Molecular Phylogenetic Studies of the Genera of Tribe Polygonateae (Asparagaceae: Nolinoideae): Disporopsis, Heteropolygonatum, and Polygonatum

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogenetic Studies of the Genera of Tribe Polygonateae (Asparagaceae: Nolinoideae): Disporopsis, Heteropolygonatum, and Polygonatum University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2017 Molecular phylogenetic studies of the genera of tribe Polygonateae (Asparagaceae: Nolinoideae): Disporopsis, Heteropolygonatum, and Polygonatum. Aaron Jennings Floden University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Evolution Commons Recommended Citation Floden, Aaron Jennings, "Molecular phylogenetic studies of the genera of tribe Polygonateae (Asparagaceae: Nolinoideae): Disporopsis, Heteropolygonatum, and Polygonatum.. " PhD diss., University of Tennessee, 2017. https://trace.tennessee.edu/utk_graddiss/4398 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Aaron Jennings Floden entitled "Molecular phylogenetic studies of the genera of tribe Polygonateae (Asparagaceae: Nolinoideae): Disporopsis, Heteropolygonatum, and Polygonatum.." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology. Edward E. Schilling, Major Professor We have read this dissertation and recommend its acceptance: Brian O'meara, Randy Small, Sally Horn Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Molecular phylogenetic studies of the genera of tribe Polygonateae (Asparagaceae: Nolinoideae): Disporopsis, Heteropolygonatum, and Polygonatum. A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Aaron Jennings Floden May 2017 Copyright © 2017 by Aaron J. Floden. All rights reserved. ii Acknowledgements I cannot thank my wife, Heather Floden, or express my gratitude sufficiently to her. She has helped throughout and endured my absence during my fieldwork ‘vacations’ and allowed the cultivation of some 400+ accessions of Polygonatum and relatives in the home garden all while being essentially the sole provider for us and numerous poodle rescues. I also thank family and friends for encouragement. I thank my parents for partial funding for a trip to India. Amongst my botanically and/or horticulture inclined friends I am grateful for discussions on taxonomy of numerous genera that facilitate a more inclusive understanding or species relationships, and also for comments on growth habits observed in shared divisions of the cultivated collection of Polygonatum. Foremost thanks goes to those individuals that shared discussion, field experience where I could not visit during this brief period, an interest in the genera of “Ruscaceaous” monocots, and/or for providing living material or DNA samples that led to so much confusion - some of which still exists - and clarity at once. I believe I have listed all individuals who have helped immensely though I regret some may not be listed, though their aid is gratefully acknowledged: Tony Avent and Zac Hill at Juniper Level Botanic Garden; Dr. Leonid Averyanov; Sergey Banketov; Sean Barton; Cedric Basset; Wim Boens; Pascal Bruggeman; Clint and Robin Callens; Chris Chadwell; Anne Chambers; Kelly Dodson and Sue Milliken at Far Reaches Farm; Alan Galloway; Michael Goetz; Roy Herold; Daniel Hinkley; Ellen Hornig; Josef Jurasek; Jim Kee; Karl Kristensen; Jerry Lehman; Dr. John Lonsdale; Nick Macer, Dr. J.F. Maxwell; Dr. Jamie Minnaert-Grote (Collections Manager Herbarium University of Illinois); Dr. Tom Mitchell; Johan Nilsson, Dr. William Norris (WNMU); Momjir Pavelka; Vlastimil Pilous; Koen van Poucke; Giorgio Pozzi; Kevin Pratt; David Preshler; Darrell Probst; David Scherberich; Dr. Lena Strowe; Jim Waddick; Yijia Wang; Mark Weathington at JC Rauslton Arboretum; Paige Woodward; Bleddyn and Sue Wynn-Jones; Chen Yi; Peter Zale; and especially Bjørnar Olsen for assistance in getting much of the plant material cultivated used in this study. I thank the curators of the following herbaria for digitization of specimens or for specimen loans: BM; CAS; CBD; E; HUH; K; KUN; MI; MO; NY; P; PE; US. At the University of Tennessee I thank Dr. Wofford for use of the TENN herbarium and Dr. McFarland for use of greenhouse space in seed germination studies and cultivation of samples for cytological examination. I extend my thanks to several individuals who have aided me in one way or another in accessing material, data on specimens, or in searching herbaria for additional specimens of otherwise unknown taxa – many of which are still in need of names. I thank the Hesler Fund for financial support of fieldwork in Vietnam and India. Special thanks go to Darrell Probst who funded fieldwork in China. Additionally, grateful thanks are warranted for the Chancellors Fund which provided partial funding for travel India and to China. I extend my thanks to Joe May and Veronica Brown at the University of Tennessee Molecular Biology Resource Facility for sequencing, help with resolving issues with some sequence data, and also for assistance with next-generation sequencing on the Ion Torrent platform. iii “Common experience teacheth, that in the world there is not to be found another herbe comparable to it." John Gerard, 1597. Gerard's Herball - Or, Generall Historie of Plantes, London: John Norton 1975. iv Abstract The Polygonateae (Asparagaceae) are a subtribe of the Nolinoideae that is redefined here to include three genera which are investigated here: Disporopsis; Heteropolygonatum, and Polygonatum. This group of genera, characterized by their axillary-flowered habit, are closely related but differ greatly in their morphology, cytology, and diversity. A molecular phylogeny is presented to show their relationships to one another and to closely related outgroups based on data from whole chloroplast genomes with low taxonomic sampling. The results show that the genera of the Polygonateae are each monophyletic, and also show that a fourth genus, Maianthemum, that was traditionally included in Polygonateae is not accurately placed there and should be excluded. A second set of analyses was based on an expanded dataset with high taxonomic sampling using a few selected loci from the chloroplast, mitochondrial, and nuclear genomes. The results confirmed the revised delimitation of Polygonateae that excludes Maianthemum and the respective monophyly of Disporopsis, Heteropolygonatum, and Polygonatum. Species-level relationships within each individual genus were analyzed, in part to allow assessment of the placement of many novel or obscure species that have been described (or resurrected) recently. Finally, the phylogenetic results from the expanded dataset were used to test various hypotheses regarding cytological evolution in the subtribe, and the results showed a pattern of descending (or in a few cases ascending) dysploidy that underlies the observed variation in chromosome numbers. v Table of Contents Introduction ............................................................................................................................1 References ...........................................................................................................................6 Chapter 1 The chloroplast genomes of Disporopsis, Heteropolygonatum, and Polygonatum (Asparagaceae) and comparative analysis of two widely disjunct Polygonatum species .....9 Abstract ...............................................................................................................................10 References ...........................................................................................................................28 Appendix A .........................................................................................................................36 Appendix B .........................................................................................................................36 Appendix C .........................................................................................................................37 Chapter 2 Resolving Polygonatum (Asparagaceae); a phylogeny based on molecular data from the nuclear and plastid genomes ...................................................................................41 Abstract ...............................................................................................................................42 References ...........................................................................................................................62 Appendix D .........................................................................................................................66 Chapter 3 Cytological evolution in the Polygonateae (Asparagaceae: Nolinoideae) ............86 Abstract ...............................................................................................................................87 References ...........................................................................................................................94 Appendix E .........................................................................................................................97
Recommended publications
  • Ponytail Plant - ARID DOME
    8/25/2009 Ponytail Plant - ARID DOME The ponytail plant grows in the Arid Dome. It is sometimes wrongly called the ponytail palm, but it is more closely related to agave or yucca than palm trees. These related plants are native to Mexico. They used to be in the same botanical family, but recent reclassification has separated them into different families. The scientific name is Beaucarnea recurvata. The common name ponytail plant comes from the thick mop of long, straplike leaves that are in a cluster at the top of the plant. The tree keeps its leaves and replaces them only when they are removed by a storm or other injury. This plant is something like a camel because it can survive for long dry periods using the water that is stored in its swollen trunk. The bark of the swollen base of the plant looks very much like the rough skin of an elephant, so another common name for this plant is “elephant foot.” Ponytail plants can grow to 6 feet in a container, but grow to 30 feet outdoors. They grow very slowly. This makes them good house plants because they do not need a lot of care and do not outgrow their pots for a long time. Seeds and plants are available at many commercial websites, such as gflora.com which provided the image accompanying this article. Mature plants produce many, small, creamy-white flowers on long panicles. You can sometimes see them in bloom at the Domes. They may flower two or three times a year.
    [Show full text]
  • Plant Descriptions 2018 4/22/2018
    Tyler Plant Sale - Plant Descriptions 2018 4/22/2018 TypeDesc Botanical Common Season of Exposure Size Description Name Name Interest Woody: Vine Clematis Clematis Summer to Sun to 8-10' Clematis 'Cardinal Wyszynski' dazzles your garden with huge 8" glowing 'Cardinal Fall Partial crimson flowers. The vibrant flowers are accented with darker crimson Wyszynski' Shade anthers and light pink filaments. Blooms in June-July and again in September. Attracts pollinators. Easy to grow in a rich, porous, alkaline soil. Provide shade for the roots with a generous layer of mulch or a shallow-rooted groundcover near the base of the vine. Received the Golden Medal at 'Plantarium' in 1990. Woody: Vine Clematis Hybrid Summer Sun to 6-8’ Fully double white flowers have yellow anthers and green outer petals. 'Duchess of Clematis Partial They are borne on the previous year’s growth and the current season’s Edinburgh' Shade new growth. This clematis does not require heavy pruning, remove only weak or dead stems in late spring. Tolerates most garden soils, needs protection from cold winds. Woody: Vine Clematis Clematis Early Sun to 8-10’ A beautiful, compact vine that covers itself with 5” shell pink flowers in 'Hagley Summer Partial summer. 'Hagley Hybrid' is also know as Pink Chiffon. This is a large- Hybrid' Shade flowering clematis that can be grown as a container plant. It is best keep out of full sun to prevent bleaching of flowers. Prefers moist, well-drained soil and for best results, mulch. TypeDesc Botanical Common Season of Exposure Size Description Name Name Interest Woody: Vine Clematis x Clematis Summer to Sun to 6-10' This deciduous hybrid clematis, has unusual and very striking deep blue durandii Fall Partial flowers with creamy stamens on a non-clinging, scrambling vine.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • YUCCA, SOTOL and NOLINA Variety Sheet
    YUCCA, SOTOL and NOLINA Variety Sheet YUCCA SIZE ZONE DESCRIPTION This adaptable Yucca grows in full sun to light, filtered shade and can grow to 10' tall Yucca rostrata/Beaked Yucca 10' x 5' Zone 5 and 3' wide. Its blue-green narrow leaves end in a sharp terminal spine. It is a slow to moderate grower and is cold hardy to -20° F. Yucca pendula (recurvifolia) Soft Named for its graceful, bending blue-green leaves, Soft Leaf Yucca is adaptable to sun 6' x 6' Zone 7 Leaf Yucca or shade. Tall white blooms tower above the plant in the summer. This low clumping yucca can eventually form wide clumps with up to 30 heads. Tall Yucca pallida/Pale Leaf Yucca 1'-2' x 1'-3' Zone 6 flower stalks with pure white bell-shaped floweres are produced in the late spring. Twistleaf Yucca is native to Central Texas. This low-growing Yucca tolerates full sun to Yucca rupicola/Twistleaf Yucca 2' x 2-3' Zone 6 shade. It produces 5' spikes of creamy-white flowers in the summer. This trunk-forming Yucca can reach 12' tall. The powder-blue leaves have yellow Yucca rigida/Blue Yucca 12' x 8' Zone 6 margins and are fairly rigid. It thrives in well-drained soil in full sun or light shade. Yucca filamentosa 'Color This heat and drought tolerant Yucca grows in full to part sun. The green and yellow 2'-3' x2'-3' Zone 4 Guard'/Color Guard Yucca striped leaves add accent color to the landscape. This low-growing Yucca has stiff sword-shaped leaves with a green center and yellow Yucca flaccida 'Bright Edge'/Bright 2' x 2' Zone 4 margins.
    [Show full text]
  • Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore
    Sunshine Coast Council Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore. Environmental Operations May 2013 0 | Page Table of Contents Introduction ................................................................................................................................ 2 Purpose ............................................................................................................................................... 2 Flying-fox Mitigation Strategies .......................................................................................................... 2 State and Federal Permits ................................................................................................................... 4 Roost Management Plan .................................................................................................................... 4 Risk ...................................................................................................................................................... 5 Flying-fox Dispersal Success in Australia ............................................................................................. 6 References .......................................................................................................................................... 7 Cassia Wildlife Corridor ................................................................................................................ 8 Background ........................................................................................................................................
    [Show full text]
  • Complete Chloroplast Genomes Shed Light on Phylogenetic
    www.nature.com/scientificreports OPEN Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae) Ju Namgung1,4, Hoang Dang Khoa Do1,2,4, Changkyun Kim1, Hyeok Jae Choi3 & Joo‑Hwan Kim1* Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, fve of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein‑coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA , psbA upstream, rpl32- trnL-UAG , ycf1, rpl22, matK, and ndhF, were identifed in the studied Allium species. Additionally, we present the frst phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, fve species of Amaryllidoideae, one species of Agapanthoideae, and fve species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae‑Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae‑ Gilliesieae‑Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by diferentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya.
    [Show full text]
  • Four New Species of Aspidistra Ker Gawl. (Asparagaceae) from China and Vietnam with a Comment on A
    Gardens’ Bulletin Singapore 64(1): 201–209. 2012 201 Four new species of Aspidistra Ker Gawl. (Asparagaceae) from China and Vietnam with a comment on A. longifolia Hook.f. and A. hainanensis W.Y.Chun & F.C.How Hans-Juergen Tillich1 and Leonid V. Averyanov2 1Ludwig-Maximilians-University, Systematic Botany, Menzinger Str. 67, D-80638 Munich, Germany [email protected] 2Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popov Str. 2, St. Petersburg 197376, Russian Federation ABSTRACT. Four new species of Aspidistra Ker Gawl. (Asparagaceae) are described and illustrated: A. basalis Tillich, A. columellaris Tillich, A. gracilis Tillich from China, and A. coccigera L.V.Averyanov & Tillich from Vietnam. The application of the name A. longifolia Hook.f. to plants from SE Asia and the intraspecific variability of A. hainanensis W.Y.Chun & F.C.How across its range from peninsular Malaysia to SE China is also discussed. Keywords. Asparagaceae, Aspidistra, China, Malay Peninsula, Thailand, Vietnam Introduction The genus Aspidistra Ker Gawl. (Asparagaceae: Nolinoideae) is distributed from Assam (India) in the west to southern Japan in the east, and from Central China southwards to the Malay Peninsula but the centre of diversity is SE China (Guangxi Province) and adjacent northern Vietnam. During the past three decades the number of known species has increased considerably from 11 in 1980 to more than 100. The recognition of new Aspidistra species is ongoing and stems largely from more widespread collecting, especially in remote areas of SE Asia combined with more detailed study of living plants. Since the publication of a comprehensive key to the genus (Tillich 2008), additional new species have been published (Hou et al.
    [Show full text]
  • Scanned Document
    ~ l ....... , .,. ... , •• 1 • • .. ,~ . · · . , ' .~ . .. , ...,.,, . ' . __.... ~ •"' --,~ ·- ., ......... J"'· ·····.-, ... .,,,.."" ............ ,... ....... .... ... ,,··~·· ....... v • ..., . .......... ,.. •• • ..... .. .. ... -· . ..... ..... ..... ·- ·- .......... .....JkJ(o..... .. I I ..... D · . ··.·: \I••• . r .• ! .. THE SPECIES IRIS STUDY GROUP OF THE AMERICAN IRIS SOCIETY \' -... -S:IGNA SPECIES IRIS GROUP OF NORTH AMERICA APRIL , 1986 NO. 36 OFFICERS CHAIRMAN: Elaine Hulbert Route 3, Box 57 Floyd VA 24091 VICE--CHAI.RMAN: Lee Welsr, 7979 W. D Ave. ~<alamazoo MI 4900/i SECRETARY: Florence Stout 150 N. Main St. Lombard, IL 6014~ TREASURER: Gene Opton 12 Stratford Rd. Berkelew CA 9470~ SEED EXCHANGE: Merry&· Dave Haveman PO Box 2054 Burling~rne CA 94011 -RO:E,IN DIRECTOR: Dot HuJsak 3227 So. Fulton Ave. Tulsc1, OK 74135 SLIDE DIRECTO~: Colin Rigby 2087 Curtis Dr . Penngrove CA 9495~ PUBLICATIONS SALES: Alan McMu~tr1e 22 Calderon Crescent Willowdale, Ontario, Canada M2R 2E5 SIGNA EDITOR : .Joan Cooper 212 W. Count~ Rd. C Roseville MN 55113 SIGNA PUBLISl-!ER:. Bruce Richardson 7 249 Twenty Road, RR 2 Hannon, Ontario, Canada L0R !Pe CONTENTS--APRIL, 1986--NO. 36 CHAIRMAN'S MESSAGE Elaine HL\l ber t 1261 PUBLICATI~NS AVAILABLE Al an McMwn tr ie 12c)1 SEED EXCHANGE REPORT David & Merry Haveman 1262 HONORARY LIFE MEMBERSHIPS El a ine? HLtlbert 1263 INDEX REPORTS Eric Tankesley-Clarke !263 SPECIES REGISTRATIONS--1985 Jean Witt 124-4' - SLIDE COLLECTION REPORT Col in Rigby 1264 TREASURER'S REPORT Gene (>pton 1264, NOMINATING COMMITTEE REPORT Sharon McAllister 1295 IRIS SOURCES UPDATE Alan McMurtrie 1266 QUESTIONS PLEASE '-Toan Cooper 1266 NEW TAXA OF l,P,IS L . FROM CHINA Zhao Yu·-· tang 1.26? ERRATA & ADDENDA ,Jim Rhodes 1269 IRIS BRAI\ICHil\iG IN TWO MOl~E SPECIES Jean Witt 1270 TRIS SPECIES FOR SHALLOW WATER Eberhard Schuster 1271 JAPANESE WILD IRISES Dr.
    [Show full text]
  • Native Plant Garden Field Journal
    National Park Service White Sands Department of the Interior White Sands National Monument Chihuahuan Desert Native Plant Garden Field Journal ore than just colorful flowers or interesting shapes outlined by Mtoasty sunsets, the wild plants of the Chihuahuan Desert have met the needs of the people who have crossed this harsh desert’s path. For hundreds of years these plants have provided food, medicine, shelter, and have become an important part of many cultures’ traditions. This guided tour will take you back to a time long before food markets and hardware stores when people had to learn, the hard way, which plants were useful and what purpose each one served. The native plant garden in front of the White Sands National Monument Visitor Center provides a tiny sample of the many plants that form the unique Chihuahuan Desert landscape. Please keep in mind that these plants are here for the enjoyment of all visitors so that they may learn, examine, and appreciate them. No part of the plants may be removed or damaged in any way. Remember, you are a guest at these plants’ home. Please be mindful and respectful of all parts of nature, both living and non-living. National Park Service White Sands Department of the Interior White Sands National Monument Visitor Trash Apache can Center Entrance Plume B Desert White Sands National Monument (sign) Willow Indian Rice Colorado Creosote Honey Grass Four O’clock Bush Mesquite C D F G To Restrooms Torrey’s E Jointr Three-Leafed H New Mexico Sumac K Soaptree J Yucca Agave Bench I A Lechuguilla Ocotillo
    [Show full text]
  • Massonia Amoena (Asparagaceae, Scilloideae), a Striking New Species from the Eastern Cape, South Africa
    Phytotaxa 181 (3): 121–137 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.181.3.1 Massonia amoena (Asparagaceae, Scilloideae), a striking new species from the Eastern Cape, South Africa MARIO MARTÍNEZ-AZORÍN1,2, MICHAEL PINTER1, GERFRIED DEUTSCH1, ANDREAS BRUDERMANN1, ANTHONY P. DOLD3, MANUEL B. CRESPO2, MARTIN PFOSSER4 & WOLFGANG WETSCHNIG1* 1Institute of Plant Sciences, NAWI Graz, Karl-Franzens-University Graz, Holteigasse 6, A-8010 Graz, Austria; e-mail: wolfgang.wet- [email protected] 2CIBIO (Instituto Universitario de la Biodiversidad), Universidad de Alicante, P. O. Box 99, E-03080 Alicante, Spain. 3Selmar Schonland Herbarium, Department of Botany, Rhodes University, Grahamstown 6140 South Africa. 4Biocenter Linz, J.-W.-Klein-Str. 73, A-4040 Linz, Austria. *author for correspondence Abstract As part of an ongoing study towards a taxonomic revision of the genus Massonia Houtt., a new species, Massonia amoena Mart.-Azorín, M.Pinter & Wetschnig, is here described from the Eastern Cape Province of South Africa. This new species is characterized by the leaves bearing heterogeneous circular to elongate pustules and the strongly reflexed perigone seg- ments at anthesis. It is at first sight related to Massonia jasminiflora Burch. ex Baker, M. wittebergensis U.Müll.-Doblies & D.Müll.-Doblies and M. saniensis Wetschnig, Mart.-Azorín & M.Pinter, but differs in vegetative and floral characters, as well as in its allopatric distribution. A complete morphological description of the new species and data on biology, habitat, and distribution are presented. Key words: flora, Hyacinthaceae, Massonieae, Southern Africa, taxonomy Introduction Hyacinthaceae sensu APG (2003) includes ca.
    [Show full text]
  • Winter/Spring 2014
    UNIVERSITY of CALIFORNIA BOTANICAL GARDEN NEWSLETTER Vol. 38 Numbers 1 & 2 | Published by the UNIVERSITY of CALIFORNIA BOTANICAL GARDEN at BERKELEY | Winter/ Spring 2014 The New World Desert Collection 'HVHUWV DUH RIWHQ GH¿QHG DV areas receiving less than 254 mm (10 in) of rainfall each year. Given that the Garden typically receives over 500 mm (20 in), this collection is a horticultural challenge. The Garden’s heavy clay soil has been greatly amended with expanded shale to improve drainage and reduce the incidence of diseases and pests, especially nematodes. Recent efforts to improve plant health with the application of compost tea and organic top dressing has shown good results, with renewed vigor DQGPRUHSUROL¿FÀRZHULQJRIPDQ\ FDFWL%HQH¿FLDOQHPDWRGHVDUHDOVR The hot south-facing exposure and rocky hardscape of the New World Desert provide a dramatic experience in the Garden. employed to keep the harmful ones Photo by Janet Williams in check. stablished early on in the Garden’s history in Strawberry Canyon, the New World Desert (NWD) is an iconic display of arid land plants from North and South America. EIt really started to take shape in the 1930s with the addition of plants collected during the Garden’s expeditions to the Andes. These expeditions focused on Peru and Chile, with forays into Bolivia. Botanical and personal highlights of these expeditions are documented in Garden Director T. Harper Goodspeed’s book, Plant Hunters of the Andes, published in 1961. The most recent desert expedition was to Baja California in 1986, led by then curator Dr. James Affolter and included Horticulturists Kurt Zadnik and Roger Raiche and current volunteer Fred Dortort.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]