2 1 V16 4 A2

Total Page:16

File Type:pdf, Size:1020Kb

2 1 V16 4 A2 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number r » (43) International Publication Date i 1 /i 22 December 2011 (22.12.2011) 2 1 V16 4 A2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, G01N 33/68 (2006.01) C12Q 1/18 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, G01N 33/15 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, PCT/US201 1/040926 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (22) International Filing Date: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 17 June 201 1 (17.06.201 1) SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 61/355,786 17 June 2010 (17.06.2010) ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, 61/490,295 26 May 201 1 (26.05.201 1) TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, (71) Applicant (for all designated States except US): THE LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, JOHNS HOPKINS UNIVERSITY [US/US]; 3400 SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, North Charles Street, Baltimore, Maryland 21218 (US). GW, ML, MR, NE, SN, TD, TG). (72) Inventors; and Declarations under Rule 4.17 : (75) Inventors/ Applicants (for US only): ZHANG, Ying [US/ — as to applicant's entitlement to apply for and be granted US]; MM1, JHSPH, 615 North Wolfe Street, Baltimore, a patent (Rule 4.1 7(H)) Maryland 21205 (US). SHI, Wanliang [CN/US]; MM1, JHSPH, 615 North Wolfe Street, Baltimore, Maryland — as to the applicant's entitlement to claim the priority of 21205 (US). the earlier application (Rule 4.17(Hi)) (74) Agent: ALATHARI, Zayd; VENABLE LLP, P.O. Box — of inventorship (Rule 4.1 7(iv)) 34385, Washington, District of Columbia 20043-9998 Published: (US). — without international search report and to be republished (81) Designated States (unless otherwise indicated, for every upon receipt of that report (Rule 48.2(g)) kind of national protection available): AE, AG, AL, AM, < o o (54) Title: METHODS OF IDENTIFYING THERAPEUTIC AGENTS FOR TREATING PERSISTER AND BACTERIAL IN o FECTION (57) Abstract: The present invention relates to methods, compositions, assays and kits for identifying an antibacterial agent that decreases persister formation or survival, eliminates or reduces bacterial infection or disease and/or increases killing of a bacterial cell. METHODS OF IDENTIFYING THERAPEUTIC AGENTS FOR TREATING PERSISTER AND BACTERIAL INFECTION The research resulting in the invention described herein was supported in part by funding from the National Institutes of Health AI44063. The United States Government has certain rights in the invention. Background Pyrazinamide (PZA) is an important first-line tuberculosis (TB) drug that is most commonly used in combination with isoniazid and rifampin for the treatment of tuberculosis. PZA plays a unique role in shortening the tuberculosis treatment from previously 9-12 months to 6 months as a result of its ability to kill a population of persister M. tuberculosis bacteria that are not killed by other TB drugs. Persisters pose a significant challenge to the control of various bacterial infections, as they underlie latent infections, chronic and recurrent infections, biofilm infections, lengthy therapy of certain bacterial infections as in tuberculosis and post-treatment persistence and relapse (e.g., Zhang, Y., Persistent and dormant tubercle bacilli and latent tuberculosis. Front Biosci, 2004. 9 : p. 1136-56; McDermott, W., Microbial persistence. The Yale J Biol Med, 1958. 30: p. 257-91; and Lewis, K., Persister cells, dormancy and infectious disease. Nat Rev Microbiol, 2007. 5(1): p. 48-56). Persister bacteria pose enormous public health problems. The persister tubercle bacilli (TB) present a tremendous challenge for effective TB control and underlie the lengthy TB therapy. This makes patient compliance very difficult and is in part responsible for the increasing emergence of drug resistant TB such as the recently reported extreme drug resistant TB (XDR-TB) (J. Cohen, Science 313, 1554 (2006). Identifying how drugs like PZA that kill persister bacteria is key to finding new generation of persister antibiotics. Moreover, most strains of M. tuberculosis that are resistant to PZA are due to mutations in the gene pncA encoding pyrazinamidase/nicotinamidase that is involved in conversion of PZA to pyrazinoic acid (POA), but a few PZA-resistant M. tuberculosis strains do not have pncA mutations, suggesting new mechanism of resistance. Despite the importance of PZA in shortening the treatment of TB, its mechanism of action is the least understood of all tuberculosis drugs, and the target of PZA or its active metabolite, pyrazinoic acid (POA), remains elusive. Previous attempts to identify the mode of PZA action by genetic approaches have so far been unsuccessful. This invention identified a number of drug targets of PZA which can be used for identifying new antibiotics for treatment of TB infection and other bacterial infections and for identifying PZA-resistant TB bacteria. There is a need for more effective sterilizing drugs, methods and compositions for treating persistent bacterial infections such as tuberculosis. Brief Description of the Drawings Figure 1. Mycobacterial lysates were loaded onto the POA-linked and control columns and the proteins that bound to POA (A) and the control column (B) were analyzed by SDS- PAGE. Lane M, protein ladder; Lane 1, whole cell lysate; 2, flow-through fraction; 3, washing fraction; 4, elution fraction. The band indicated by the red arrow is RpsA. Figure 2. Concentration-dependent inhibition of trans-translation by POA with M. tuberculosis ribosome and DHFR template with rare codon cluster. This bar graph represents densitometry scan of band intensities of similar experiments in Figure 4C performed 5 times (P value <0.024, n=5). Figure 3. Structures of POA derivative (5-hydroxyl-2-pyrazinecarboxylic acid) (A) and the control compound ethanolamine (B) coupled to Sepharose 6B column for the identification of POA binding proteins from M. tuberculosis. Figure 4. RpsA alignment and isothermal titration calorimetry (ITC) titration of RpsA and POA. (A) Alignment of RpsA from M. tuberculosis H37Rv, M. tuberculosis PZA-resistant strain DHM444 and M. smegmatis. Rl to R4 represent the four homologous RNA-binding domains in RpsA. Colored vertical lines in gray boxes indicate sequence variations in the highly conserved RpsA sequences compared with the wild type M. tuberculosis sequence. The expanded region shows the variability in amino acid sequence in the C-terminus of RpsA among mycobacterial species. The red arrow at position 438 amino acid residue indicates the deletion of alanine in the C-terminal region of the mutant RpsA. ITC binding studies indicate POA bound to the M. tuberculosis H37Rv RpsA (WT) (B, inset VI), but not DHM444 RpsA (Mutant)(Inset, IV), and only weakly with the M. smegmatis RpsA (M. smeg) (Inset II). PZA did not bind to wild type RpsA (Inset V) or mutant RpsA (Inset III). The lower panel of the Figure 2B shows the typical molar ratio saturation plot of POA with wild type Mtb RpsA. Figure 5. (A) Concentration-dependent inhibition of tmRNA binding to wild type M. tuberculosis RpsA by POA (Lanes 2-7). tmRNA from M. tuberculosis was used as RNA alone control (Lane 1). The wild type RpsA interaction with tmRNA was not affected by PZA (200 g/ml) (Lane 8) or INH ( 1 g/ml) (Lane 9). (B) tmRNA had impaired binding to the mutant RpsA (Lane 2), and POA at different concentrations did not inhibit the interaction of the DHM444 mutant RpsA with tmRNA (Lanes 3-7); The mutant RpsA interaction with tmRNA was not affected by PZA (200 g/ml) (Lane 8) or INH ( 1 g/ml) (Lane 9). (C) POA at 100, 50, and 25 µg/ml inhibited trans-translation of the DHFR product in a concentration-dependent manner in the in vitro system that contained ribosomes from M. tuberculosis, tmRNA and recombinant SmpB from M. tuberculosis, template pDHFR-8 AGG rare codons that are required for trans- translation (Lanes 1-5). Arrowheads indicate the trans-translation product DHFR was still present with low concentration of POA at 12.5 µ ηΐ (Lane 4) or in the absence of POA (Lane 5). POA at different concentrations did not inhibit canonical translation in in vitro translation system using ribosomes from M. tuberculosis, template pDHFR with stop codon (D, Lanes 6- 10), nor the trans-translation of DHFR using ribosome from M. smegmatis (E, Lanes 1-4), or using ribosome from E. coli (F, Lanes 1-4) in the trans-translation system that contained tmRNA and recombinant SmpB from M. tuberculosis, template pDHFR-8 AGG rare codons. Figure 6. A new model for the mode of action of PZA. PZA is converted to the active form POA by M. tuberculosis PZase intracellularly and inhibits targets including RpsA. Upon stress, translating ribosomes are stalled and incomplete polypeptides may be toxic to the cell. The bacterial cell resolves this problem by adding tmRNA to the stalled mRNA.
Recommended publications
  • Clinically Isolated Chlamydia Trachomatis Strains
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, JUIY 1988, p. 1080-1081 Vol. 32, No. 7 0066-4804/88/071080-02$02.00/0 Copyright © 1988, American Society for Microbiology In Vitro Activities of T-3262, NY-198, Fleroxacin (AM-833; RO 23-6240), and Other New Quinolone Agents against Clinically Isolated Chlamydia trachomatis Strains HIROSHI MAEDA,* AKIRA FUJII, KATSUHISA NAKATA, SOICHI ARAKAWA, AND SADAO KAMIDONO Department of Urology, School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe-city, Japan Received 9 December 1987/Accepted 29 March 1988 The in vitro activities of three newly developed quinolone drugs (T-3262, NY-198, and fleroxacin [AM-833; RO 23-6240]) against 10 strains of clinically isolated Chiamydia trachomatis were assessed and compared with those of other quinolones and minocycline. T-3262 (MIC for 90% of isolates tested, 0.1 ,ug/ml) was the most active of the quinolones. The NY-198 and fleroxacin MICs for 90% of isolates were 3.13 and 62.5 ,ug/ml, respectively. Recently, it has become well known that Chlamydia 1-ml sample of suspension was seeded into flat-bottomed trachomatis is an important human pathogen. It is respon- tubes with glass cover slips and incubated at 37°C in 5% CO2 sible not only for trachoma but also for sexually transmitted for 24 h. The monolayer was inoculated with 103 inclusion- infections, including lymphogranuloma venereum. In forming units of C. trachomatis. The tubes were centrifuged women, it causes cervicitis, endometritis, and salpingitis at 2,000 x g at 25°C for 45 min and left undisturbed at room asymptomatically (19), while in men it causes nongono- temperature for 2 h.
    [Show full text]
  • Repurposing Drug Scaffolds: a Tool for Developing Novel Therapeutics with Applications in Malaria and Lung Cancer
    Repurposing Drug Scaffolds: A Tool for Developing Novel Therapeutics with Applications in Malaria and Lung Cancer A Thesis Submitted by: Hannah Elizabeth Cook In partial fulfilment of the requirements for the degree of: Doctor of Philosophy September 2018 Supervisors: Professor Matthew J. Fuchter & Professor Anthony G. M. Barrett Department of Chemistry Imperial College London 2 Declaration of Originality I, Hannah Cook, hereby confirm that the work presented within this thesis is entirely my own, conducted under the supervision of Professor Matthew J. Fuchter and Professor Anthony G. M. Barrett, at the Department of Chemistry, Imperial College London, unless otherwise stated. All work performed by others has been acknowledged within the text and referenced where appropriate. Hannah E. Cook September 2018 Copyright Declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 3 Abstract The definition of repurposing in the context of drug discovery encompasses a variety of strategies designed to redirect current therapeutic knowledge towards new disease indications. This approach can be successful for the design of new drugs to treat diseases of the developing world such as Malaria, where there are limited resources to fund new drug discovery campaigns. Moreover, it can be used to decrease the drug development time for diseases in which there is high drug attrition rates coupled with high mortality rates, which is the case for some cancers.
    [Show full text]
  • Treatment of Bacterial Urinary Tract Infections: Presence and Future
    european urology 49 (2006) 235–244 available at www.sciencedirect.com journal homepage: www.europeanurology.com Review - Infections Treatment of Bacterial Urinary Tract Infections: Presence and Future Florian M.E. Wagenlehner *, Kurt G. Naber Urologic Clinic, Hospital St. Elisabeth, Straubing, Germany Article info Abstract Article history: Bacterial urinary tract infections (UTIs) are frequent infections in the Accepted December 12, 2005 outpatient as well as in the nosocomial setting. The stratification into Published online ahead of uncomplicated and complicated UTIs has proven to be clinically useful. print on January 4, 2006 Bacterial virulence factors on the one side and the integrity of the host defense mechanisms on the other side determine the course of the Keywords: infection. In uncomplicated UTIs Escherichia coli is the leading organism, Urinary tract infections (UTI) whereas in complicated UTIs the bacterial spectrum is much broader Uncomplicated and including Gram-negative and Gram-positive and often multiresistant complicated UTI organisms. The therapy of uncomplicated UTIs is almost exclusively Antibiotic resistance of antibacterial, whereas in complicated UTIs the complicating factors uropathogens have to be treated as well. There are two predominant aims in the Antibiotic treatment antimicrobial treatment of both uncomplicated and complicated UTIs: New antiinfectives for (i) rapid and effective response to therapy and prevention of recurrence treatment of UTI of the individual patient treated; (ii) prevention of emergence of resis- tance to antimicrobial chemotherapy in the microbial environment. The main drawback of current antibiotic therapies is the emergence and rapid increase of antibiotic resistance. To combat this development several strategies can be followed. Decrease the amount of antibiotics administered, optimal dosing, prevention of infection and development of new antibiotic substances.
    [Show full text]
  • A TWO-YEAR RETROSPECTIVE ANALYSIS of ADVERSE DRUG REACTIONS with 5PSQ-031 FLUOROQUINOLONE and QUINOLONE ANTIBIOTICS 24Th Congress Of
    A TWO-YEAR RETROSPECTIVE ANALYSIS OF ADVERSE DRUG REACTIONS WITH 5PSQ-031 FLUOROQUINOLONE AND QUINOLONE ANTIBIOTICS 24th Congress of V. Borsi1, M. Del Lungo2, L. Giovannetti1, M.G. Lai1, M. Parrilli1 1 Azienda USL Toscana Centro, Pharmacovigilance Centre, Florence, Italy 2 Dept. of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), 27-29 March 2019 Section of Pharmacology and Toxicology , University of Florence, Italy BACKGROUND PURPOSE On 9 February 2017, the Pharmacovigilance Risk Assessment Committee (PRAC) initiated a review1 of disabling To review the adverse drugs and potentially long-lasting side effects reported with systemic and inhaled quinolone and fluoroquinolone reactions (ADRs) of antibiotics at the request of the German medicines authority (BfArM) following reports of long-lasting side effects systemic and inhaled in the national safety database and the published literature. fluoroquinolone and quinolone antibiotics that MATERIAL AND METHODS involved peripheral and central nervous system, Retrospective analysis of ADRs reported in our APVD involving ciprofloxacin, flumequine, levofloxacin, tendons, muscles and joints lomefloxacin, moxifloxacin, norfloxacin, ofloxacin, pefloxacin, prulifloxacin, rufloxacin, cinoxacin, nalidixic acid, reported from our pipemidic given systemically (by mouth or injection). The period considered is September 2016 to September Pharmacovigilance 2018. Department (PVD). RESULTS 22 ADRs were reported in our PVD involving fluoroquinolone and quinolone antibiotics in the period considered and that affected peripheral or central nervous system, tendons, muscles and joints. The mean patient age was 67,3 years (range: 17-92 years). 63,7% of the ADRs reported were serious, of which 22,7% caused hospitalization and 4,5% caused persistent/severe disability. 81,8% of the ADRs were reported by a healthcare professional (physician, pharmacist or other) and 18,2% by patient or a non-healthcare professional.
    [Show full text]
  • Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma by Andrea Shergalis
    Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma By Andrea Shergalis A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Medicinal Chemistry) in the University of Michigan 2020 Doctoral Committee: Professor Nouri Neamati, Chair Professor George A. Garcia Professor Peter J. H. Scott Professor Shaomeng Wang Andrea G. Shergalis [email protected] ORCID 0000-0002-1155-1583 © Andrea Shergalis 2020 All Rights Reserved ACKNOWLEDGEMENTS So many people have been involved in bringing this project to life and making this dissertation possible. First, I want to thank my advisor, Prof. Nouri Neamati, for his guidance, encouragement, and patience. Prof. Neamati instilled an enthusiasm in me for science and drug discovery, while allowing me the space to independently explore complex biochemical problems, and I am grateful for his kind and patient mentorship. I also thank my committee members, Profs. George Garcia, Peter Scott, and Shaomeng Wang, for their patience, guidance, and support throughout my graduate career. I am thankful to them for taking time to meet with me and have thoughtful conversations about medicinal chemistry and science in general. From the Neamati lab, I would like to thank so many. First and foremost, I have to thank Shuzo Tamara for being an incredible, kind, and patient teacher and mentor. Shuzo is one of the hardest workers I know. In addition to a strong work ethic, he taught me pretty much everything I know and laid the foundation for the article published as Chapter 3 of this dissertation. The work published in this dissertation really began with the initial identification of PDI as a target by Shili Xu, and I am grateful for his advice and guidance (from afar!).
    [Show full text]
  • Guidelines on Urinary and Male Genital Tract Infections
    European Association of Urology GUIDELINES ON URINARY AND MALE GENITAL TRACT INFECTIONS K.G. Naber, B. Bergman, M.C. Bishop, T.E. Bjerklund Johansen, H. Botto, B. Lobel, F. Jimenez Cruz, F.P. Selvaggi TABLE OF CONTENTS PAGE 1. INTRODUCTION 5 1.1 Classification 5 1.2 References 6 2. UNCOMPLICATED UTIS IN ADULTS 7 2.1 Summary 7 2.2 Background 8 2.3 Definition 8 2.4 Aetiological spectrum 9 2.5 Acute uncomplicated cystitis in pre-menopausal, non-pregnant women 9 2.5.1 Diagnosis 9 2.5.2 Treatment 10 2.5.3 Post-treatment follow-up 11 2.6 Acute uncomplicated pyelonephritis in pre-menopausal, non-pregnant women 11 2.6.1 Diagnosis 11 2.6.2 Treatment 12 2.6.3 Post-treatment follow-up 12 2.7 Recurrent (uncomplicated) UTIs in women 13 2.7.1 Background 13 2.7.2 Prophylactic antimicrobial regimens 13 2.7.3 Alternative prophylactic methods 14 2.8 UTIs in pregnancy 14 2.8.1 Epidemiology 14 2.8.2 Asymptomatic bacteriuria 15 2.8.3 Acute cystitis during pregnancy 15 2.8.4 Acute pyelonephritis during pregnancy 15 2.9 UTIs in post-menopausal women 15 2.10 Acute uncomplicated UTIs in young men 16 2.10.1 Pathogenesis and risk factors 16 2.10.2 Diagnosis 16 2.10.3 Treatment 16 2.11 References 16 3. UTIs IN CHILDREN 20 3.1 Summary 20 3.2 Background 20 3.3 Aetiology 20 3.4 Pathogenesis 20 3.5 Signs and symptoms 21 3.5.1 New-borns 21 3.5.2 Children < 6 months of age 21 3.5.3 Pre-school children (2-6 years of age) 21 3.5.4 School-children and adolescents 21 3.5.5 Severity of a UTI 21 3.5.6 Severe UTIs 21 3.5.7 Simple UTIs 21 3.5.8 Epididymo orchitis 22 3.6 Diagnosis 22 3.6.1 Physical examination 22 3.6.2 Laboratory tests 22 3.6.3 Imaging of the urinary tract 23 3.7 Schedule of investigation 24 3.8 Treatment 24 3.8.1 Severe UTIs 25 3.8.2 Simple UTIs 25 3.9 References 26 4.
    [Show full text]
  • Original Article Fluoroquinolones Inhibit HCV by Targeting Its Helicase
    Antiviral Therapy 2012; 17:467–476 (doi: 10.3851/IMP1937) Original article Fluoroquinolones inhibit HCV by targeting its helicase Irfan A Khan1,2, Sammer Siddiqui1, Sadiq Rehmani1, Shahana U Kazmi2, Syed H Ali1,3* 1Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan 2Department of Microbiology, University of Karachi, Karachi, Pakistan 3Department of Microbiology, Dow University of Health Sciences, Karachi, Pakistan *Corresponding author e-mail: [email protected] Background: HCV has infected >170 million individuals of 12 different fluoroquinolones. Afterwards, Huh-7 and worldwide. Effective therapy against HCV is still lacking and Huh-8 cells were lysed and viral RNA was extracted. The there is a need to develop potent drugs against the virus. extracted RNA was reverse transcribed and quantified by In the present study, we have employed two culture models real-time quantitative PCR. Fluoroquinolones were also to test the activity of fluoroquinolone drugs against HCV: a tested on purified NS3 protein in a molecular-beacon- subgenomic replicon that is able to replicate independently based in vitro helicase assay. in the cell line Huh-8 and the Huh-7 cell culture model Results: To varying degrees, all of the tested fluoroqui- that employs cells transfected with synthetic HCV RNA to nolones effectively inhibited HCV replication in both produce the infectious HCV particles. Fluoroquinolones have Huh-7 and Huh-8 culture models. The inhibition of HCV also been shown to have inhibitory activity against certain NS3 helicase activity was also observed with all 12 of the viruses, possibly by targeting the viral helicase. To tease out fluoroquinolones.
    [Show full text]
  • Evaluation of Fleroxacin Activity Against Established Pseudomonas Fluorescens Biofilms D
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, May 1994, P. 1663-1669 Vol. 60, No. 5 0099-2240/94/$04.00+0 Copyright C 1994, American Society for Microbiology Evaluation of Fleroxacin Activity against Established Pseudomonas fluorescens Biofilms D. R. KORBER, 12* G. A. JAMES,1'3 AND J. W. COSTERTON2 Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4,3 and Department ofApplied Microbiology and Food Science, University of Saskatchewan, Saskatoon, Saskatchewan 57N OWO,1 Canada, and Center for Biofilm Engineering, Montana State University, Bozeman, Montana 597172 Received 28 September 1993/Accepted 9 February 1994 Scanning confocal laser microscopy (SCLM) and fluorescent molecular probes were used to evaluate the effect of the fluoroquinolone fleroxacin on the architecture of established Pseudomonas fluorescens biofilms. Control P.fluorescens biofilms were heterogeneous, consisting of cell aggregates extending from the attachment surface to maximum measured depths of -90 ,im (mean biofilm depth at 72 h, 42 ± 28 ,um) and penetrated by an array of channels. In contrast, fleroxacin-treated biofilms were less deep (mean biofilm depth at 72 h, 29 + 8 ,um), varied little in depth over large areas, and consisted of a homogeneous distribution of cells. Fleroxacin also caused cells to elongate, with cells located near the biofilm-liquid interface lengthening significantly more than cells located at the attachment surface. By using SCLM, acridine orange, and image analysis it was found that -59%o of cells within fleroxacin-treated biofilms emitted red fluorescence whereas >99%6 of cells from control biofilms emitted green fluorescence. The fleroxacin-treated cells which emitted red fluorescence were observed to be the population of cells which elongated.
    [Show full text]
  • EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use
    Ref. Ares(2019)6843167 - 05/11/2019 31 October 2019 EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use Advice on implementing measures under Article 37(4) of Regulation (EU) 2019/6 on veterinary medicinal products – Criteria for the designation of antimicrobials to be reserved for treatment of certain infections in humans Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Introduction On 6 February 2019, the European Commission sent a request to the European Medicines Agency (EMA) for a report on the criteria for the designation of antimicrobials to be reserved for the treatment of certain infections in humans in order to preserve the efficacy of those antimicrobials. The Agency was requested to provide a report by 31 October 2019 containing recommendations to the Commission as to which criteria should be used to determine those antimicrobials to be reserved for treatment of certain infections in humans (this is also referred to as ‘criteria for designating antimicrobials for human use’, ‘restricting antimicrobials to human use’, or ‘reserved for human use only’). The Committee for Medicinal Products for Veterinary Use (CVMP) formed an expert group to prepare the scientific report. The group was composed of seven experts selected from the European network of experts, on the basis of recommendations from the national competent authorities, one expert nominated from European Food Safety Authority (EFSA), one expert nominated by European Centre for Disease Prevention and Control (ECDC), one expert with expertise on human infectious diseases, and two Agency staff members with expertise on development of antimicrobial resistance .
    [Show full text]
  • A Review on Anticancer and Antimicrobial Activity of Tetrafluoroquinolone Compounds
    Central Annals of Medicinal Chemistry and Research Review Article *Corresponding author Mohammad Asif, Department of Pharmacy, GRD (PG) Institute of Management and Technology, Dehradun, A Review on Anticancer (Uttarakhand), 248009, India. Email: and Antimicrobial Activity Submitted: 10 August 2014 Accepted: 07 October 2014 Published: 25 November 2014 of Tetrafluoroquinolone Copyright © 2014 Asif Compounds OPEN ACCESS Mohammad Asif* Keywords Department of Pharmacy, GRD (PG) Institute of Management and Technology, India • Antibacterial activity • Anti cancer activity Abstract • Tetracyclic • Fluoroquinolone. The prokaryotic type II topoisomerases (DNA gyrase and topoisomerase IV) and the eukaryotic type II topoisomerases represent the cellular targets for quinolone antibacterial agents and a wide variety of anticancer drugs, respectively. In view of the mechanistic similarities and sequence homologies exhibited by the two enzymes, tentative efforts to selectively shift from an antibacterial to an antitumoral activity was made by a series of functionalized teracyclic fluoroquinolones. Thus, as part of a continuing search for potential anticancer drug candidates in the quinolones series, the interest in cytotoxicity of functionalized tetracyclic fluoroquinolones. The growth inhibitory activities of tetracyclic fluoroquinolones were against cancer cell lines using an in vitro cell culture system. Some of tetracyclic fluoroquinolones showed in vitro cytotoxic activity. The tetracyclic group of fluoroquinolones series changes the biological profile of quinolones from antibacterial to cytotoxic activity. The tetracyclic fluoroquinolones have excellent potential as a new class of cytotoxic agents. INTRODUCTION ring with a bridge between C-8 and N-1 is found in levofloxacin and Rufloxacin. Last generation FQLs demonstrated the favorable Fluoroquinolone (FQL), NorfloxacinFigure 1 is an antibacterial influence of an OCH3 substituent at position 8 on Gram positive agent with potent and broad spectrum activity and several and on anaerobic bacteria.
    [Show full text]
  • Disabling and Potentially Permanent Side Effects Lead to Suspension Or Restrictions of Quinolone and Fluoroquinolone Antibiotics
    16 November 2018 EMA/795349/2018 Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics EMA has reviewed serious, disabling and potentially permanent side effects with quinolone and fluoroquinolone antibiotics given by mouth, injection or inhalation. The review incorporated the views of patients, healthcare professionals and academics presented at EMA’s public hearing on fluoroquinolone and quinolone antibiotics in June 2018. EMA’s human medicines committee (CHMP) has endorsed the recommendations of EMA’s safety committee (PRAC) and concluded that the marketing authorisation of medicines containing cinoxacin, flumequine, nalidixic acid, and pipemidic acid should be suspended. The CHMP confirmed that the use of the remaining fluoroquinolone antibiotics should be restricted. In addition, the prescribing information for healthcare professionals and information for patients will describe the disabling and potentially permanent side effects and advise patients to stop treatment with a fluoroquinolone antibiotic at the first sign of a side effect involving muscles, tendons or joints and the nervous system. Restrictions on the use of fluoroquinolone antibiotics will mean that they should not be used: • to treat infections that might get better without treatment or are not severe (such as throat infections); • to treat non-bacterial infections, e.g. non-bacterial (chronic) prostatitis; • for preventing traveller’s diarrhoea or recurring lower urinary tract infections (urine infections that do not extend beyond the bladder); • to treat mild or moderate bacterial infections unless other antibacterial medicines commonly recommended for these infections cannot be used. Importantly, fluoroquinolones should generally be avoided in patients who have previously had serious side effects with a fluoroquinolone or quinolone antibiotic.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Fleroxacin Item No. 24173 CAS Registry No.: 79660-72-3 Formal Name: 6,8-difluoro-1-(2-fluoroethyl)-1,4-dihydro-7-(4-methyl- 1-piperazinyl)-4-oxo-3-quinolinecarboxylic acid N F F Synonyms: AM833, Ro 23-6240 N N MF: C17H18F3N3O3 FW: 369.3 Purity: ≥98% OH UV/Vis.: λ: 210, 291 nm F max O Supplied as: A crystalline solid O Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Fleroxacin is supplied as a crystalline solid. A stock solution may be made by dissolving the fleroxacin in the solvent of choice. Fleroxacin is soluble in organic solvents such as DMSO and dimethyl formamide, which should be purged with an inert gas. The solubility of fleroxacin in these solvents is approximately 15 and 0.1 mg/ml, respectively. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of fleroxacin can be prepared by directly dissolving the crystalline solid in aqueous buffers. The solubility of fleroxacin in PBS, pH 7.2, is approximately 10 mg/ml. We do not recommend storing the aqueous solution for more than one day. Description Fleroxacin is a broad-spectrum fluoroquinolone antibiotic.1 It is active against a variety of Gram-positive and Gram-negative bacteria with MIC90 values ranging from 0.05 to 3.13 µg/ml for clinical isolates of Staphylococcus, P.
    [Show full text]