensity, I, given by ∞ κν (monochromatic) I = I dν ∫0 ν • Applying this notion of integrated quantities to each term of the radiation transport equation results in a new set of MG κ (multigroup) equations, similar to the original, frequency-dependent formulations • Frequency-dependent absorption terms that formerly (gray) contained will instead contain a suitably averaged κ κν “mean opacity” or “gray opacity” denoted by κ Slide 8 Slide 9 Mean opacities (continued) Types of mean opacities • The mean opacity κ represents, in a single number, the • Two most common types of gray opacities
    [Show full text]
  • Radio Astronomy
    Edition of 2013 HANDBOOK ON RADIO ASTRONOMY International Telecommunication Union Sales and Marketing Division Place des Nations *38650* CH-1211 Geneva 20 Switzerland Fax: +41 22 730 5194 Printed in Switzerland Tel.: +41 22 730 6141 Geneva, 2013 E-mail: [email protected] ISBN: 978-92-61-14481-4 Edition of 2013 Web: www.itu.int/publications Photo credit: ATCA David Smyth HANDBOOK ON RADIO ASTRONOMY Radiocommunication Bureau Handbook on Radio Astronomy Third Edition EDITION OF 2013 RADIOCOMMUNICATION BUREAU Cover photo: Six identical 22-m antennas make up CSIRO's Australia Telescope Compact Array, an earth-rotation synthesis telescope located at the Paul Wild Observatory. Credit: David Smyth. ITU 2013 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. - iii - Introduction to the third edition by the Chairman of ITU-R Working Party 7D (Radio Astronomy) It is an honour and privilege to present the third edition of the Handbook – Radio Astronomy, and I do so with great pleasure. The Handbook is not intended as a source book on radio astronomy, but is concerned principally with those aspects of radio astronomy that are relevant to frequency coordination, that is, the management of radio spectrum usage in order to minimize interference between radiocommunication services. Radio astronomy does not involve the transmission of radiowaves in the frequency bands allocated for its operation, and cannot cause harmful interference to other services. On the other hand, the received cosmic signals are usually extremely weak, and transmissions of other services can interfere with such signals.
    [Show full text]
  • Chapter 19/ Optical Properties
    Chapter 19 /Optical Properties The four notched and transpar- ent rods shown in this photograph demonstrate the phenomenon of photoelasticity. When elastically deformed, the optical properties (e.g., index of refraction) of a photoelastic specimen become anisotropic. Using a special optical system and polarized light, the stress distribution within the speci- men may be deduced from inter- ference fringes that are produced. These fringes within the four photoelastic specimens shown in the photograph indicate how the stress concentration and distribu- tion change with notch geometry for an axial tensile stress. (Photo- graph courtesy of Measurements Group, Inc., Raleigh, North Carolina.) Why Study the Optical Properties of Materials? When materials are exposed to electromagnetic radia- materials, we note that the performance of optical tion, it is sometimes important to be able to predict fibers is increased by introducing a gradual variation and alter their responses. This is possible when we are of the index of refraction (i.e., a graded index) at the familiar with their optical properties, and understand outer surface of the fiber. This is accomplished by the mechanisms responsible for their optical behaviors. the addition of specific impurities in controlled For example, in Section 19.14 on optical fiber concentrations. 766 Learning Objectives After careful study of this chapter you should be able to do the following: 1. Compute the energy of a photon given its fre- 5. Describe the mechanism of photon absorption quency and the value of Planck’s constant. for (a) high-purity insulators and semiconduc- 2. Briefly describe electronic polarization that re- tors, and (b) insulators and semiconductors that sults from electromagnetic radiation-atomic in- contain electrically active defects.
    [Show full text]
  • Light Scattering by Fractal Dust Aggregates. II. Opacity and Asymmetry Parameter
    The Astrophysical Journal, 860:79 (17pp), 2018 June 10 https://doi.org/10.3847/1538-4357/aac32d © 2018. The American Astronomical Society. All rights reserved. Light Scattering by Fractal Dust Aggregates. II. Opacity and Asymmetry Parameter Ryo Tazaki and Hidekazu Tanaka Astronomical Institute, Graduate School of Science Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578, Japan; [email protected] Received 2018 March 9; revised 2018 April 26; accepted 2018 May 6; published 2018 June 14 Abstract Optical properties of dust aggregates are important at various astrophysical environments. To find a reliable approximation method for optical properties of dust aggregates, we calculate the opacity and the asymmetry parameter of dust aggregates by using a rigorous numerical method, the T-Matrix Method, and then the results are compared to those obtained by approximate methods: the Rayleigh–Gans–Debye (RGD) theory, the effective medium theory (EMT), and the distribution of hollow spheres method (DHS). First of all, we confirm that the RGD theory breaks down when multiple scattering is important. In addition, we find that both EMT and DHS fail to reproduce the optical properties of dust aggregates with fractal dimensions of 2 when the incident wavelength is shorter than the aggregate radius. In order to solve these problems, we test the mean field theory (MFT), where multiple scattering can be taken into account. We show that the extinction opacity of dust aggregates can be well reproduced by MFT. However, it is also shown that MFT is not able to reproduce the scattering and absorption opacities when multiple scattering is important.
    [Show full text]
  • The Optical Effective Attenuation Coefficient As an Informative
    hv photonics Article The Optical Effective Attenuation Coefficient as an Informative Measure of Brain Health in Aging Antonio M. Chiarelli 1,2,* , Kathy A. Low 1, Edward L. Maclin 1, Mark A. Fletcher 1, Tania S. Kong 1,3, Benjamin Zimmerman 1, Chin Hong Tan 1,4,5 , Bradley P. Sutton 1,6, Monica Fabiani 1,3,* and Gabriele Gratton 1,3,* 1 Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 2 Department of Neuroscience, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy 3 Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA 4 Division of Psychology, Nanyang Technological University, Singapore 639818, Singapore 5 Department of Pharmacology, National University of Singapore, Singapore 117600, Singapore 6 Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA * Correspondence: [email protected] (A.M.C.); [email protected] (M.F.); [email protected] (G.G.) Received: 24 May 2019; Accepted: 10 July 2019; Published: 12 July 2019 Abstract: Aging is accompanied by widespread changes in brain tissue. Here, we hypothesized that head tissue opacity to near-infrared light provides information about the health status of the brain’s cortical mantle. In diffusive media such as the head, opacity is quantified through the Effective Attenuation Coefficient (EAC), which is proportional to the geometric mean of the absorption and reduced scattering coefficients. EAC is estimated by the slope of the relationship between source–detector distance and the logarithm of the amount of light reaching the detector (optical density).
    [Show full text]
  • Lecture 6 Radiation Transport
    Summary figure EOS regimes – Pols Fig 3.4 Lecture 6 Radiation Transport Prialnik Chapter 5 Krumholtz and Glatzmaier 6 Pols Chapter 5 See Pols p 31 for discussion For an adiabatic expansion or compression Very roughly (do not use this for anything quantitative): dP Gm(r) regardless of equation of state (ideal, degenerate, = − ⇒ P ∝m2r −4 etc.) the first law of thermodynamics gives dm 4πr 4 ρ ∝ m / r 3 r −4 ∝ρ 4/3m−4/3 P = Kργ ad 2/3 4/3 The value of ad varies with the EOS. so for hydrostatic equilibrium, crudely, P ∝ m ρ . For an ideal gas, fully ionized, P 3 P If the global density changes due to expansion or contraction, u = φ = ρ 2 ρ leading to new pressure and density, P' and ρ', hydrostatic φ +1 equilibrum suggests γ = =5/3 ad 4/3 φ ⎛ P '⎞ ⎛ ρ '⎞ = ⎝⎜ P ⎠⎟ ⎝⎜ ρ ⎠⎟ For a relativistic gas =4/3. γ ad If the pressure increases more than this, In regions of partial ionization 4/3 ⎛ P '⎞ ⎛ ρ '⎞ (or pair production or photo i.e., > there will be a restoring ⎝⎜ P ⎠⎟ ⎝⎜ ρ ⎠⎟ disintegration) γ can be ad force that will lead to expansion. If it is less, the contraction suppressed. will continue and perhaps accelerate. Now consider an adiabatic compression: Radiation Transport P=Kργ So far we have descriptions of hydrostatic equilibrium and the equation of state. Still γ missing: ⎛ P '⎞ ⎛ ρ '⎞ So ⎜ ⎟ = ⎜ ⎟ ρ ' > ρ ⎝ P ⎠ ⎝ ρ ⎠ • How the temperature must vary in order to transport γ 4/3 ⎛ ρ '⎞ ⎛ ρ '⎞ the energy that is generated (by both radiative If, for a given mass, > one has stability, ⎝⎜ ρ ⎠⎟ ⎝⎜ ρ ⎠⎟ diffusion and convection).
    [Show full text]
  • CHAPTER 4B-Opacity
    CHAPTER 4B 4-4 Opacity We now turn to the matter of determining what contributes to the optical depth of a medium, such as the layers of a star. The theory here can be quite complex and a thorough exposition would take us deep into quantum mechanics. So we can not completely go there. Previously we have introduced the absorption coefficient , which is the fraction of the intensity that is absorbed over a distance, dx. This parameter has dimensions of cm-1. In general depends on wavelength or frequency and is a function of temperature, pressure, and chemical composition. We now introduce what is called the mass absorption coefficient, , which has units of cm2/g and is also a function of wavelength. The relation between these two parameters is = n, where is the mass density in g/cm3, n is the number density of absorbers with cross-section, , for absorption or scattering Again, in general, these parameters are wavelength dependent. The term opacity in general refers to the degree that a medium is opaque to radiation. Therefore, it can refer to , , or , but is usually meant to refer to by most authors. 4-4.1 Classical Theory. Radiation is absorbed by electrons which may be free or bound in an atom and occupying some energy level. The classical picture of an electron bound to its nucleus was already introduced in the derivation of Planck's Law. In this case, the electron is considered a harmonic oscillator responding to a variable electromagnetic field, which is what radiation is. The electron is set into motion by this field and in so doing energy is removed from the field.
    [Show full text]
  • Opacity Effects on Pulsations of Main-Sequence A-Type Stars
    Article Opacity Effects on Pulsations of Main-Sequence A-Type Stars Joyce A. Guzik 1, Christopher J. Fontes 2 and Chris Fryer 3 1 Los Alamos National Laboratory, Los Alamos, NM; [email protected] 2 Los Alamos National Laboratory, Los Alamos, NM; [email protected] 3 Los Alamos National Laboratory, Los Alamos, NM; [email protected] Received: date; Accepted: date; Published: date Abstract: Opacity enhancements for stellar interior conditions have been explored to explain observed pulsation frequencies and to extend the pulsation instability region for B-type main-sequence variable stars [see, e.g., 1–6]. For these stars, the pulsations are driven in the region of the opacity bump of Fe-group elements at ∼200,000 K in the stellar envelope. Here we explore effects of opacity enhancements for the somewhat cooler main-sequence A-type stars, in which p-mode pulsations are driven instead in the second helium ionization region at ∼50,000 K. We compare models using the new LANL OPLIB [7] vs. LLNL OPAL [8] opacities for the AGSS09 [9] solar mixture. For models of 2 solar masses and effective temperature 7600 K, opacity enhancements have only a mild effect on pulsations, shifting mode frequencies and/or slightly changing kinetic-energy growth rates. Increased opacity near the bump at 200,000 K can induce convection that may alter composition gradients created by diffusive settling and radiative levitation. Opacity increases around the hydrogen and 1st He ionization region (13,000 K) can cause additional higher-frequency p modes to be excited, raising the possibility that improved treatment of these layers may result in prediction of new modes that could be tested by observations.
    [Show full text]
  • Influence of Plasma Opacity on Current Decay After Disruptions in Tokamaks
    1 EX/4-4 Influence of Plasma Opacity on Current Decay after Disruptions in Tokamaks V.E Lukash 1), A.B. Mineev 2), and D.Kh. Morozov 1) 1) Institute of Nuclear Fusion, RRC “Kurchatov Institute, Moscow, Russia 2) D.V.Efremov Institute of Electrophysical Apparatus, St. Petersburg, Russia e-mail contact address of main author: [email protected] Abstract. Current decays after disruptions as well as after noble gas injections in tokamak are examined. The thermal balance is supposed to be determined by Ohmic heating and radiative losses. Zero dimensional model for radiation losses and temperature distribution over minor radius is used. Plasma current evolution is simulated with DIMRUN and DINA codes. As it is shown, the cooled plasmas at the stage of current decay are opaque for radiation in lines giving the main impact into total thermal losses. Impurity distribution over ionization states is calculated from the time-dependent set of differential equations. The opacity effects are found to be most important for simulation of JET disruption experiments with beryllium seeded plasmas. Using the coronal model for radiation one can find jumps in temperature and extremely short decay times. If one takes into account opacity effects, the calculated current decays smoothly in agreement with JET experiments. The decay times are also close to the experimental values. Current decay in argon seeded and carbon seeded plasmas for ITER parameters are simulated. The temperature after thermal quench is shown to be twice higher in comparison with the coronal model. The effect for carbon is significantly higher. The smooth time dependence of the toroidal current for argon seeded plasmas is demonstrated in contrast to the behavior in carbon seeded ones.
    [Show full text]
  • Optical Properties of Paper: Theory and Practice
    Preferred citation: R. Farnood. Review: Optical properties of paper: theory and practice. In Advances in Pulp and Paper Research, Oxford 2009, Trans. of the XIVth Fund. Res. Symp. Oxford, 2009, (S.J. I’Anson, ed.), pp 273–352, FRC, Manchester, 2018. DOI: 10.15376/frc.2009.1.273. OPTICAL PROPERTIES OF PAPER: THEORY AND PRACTICE Ramin Farnood Department of Chemical Engineering and Applied Chemistry University of Toronto, February 25, 2009, Revised: May 22, 2009 ABSTRACT The perceived value of paper products depends not only upon their performance but also upon their visual appeal. The optical properties of paper, including whiteness, brightness, opacity, and gloss, affect its visual perception and appeal. From a practical point of view, it is important to quantify these optical properties by means of reliable and repeatable measurement methods, and furthermore, to relate these measured values to the structure of paper and characteristics of its constituents. This would allow papermakers to design new products with improved quality and reduced cost. In recent years, significant progress has been made in terms of the fundamental understanding of light-paper inter- action and its effect on paper’s appearance. The introduction of digital imaging technology has led to the emergence of a new category of optical testing methods and has provided fresh insights into the relationship between paper’s structure and its optical properties. These developments were complemented by advances in the theoretical treatment of light propagation in paper. In particular, wave scattering theories in random media are finding increasing applicability in gaining a better understanding of the optical properties of paper.
    [Show full text]