Graham's Scan 1 Introduction 2 Definitions: 3 Algorithms in 2D

Total Page:16

File Type:pdf, Size:1020Kb

Graham's Scan 1 Introduction 2 Definitions: 3 Algorithms in 2D Graham’s Scan 1 Introduction A central problem in Computational Geometry which has inspired much of the initial development of the subject is the problem of computing the convex hull of a finite set of points. The computation of the convex hull is of importance in several application areas. 2 Definitions: A set S in Ed is said to be convex if the line segment joining any two of its points lies entirely inside the set. The convex hull of S is the smallest convex set that contains S. We focus on the case when S consists of a finite set of points. Intuitively, the structure of the hull is a convex polytope. The following theorem confirms this intuition. Theorem [McMullen-Shepherd]: A convex hull of a finite set of points S is a convex polytype; con- versely, a convex polytype is the convex hull of a finite set of points S. In particular in two dimensions the convex hull is a convex polygon. The vertices of this polygon are the extreme points; the points that lie inside the convex polygon are called interior points. The part of the boundary that goes clockwise from the left extreme point to the right extreme point is called the upper hull; the part that goes counterclockwise between the same two terminal points is called the lower hull (see Fig. 1). Figure 1: The convex hull of a set of points 3 Algorithms in 2d We first look at convex hull algorithms in two dimensions. The goal of any convex hull algorithm is to determine the extreme vertices and output them in the order in which they appear on the hull boundary. 1 4 Brute-force algorithm A brute-force approach is to consider all possible triangles formed by three input points and delete the points that lie in the interior of these triangles since these cannot lie on the hull boundary. Eventually we are left only with the extreme vertices which we sort in angular order about some point internal to the convex hull. The worst-case complexity of this method is O(n4), since we may have to check for nC3(O(n3)) triangles and for each triangle on three points checking whether the other n − 3 points are interior to this triangle requires O(n) time. 4.1 Graham’s algorithm: Graham’s algorithm provides a more efficient way of identifying the extreme vertices. The steps of this algorithm are as below. Step1 : Choose a point O, interior to the convex hull This is done by taking a triangle of three points and letting O be the centroid of this triangle. A triangle of three points is found by choosing any two points and letting the third point be one that does not lie on the line joining the first two points. If we can’t find such a point then all the points are collinear and the convex hull is just a line segment. Let O be the origin of polar coordinates. Step2 : Sort the input points in angular order about O. The sort is a lexicographic sort with respect to the polar coordinates r and θ. To resolve a comparison between two points no explicit angle comparison is necessary. If pi and pj are two points we only need check the sign of the area of the triangle △Opipj given by the determinant (except for a factor of 1/2) 10 0 1 p (x) p (y) i i 1 p (x) p (y) j j Step3 : Do a Graham scan of the polygon obtained by joining the points in their sorted order (assuming that the first point in this list follows the last). The scan starts at a vertex, known to be an extreme point. This step is at the heart of the algorithm. The idea is to eliminate all reflex vertices. The elimination procedure consists of a local test that takes three consequtive vertices and checks whether the three constitute a left turn or right. If the turn is is left (see Fig. 2) we retain the middle vertex as a tentative convex hull vertex. pi pi+2 pi+1 Figure 2: A left turn at pi+1 2 If the turn is right (see Fig 3), we eliminate the middle vertex since it is reflex and then backtrack to check the status of the vertices that are tentative extreme vertices. Since the start vertex is an extreme vertex the backtrack does not go past this vertex. pi+1 pi+2 pi Figure 3: A right turn at pi+1 5 Data Structure and Pseudo code To facilitate the forward and backward movement in the list of vertices, it is convenient to implement the list as a circular doubly-linked structure. In the following pseudo code, taken from the book by Preparata and Shamos, an additional Boolean variable is used to detect whether the start vertex has been reached while backtracking or at the completion of the scan. Procedure GRAHAM-SCAN begin v:=start; w:=pred[v]; f:=false; while (next[v]!=start or f=false) do begin if (next[v]==w) then f=true; if (three points v,next(v),next(next(v)) form a left turn) then v:=next(v); else begin delete next(v); v:=pred(v); end; end; end; 6 Complexity Analysis The complexity of the first step is in O(n). That of the sorting step is in O(n log n). Graham’s scan takes time proportional to the number of vertices. Let’s see how. 3 In each iteration of loop, if the turn is left we charge the cost of the test to the vertex that is added to the tentative list of extreme vertices; if the turn is right we charge the cost to the vertex that gets deleted. A vertex that is deleted right away (that is, without being added to the tentative list of vertices) initiates a backtrack. Each step in the backrack, except the last, results in a deletion which we charge to the deleted vertex. The cost of the last step is charged to the deleted vertex that initiated the backtrack, which is thus charged twice. So every vertex is charged at most twice. Thus the complexity of Graham’s scan is in O(n); and that of the algorithm is in O(n log n). Problem 1 Why is it necessary to sort around a point O interior to the convex hull ? We can avoid this by sorting the points with respect to their x-coordinates and then doing a Graham scan from left to right to give us the upper hull and then from right to left to give us the lower hull. Problem 2 Show that Graham’s scan cannot be used to compute the convex hull of an arbitrary simple polygon. How would you compute the convex hull of a simple polygon ? Problem 3 Let S be a set of n line segments in the plane. Prove that the convex hull of S is exactly the same as the convex hull of the 2n endpoints of the segmnents. Problem 4 Show that a polygon of minimum perimeter that encloses a set of n points in the plane is necessarily convex. Argue that the minimum perimeter convex polygon that encloses S is identical with the convex hull of S. Does this result hold in 3 dimensions ? 7 Jarvis March In the Jarvis march technique the idea is to wrap a thread around the points tightly in order to discover all the edges of the convex hull. This is implemented as follows. Let p1 be a lowest point of the input point set. Consider a horizontal ray that goes from p to ∞. Let p2 be a point in P −{p1} such that that the segment p1p2 makes the smallest angle with the ray p1∞ (see Fig. 4). The point p2 is added to the set of convex hull vertices. We now repeat this with the ray p1∞ that is incident on p1p2. And so on. The process terminates when we return to p1. p3 p2 p1 Figure 4: Illustration of Jarvis March 4 7.1 Analysis The complexity of the algorithm is in O(nh) where h is the number of vertices of the convex hull. Since h can be as large as n, the worst-case complexity of Jarvis’s march is in O(n2). 8 Chan’s Algorithm Chan’s algorithm is a very clever combination of Graham’s scan and Jarvis’s march whose complexity is in O(n log h). It is also a lot simpler than the “ultimate” convex hull algorithm of Seidel and Kirkpatrick []. The main idea is simple and elegant. Imagine applying Jarvis’s march to disjoint “blobs” of points of the same size. Indeed Jarvis’s march applies to a single blob - namely, the entire point set. The smart idea is to let the size of each blob of points be h, where h is the number of edges of the convex hull which is unknown! Assuming that we are clairovoyant enough to know this, let’s see how Jarvis’s march would work on the convex hulls of the n/h blobs of points, each of size h. We proceed exactly as before except that now we have to draw tangents to the convex hulls of the blobs and determine which one makes the smallest angle. Tangents to a convex hull of h points can be found in O(log h) time. Thus the total time that this takes is in O(n/h log h).
Recommended publications
  • Gscan: Accelerating Graham Scan on The
    gScan:AcceleratingGrahamScanontheGPU Gang Mei Institute of Earth and Environmental Science, University of Freiburg Albertstr.23B, D-79104, Freiburg im Breisgau, Germany E-mail: [email protected] Abstract This paper presents a fast implementation of the Graham scan on the GPU. The proposed algorithm is composed of two stages: (1) two rounds of preprocessing performed on the GPU and (2) the finalization of finding the convex hull on the CPU. We first discard the interior points that locate inside a quadrilateral formed by four extreme points, sort the remaining points according to the angles, and then divide them into the left and the right regions. For each region, we perform a second round of filtering using the proposed preprocessing approach to discard the interior points in further. We finally obtain the expected convex hull by calculating the convex hull of the remaining points on the CPU. We directly employ the parallel sorting, reduction, and partitioning provided by the library Thrust for better efficiency and simplicity. Experimental results show that our implementation achieves 6x ~ 7x speedups over the Qhull implementation for 20M points. Keywords: GPU, CUDA, Convex Hull, Graham Scan, Divide-and-Conquer, Data Dependency 1.Introduction Given a set of planar points S, the 2D convex hull problem is to find the smallest polygon that contains all the points in S. This problem is a fundamental issue in computer science and has been studied extensively. Several classic convex hull algorithms have been proposed [1-7]; most of them run in O(nlogn) time. Among them, the Graham scan algorithm [1] is the first practical convex hull algorithm, while QuickHull [7] is the most efficient and popular one in practice.
    [Show full text]
  • Geometric Algorithms
    Geometric Algorithms primitive operations convex hull closest pair voronoi diagram References: Algorithms in C (2nd edition), Chapters 24-25 http://www.cs.princeton.edu/introalgsds/71primitives http://www.cs.princeton.edu/introalgsds/72hull 1 Geometric Algorithms Applications. • Data mining. • VLSI design. • Computer vision. • Mathematical models. • Astronomical simulation. • Geographic information systems. airflow around an aircraft wing • Computer graphics (movies, games, virtual reality). • Models of physical world (maps, architecture, medical imaging). Reference: http://www.ics.uci.edu/~eppstein/geom.html History. • Ancient mathematical foundations. • Most geometric algorithms less than 25 years old. 2 primitive operations convex hull closest pair voronoi diagram 3 Geometric Primitives Point: two numbers (x, y). any line not through origin Line: two numbers a and b [ax + by = 1] Line segment: two points. Polygon: sequence of points. Primitive operations. • Is a point inside a polygon? • Compare slopes of two lines. • Distance between two points. • Do two line segments intersect? Given three points p , p , p , is p -p -p a counterclockwise turn? • 1 2 3 1 2 3 Other geometric shapes. • Triangle, rectangle, circle, sphere, cone, … • 3D and higher dimensions sometimes more complicated. 4 Intuition Warning: intuition may be misleading. • Humans have spatial intuition in 2D and 3D. • Computers do not. • Neither has good intuition in higher dimensions! Is a given polygon simple? no crossings 1 6 5 8 7 2 7 8 6 4 2 1 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 2 18 4 18 4 19 4 19 4 20 3 20 3 20 1 10 3 7 2 8 8 3 4 6 5 15 1 11 3 14 2 16 we think of this algorithm sees this 5 Polygon Inside, Outside Jordan curve theorem.
    [Show full text]
  • Optimal Output-Sensitive Convex Hull Algorithms in Two and Three Dimensions*
    Discrete Comput Geom 16:361-368 (1996) GeometryDiscrete & Computational ~) 1996Springer-Verlag New YorkInc. Optimal Output-Sensitive Convex Hull Algorithms in Two and Three Dimensions* T. M. Chan Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 Abstract. We present simple output-sensitive algorithms that construct the convex hull of a set of n points in two or three dimensions in worst-case optimal O (n log h) time and O(n) space, where h denotes the number of vertices of the convex hull. 1. Introduction Given a set P ofn points in the Euclidean plane E 2 or Euclidean space E 3, we consider the problem of computing the convex hull of P, cony(P), which is defined as the smallest convex set containing P. The convex hull problem has received considerable attention in computational geometry [11], [21], [23], [25]. In E 2 an algorithm known as Graham's scan [15] achieves O(n logn) rtmning time, and in E 3 an algorithm by Preparata and Hong [24] has the same complexity. These algorithms are optimal in the worst case, but if h, the number of hull vertices, is small, then it is possible to obtain better time bounds. For example, in E 2, a simple algorithm called Jarvis's march [ 19] can construct the convex hull in O(nh) time. This bound was later improved to O(nlogh) by an algorithm due to Kirkpatrick and Seidel [20], who also provided a matching lower bound; a simplification of their algorithm has been recently reported by Chan et al.
    [Show full text]
  • A Framework for Multi-Core Implementations of Divide and Conquer Algorithms and Its Application to the Convex Hull Problem ∗
    CCCG 2008, Montr´eal, Qu´ebec, August 13–15, 2008 A Framework for Multi-Core Implementations of Divide and Conquer Algorithms and its Application to the Convex Hull Problem ∗ Stefan N¨aher Daniel Schmitt † Abstract 2 Divide and Conquer Algorithms We present a framework for multi-core implementations Divide and conquer algorithms solve problems by di- of divide and conquer algorithms and show its efficiency viding them into subproblems, solving each subprob- and ease of use by applying it to the fundamental geo- lem recursively and merging the corresponding results metric problem of computing the convex hull of a point to a complete solution. All subproblems have exactly set. We concentrate on the Quickhull algorithm intro- the same structure as the original problem and can be duced in [2]. In general the framework can easily be solved independently from each other, and so can eas- used for any D&C-algorithm. It is only required that ily be distributed over a number of parallel processes the algorithm is implemented by a C++ class imple- or threads. This is probably the most straightforward menting the job-interface introduced in section 3 of this parallelization strategy. However, in general it can not paper. be guaranteed that always enough subproblems exist, which leads to non-optimal speedups. This is in partic- 1 Introduction ular true for the first divide step and the final merging step but is also a problem in cases where the recur- Performance gain in computing is no longer achieved sion tree is unbalanced such that the number of open by increasing cpu clock rates but by multiple cpu cores sub-problems is smaller than the number of available working on shared memory and a common cache.
    [Show full text]
  • Convex Hull in 3 Dimensions
    CONVEX HULL IN 3 DIMENSIONS PETR FELKEL FEL CTU PRAGUE [email protected] https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg], [Preparata], [Rourke] and [Boissonnat] Version from 16.11.2017 Talk overview Upper bounds for convex hull in 2D and 3D Other criteria for CH algorithm classification Recapitulation of CH algorithms Terminology refresh Convex hull in 3D – Terminology – Algorithms • Gift wrapping • D&C Merge • Randomized Incremental www.cguu.com www.cguu.com Computational geometry (2 / 41) Upper bounds for Convex hull algorithms O(n) for sorted points and for simple polygon 2 3 O(n log n) in E ,E with sorting – insensitive about output O(n h), O(n logh), h is number of CH facets – output sensitive –O(n2) or O(n logn) for n ~ h O(log n) for new point insertion in realtime algs. => O(n log n) for n-points O(log n) search where to insert Computational geometry (3 / 41) Other criteria for CH algorithm classification Optimality – depends on data order (or distribution) In the worst case x In the expected case Output sensitivity – depends on the result ~ O(f(h)) Extendable to higher dimensions? Off-line versus on-line – Off-line – all points available, preprocessing for search speedup – On-line – stream of points, new point pi on demand, just one new point at a time, CH valid for {p1,p2 ,…, pi } – Real-time – points come as they “want” (come not faster than optimal constant O(log n) inter-arrival delay) Parallelizable x serial Dynamic – points can be deleted Deterministic x approximate (lecture 13) Computational
    [Show full text]
  • An Overview of Computational Geometry
    An Overview of Computational Geometry Alex Scheffelin Contents 1 Abstract 2 2 Introduction 3 2.1 Basic Definitions . .3 3 Floating Point Error 4 3.1 Imprecision in Floating Point Operations . .4 3.2 Precision in the Calculation of the Area of a Polygon . .5 4 Speed 7 4.1 Big O Notation . .7 4.2 A More Efficient Algorithm to Calculate Intersections of Lines . .8 4.3 Recap on Speed . 15 5 How Can Pure Mathematics Influence Computational Geometry? 16 5.1 Point in Polygon Calculation . 16 5.2 Why Do We Care? . 19 6 Convex Hull Algorithms 19 6.1 What is a Convex Hull . 19 6.2 The Jarvis March Algorithm . 19 6.3 The Graham Scan Algorithm . 21 6.4 Other Efficient Algorithms . 22 6.5 Generalizations to the Convex Hull . 23 7 Conclusion 23 1 1 Abstract Computational geometry is an applied math field which can be described as the intersection of geometry and computer science. It has many real world applications, including in 3D mod- elling programs, graphics processing, etc. We will provide an overview of the methodology of computational geometry in the limited case of 2D objects, culminating in the discussion of the construction of convex hulls, a type of polygon in the plane which is determined by a set of points. Along the way we will try to explain some unique difficulties one faces when using a computer to compute things, and attempt to highlight the methods of proof used. 2 2 Introduction 2.1 Basic Definitions I will define a few geometric objects, and give example about how one might represent them in a computer.
    [Show full text]
  • An Algorithm for Finding Convex Hulls of Planar Point Sets
    An Algorithm for Finding Convex Hulls of Planar Point Sets Gang Mei, John C.Tipper Nengxiong Xu Institut für Geowissenschaften – Geologie School of Engineering and Technology Albert-Ludwigs-Universität Freiburg China University of Geosciences (Beijing) Freiburg im Breisgau, Germany Beijing, China {gang.mei, john.tipper}@geologie.uni-freiburg.de [email protected] Abstract —This paper presents an alternate choice of computing Liu and Wang [13] propose a reliable and effective CH the convex hulls (CHs) for planar point sets. We firstly discard algorithm based on a technique named Principle Component the interior points and then sort the remaining vertices by x- / y- Analysis for preprocessing the planar point set. A fast CH coordinates separately, and later create a group of quadrilaterals algorithm with maximum inscribed circle affine transformation (e-Quads) recursively according to the sequences of the sorted is developed in [14]; and another two quite fast algorithms are lists of points. Finally, the desired CH is built based on a simple both designed based on GPU [15, 16]. polygon derived from all e-Quads. Besides the preprocessing for original planar point sets, this algorithm has another mechanism In this paper, we present an alternate algorithm to produce of discarding interior point when form e-Quads and assemble the the convex hull for points in the plane. The main ideas of the simple polygon. Compared with three popular CH algorithms, proposed algorithms are as follows. A planar point set is firstly the proposed algorithm can generate CHs faster than the three preprocessed by discarding its interior points; secondly the but has a penalty in space cost.
    [Show full text]
  • Frequently Asked Questions in Polyhedral Computation
    Frequently Asked Questions in Polyhedral Computation http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html Komei Fukuda Swiss Federal Institute of Technology Lausanne and Zurich, Switzerland [email protected] Version June 18, 2004 Contents 1 What is Polyhedral Computation FAQ? 2 2 Convex Polyhedron 3 2.1 What is convex polytope/polyhedron? . 3 2.2 What are the faces of a convex polytope/polyhedron? . 3 2.3 What is the face lattice of a convex polytope . 4 2.4 What is a dual of a convex polytope? . 4 2.5 What is simplex? . 4 2.6 What is cube/hypercube/cross polytope? . 5 2.7 What is simple/simplicial polytope? . 5 2.8 What is 0-1 polytope? . 5 2.9 What is the best upper bound of the numbers of k-dimensional faces of a d- polytope with n vertices? . 5 2.10 What is convex hull? What is the convex hull problem? . 6 2.11 What is the Minkowski-Weyl theorem for convex polyhedra? . 6 2.12 What is the vertex enumeration problem, and what is the facet enumeration problem? . 7 1 2.13 How can one enumerate all faces of a convex polyhedron? . 7 2.14 What computer models are appropriate for the polyhedral computation? . 8 2.15 How do we measure the complexity of a convex hull algorithm? . 8 2.16 How many facets does the average polytope with n vertices in Rd have? . 9 2.17 How many facets can a 0-1 polytope with n vertices in Rd have? . 10 2.18 How hard is it to verify that an H-polyhedron PH and a V-polyhedron PV are equal? .
    [Show full text]
  • Algorithms for Computing Convex Hulls Using Linear Programming Bo Mortensen, 20073241
    Algorithms for Computing Convex Hulls Using Linear Programming Bo Mortensen, 20073241 Master's Thesis, Computer Science February 2015 Advisor: Peyman Afshani Advisor: Gerth Stølting Brodal AARHUS AU UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE ii ABSTRACT The computation of convex hulls is a major field of study in computa- tional geometry, with applications in many areas: from mathematical optimization, to pattern matching and image processing. Therefore, a large amount of research has gone into developing more efficient algorithms for solving the convex hull problem. This thesis tests and compares different methods of computing the convex hull of a set of points, both in 2D and 3D. It further shows if using linear programming techniques can help improve the running times of the theoretically fastest of these algorithms. It also presents a method for increasing the efficiency of multiple linear programming queries on the same constraint set. In 2D, the convex hull algorithms include an incremental approach, an intuitive gift wrapping algorithm, and an advanced algorithm us- ing a variant of the divide-and-conquer approach called marriage- before-conquest. The thesis also compares the effect of substituting one of the more time-consuming subroutines of the marriage-before- conquest algorithm, with linear programming. An extension of the gift wrapping algorithm into 3D is presented and tested, along with a description of an algorithm for using linear programming to compute convex hulls in 3D. Results of various tests are presented and compared with theoreti- cal predictions. These results show that in some cases, the marriage- before-conquest algorithm is faster than the other algorithms, but when the hull size is a large part of the input, the incremental convex hull algorithm is faster.
    [Show full text]
  • Convex Hull in Higher Dimensions
    Comp 163: Computational Geometry Professor Diane Souvaine Tufts University, Spring 2005 1991 Scribe: Gabor M. Czako, 1990 Scribe: Sesh Venugopal, 2004 Scrib Higher Dimensional Convex Hull Algorithms 1 Convex hulls 1.0.1 Definitions The following definitions will be used throughout. Define • Sd:Ad-Simplex The simplest convex polytope in Rd.Ad-simplex is always the convex hull of some d + 1 affinely independent points. For example, a line segment is a 1 − simplex i.e., the smallest convex subspace which con- tains two points. A triangle is a 2 − simplex and a tetrahedron is a 3 − simplex. • P: A Simplicial Polytope. A polytope where each facet is a d − 1 simplex. By our assumption, a convex hull in 3-D has triangular facets and in 4-D, a convex hull has tetrahedral facets. •P: number of facets of Pi • F : a facet of P • R:aridgeofF • G:afaceofP d+1 • fj(Pi ): The number of j-faces of P .Notethatfj(Sd)=C(j+1). 1.0.2 An Upper Bound on Time Complexity: Cyclic Polytope d 1 2 d Consider the curve Md in R defined as x(t)=(t ,t , ..., t ), t ∈ R.LetH be the hyperplane defined as a0 + a1x1 + a2x2 + ... + adxd = 0. The intersection 2 d of Md and H is the set of points that satisfy a0 + a1t + a2t + ...adt =0. This polynomial has at most d real roots and therefore d real solutions. → H intersects Md in at most d points. This brings us to the following definition: A convex polytope in Rd is a cyclic polytope if it is the convex hull of a 1 set of at least d +1pointsonMd.
    [Show full text]
  • Algorithms and Software
    Project number IST-25582 CGL Computational Geometric Learning High Dimensional Predicates: Algorithms and Software STREP Information Society Technologies Period covered: November 1, 2011 { October 31, 2012 Date of preparation: October 12, 2012 Date of revision: October 12, 2012 Start date of project: November 1, 2010 Duration: 3 years Project coordinator name: Joachim Giesen (FSU) Project coordinator organisation: Friedrich-Schiller-Universit¨atJena Jena, Germany High Dimensional Predicates: Algorithms and Software Ioannis Z. Emiris∗ Vissarion Fisikopoulos∗ Luis Pe~naranda∗∗ October 12, 2012 Abstract Determinant predicates are the core procedures in many important geometric algorithms, such as convex hull computations and point location. As the dimension of the computation space grows, a higher percentage of the computation time is consumed by these predicates. We study the sequences of determinants that appear in geometric algorithms. We use dynamic determinant algorithms to speed-up the computation of each predicate by using information from previously computed predicates. We propose two dynamic determinant algorithms with quadratic complexity when em- ployed in convex hull computations, and with linear complexity when used in point location problems. Moreover, we implement them and perform an experimental analysis. Our imple- mentations are based on CGAL and can be easily integrated. They outperform the state- of-the-art determinant and convex hull implementations in most of the tested scenarios, as well as giving a speed-up of 78 times in point location problems. Another contribution focuses on hashing (minors of) determinantal predicates when com- puting regular triangulations, which accelerates execution up to 100 times when computing resultant polytopes. This has been implemented and submitted to CGAL.
    [Show full text]
  • E Convex Hulls
    CS 373 Non-Lecture E: Convex Hulls Fall 2002 E Convex Hulls E.1 Definitions We are given a set P of n points in the plane. We want to compute something called the convex hull of P . Intuitively, the convex hull is what you get by driving a nail into the plane at each point and then wrapping a piece of string around the nails. More formally, the convex hull is the smallest convex polygon containing the points: • polygon: A region of the plane bounded by a cycle of line segments, called edges, joined end-to-end in a cycle. Points where two successive edges meet are called vertices. • convex: For any two points p; q inside the polygon, the line segment pq is completely inside the polygon. • smallest: Any convex proper subset of the convex hull excludes at least one point in P . This implies that every vertex of the convex hull is a point in P . We can also define the convex hull as the largest convex polygon whose vertices are all points in P , or the unique convex polygon that contains P and whose vertices are all points in P . Notice that P might have interior points that are not vertices of the convex hull. A set of points and its convex hull. Convex hull vertices are black; interior points are white. Just to make things concrete, we will represent the points in P by their Cartesian coordinates, in two arrays X[1 :: n] and Y [1 :: n]. We will represent the convex hull as a circular linked list of vertices in counterclockwise order.
    [Show full text]