Average-Case Analysis of Algorithms for Convex Hulls and Voronoi Diagrams

Total Page:16

File Type:pdf, Size:1020Kb

Average-Case Analysis of Algorithms for Convex Hulls and Voronoi Diagrams Average-Case Analysis of Algorithms For Convex Hulls and Voronoi Diagrams Rex Allen Dwyer March 1988 CMU-CS-88-132 Submitted to Carnegie-Mellon University in partial fulfillment of the requirements for the degree of Doctor of Philosophy. @1988 Rex A. Dwyer. Chapter 4 is reprinted from Journal of Applied Probability 25(4), @1988 Applied Probability Trust. Chapter 7 is reprinted from Proceedings of the Second Annual Symposium on Computational Geometry, (_)1986 Association for Computing Machinery, and Algorithmica 2(2), @1987 Springer-Verlag. This research was supported by the National Science Foundation under Grants DCR-8352081, DCR-8416190, ECS-8418392, and CCR-8658139. Abstract This thesis addresses the design and analysis of fast-on-average algorithms for two classic problems of computational geometry: the construction of convex hulls and Voronoi diagrams of finite point sets in Euclidean d-space. The main contributions of the thesis are: • A new algorithm for enumerating the vertices of a convex hull that requires between O(n) and O(n 2) time on average for a set of n independent and identically distributed (i.i.d.) points. The exact running time depends on the input distribution. This algorithm is a useful preprocessing step for algorithms for the facet-enumeration and facial-lattice versions of the convex-hull problem. • A new method for bounding the expected number of vertices of the convex hull of random points, new results on the asymptotic behavior of the expected number of vertices and facets of the convex hull of n i.i.d, points drawn from any of a wide variety of input distributions in d dimensions, and application of these results to the analysis of existing convex-hull algo- rithms. The distributions considered are: spherically symmetric distributions with algebraic, exponential, and truncated tails; certain uniform product distributions; and uniform distri- butions in d-polytopes. For all but the product distributions, it is shown that two well-known convex-hull algorithms require o(n 2) time on average; for some of the distributions, linear time suffices. • A new method for analyzing the expected combinatorial complexity and other properties of a random Voronoi diagram in d dimensions, and new results on the expected complexity of the Voronoi diagram of n points chosen from the uniform distribution in the unit d-ball. • A new linear-expected-time algorithm for constructing the Voronoi diagram of n points from the uniform distribution in the unit d-ball. • A practical improvement to the classic divide-and-conquer algorithm for the two-dimensional Voronoi diagram that decreases its average running time from O(n log n) to O(n log log n) for n points from the uniform distribution in the unit square and similar distributions. Acknowledgments Forsan et h_ec olim meminisse juvabit. Virgil, tEneid, I., 203. There is no better place to begin than with thanks to my parents, my brother Jim, and my sister-in-law Helen. All four have given the same loving attention to this endeavor as to all my others, and, as in all the others, I have benefited from my brother's trailblazing. Although their contributions to my graduate-school career and thesis are indirect, I would like to mention some mathematicians and computer scientists who made important impressions on me. The late Rebecca Nelson, my fifth-grade teacher, taught me that mathematics is enjoyable. Mrs. Nelson became an outstanding professor of mathematics education and friend of mathemat- ically gifted children. Her untimely death of cancer last year at the age of 43 grieved me greatly. Louis J. Cote and the late Gerhard Wollan edited the Indiana School Mathematics Journal during my high-school years. The problems they posed and the readers' solutions they published gave me the pleasure of seeing a few of my own words in print for the first time. Dan Friedman's enthusiastic teaching in my first computing course at Indiana University showed me that there is much more to computer science than base-two arithmetic. My associations with him and with David Wise gave my time in Indiana's Computer Science Department much of its significance. The technical guidance and friendship I have received from my advisor Danny Sleator have been indispensable. I admire the breadth and depth of his knowledge not only of computer science and mathematics but of the sciences in general. Without his encouragement and his challenges to my beliefs about my own abilities, I might well have given up this project long ago. Bill Eddy performed the functions of a co-advisor and certainly would have been one officially if his campus address were not "Statistics Department". His almost collegial attitude toward me in the past two years has been as gratifying as it is incongruous. My technical discussions with him have been extremely valuable. He read drafts exceptionally promptly, and many parts of this thesis are better because of his suggestions. I would particularly like to thank him for pushing me a little harder in the direction that eventually led to the results of Chapter 6. Dana Scott's most tangible contribution to the thesis is its organization on the large scale. An hour or so in his office changed an overly hierarchical outline with two unmanageable chapters into a more flexible one with eight. I will also remember his moral support during difficult times. In addition to giving encouragement over the past year-and-a-half, Doug Tygar stressed the importance of a well-written introduction and gave useful advice on the presentation I made at my thesis defense. Ken Clarkson of AT&T Bell Laboratories served as outside examiner on my thesis committee. His particular expertise in probabilistic aspects of computational geometry makes his interest in my work particularly gratifying. His suggestions are reflected throughout the thesis. His help with the proof of Lemma 6.7 was especially important. To department chairman Nico Habermann I owe thanks not only for managing human and material resources to provide an excellent working environment for everyone, but for the personal interest he took in resolving difficulties affecting my thesis progress when they arose. Ravi Kannan supervised my research for three years until changing interests and physical sep- aration made this impractical. His comments on drafts of Chapter 7 were quite valuable, and our discussions of the problems addressed in Chapter 4 girded me for my final attack on them. Jon Webb's code for the Guibas-Stolfi algorithm formed the basis of the experiments leading eventually to the results of Chapter 7. Steve Shreve of the Mathematics Department helped me prove Lemma 7.7. Ignace Kolodner of Mathematics gave tips on evaluating the integrals of Chap- ter 6. Luc Devroye of McGill University corrected an error in the proof of Theorem 4.5. An anonymous referee's comments gave insights leading to a shorter proof of Theorem 4.2 with smaller constant factors. In professor Steve Brookes and fellow students Claire Bono, Mark Derthick, Guy Jacobson, Craig Knoblock, Kevin Lang, fellow Hoosier Cathy McGeoch, Lyle McGeoch, Francesmary Mod- ugno, Harry Printz, Brad White, and Ed Zayas I found fascinating and supportive friends, and their interest in my progress and well-being will not be forgotten. Among friends outside the Computer Science Department, recovered graduate students Frances Dannenberg, Wen-Ling Hsu, and Philip Long have been particularly encouraging. in Contents 1 Introduction and Summary 1 1.1 Examples of Convex-Hull Calculations .......................... 3 1.2 An Example of Voronoi Diagram Calculations ...................... 8 1.3 Thesis Summary ...................................... 11 2 The Convex Hull Problem 15 2.1 Elements of the Combinatorial Theory of Polytopes .................. 15 2.2 The Convex-Hull Problem ................................. 18 2.3 Algorithms for the Convex-Hull Problems ........................ 19 3 A Probabilistic Approach to the Convex-Hull Problem 26 3.1 Elements of Probability Theory .............................. 28 3.2 A Fast-on-Average Vertex-Enumeration Algorithm ................... 29 3.3 A Method for Bounding EFt, ............................... 31 3.4 A Method for Bounding EVn Above ........................... 36 3.5 A Method for Bounding EVn Below ........................... 37 4 Convex Hulls of Samples from Polytopes 38 4.1 Upper Bounds on Vertices ................................. 38 4.2 Lower Bounds on Vertices ................................. 42 4.3 Upper Bounds on Facets .................................. 44 5 Convex Hulls of Samples from Spherically Symmetric Distributions 48 5.1 A General Framework for Spherical Distributions .................... 50 5.2 Distributions with Algebraic Tails ............................ 52 iv 5.3 Distributions with Exponential Tails ........................... 54 5.4 Distributions with Truncated Tails ............................ 60 5.5 Uniform Distributions in Products of Balls ........................ 62 6 Voronoi Diagrams of Samples from a Hypersphere 65 6.1 A General Method for Bounding the Expected Complexity of Voronoi Diagrams . 68 6.2 Bounds for the Uniform Distribution in a d-Ball .................... 72 6.3 A Fast Algorithm for the Unit d-Ball ........................... 78 7 Voronoi Diagrams in the Plane 87 7.1 Preliminaries ........................................ 88 7.2 A Faster Algorithm and Its Worst-Case Running Time ................. 91 7.3 Analysis of Expected Time ................................ 92 7.4 Extension to the Lp Metrics ...............................
Recommended publications
  • Gscan: Accelerating Graham Scan on The
    gScan:AcceleratingGrahamScanontheGPU Gang Mei Institute of Earth and Environmental Science, University of Freiburg Albertstr.23B, D-79104, Freiburg im Breisgau, Germany E-mail: [email protected] Abstract This paper presents a fast implementation of the Graham scan on the GPU. The proposed algorithm is composed of two stages: (1) two rounds of preprocessing performed on the GPU and (2) the finalization of finding the convex hull on the CPU. We first discard the interior points that locate inside a quadrilateral formed by four extreme points, sort the remaining points according to the angles, and then divide them into the left and the right regions. For each region, we perform a second round of filtering using the proposed preprocessing approach to discard the interior points in further. We finally obtain the expected convex hull by calculating the convex hull of the remaining points on the CPU. We directly employ the parallel sorting, reduction, and partitioning provided by the library Thrust for better efficiency and simplicity. Experimental results show that our implementation achieves 6x ~ 7x speedups over the Qhull implementation for 20M points. Keywords: GPU, CUDA, Convex Hull, Graham Scan, Divide-and-Conquer, Data Dependency 1.Introduction Given a set of planar points S, the 2D convex hull problem is to find the smallest polygon that contains all the points in S. This problem is a fundamental issue in computer science and has been studied extensively. Several classic convex hull algorithms have been proposed [1-7]; most of them run in O(nlogn) time. Among them, the Graham scan algorithm [1] is the first practical convex hull algorithm, while QuickHull [7] is the most efficient and popular one in practice.
    [Show full text]
  • Geometric Algorithms
    Geometric Algorithms primitive operations convex hull closest pair voronoi diagram References: Algorithms in C (2nd edition), Chapters 24-25 http://www.cs.princeton.edu/introalgsds/71primitives http://www.cs.princeton.edu/introalgsds/72hull 1 Geometric Algorithms Applications. • Data mining. • VLSI design. • Computer vision. • Mathematical models. • Astronomical simulation. • Geographic information systems. airflow around an aircraft wing • Computer graphics (movies, games, virtual reality). • Models of physical world (maps, architecture, medical imaging). Reference: http://www.ics.uci.edu/~eppstein/geom.html History. • Ancient mathematical foundations. • Most geometric algorithms less than 25 years old. 2 primitive operations convex hull closest pair voronoi diagram 3 Geometric Primitives Point: two numbers (x, y). any line not through origin Line: two numbers a and b [ax + by = 1] Line segment: two points. Polygon: sequence of points. Primitive operations. • Is a point inside a polygon? • Compare slopes of two lines. • Distance between two points. • Do two line segments intersect? Given three points p , p , p , is p -p -p a counterclockwise turn? • 1 2 3 1 2 3 Other geometric shapes. • Triangle, rectangle, circle, sphere, cone, … • 3D and higher dimensions sometimes more complicated. 4 Intuition Warning: intuition may be misleading. • Humans have spatial intuition in 2D and 3D. • Computers do not. • Neither has good intuition in higher dimensions! Is a given polygon simple? no crossings 1 6 5 8 7 2 7 8 6 4 2 1 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 2 18 4 18 4 19 4 19 4 20 3 20 3 20 1 10 3 7 2 8 8 3 4 6 5 15 1 11 3 14 2 16 we think of this algorithm sees this 5 Polygon Inside, Outside Jordan curve theorem.
    [Show full text]
  • Optimal Output-Sensitive Convex Hull Algorithms in Two and Three Dimensions*
    Discrete Comput Geom 16:361-368 (1996) GeometryDiscrete & Computational ~) 1996Springer-Verlag New YorkInc. Optimal Output-Sensitive Convex Hull Algorithms in Two and Three Dimensions* T. M. Chan Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 Abstract. We present simple output-sensitive algorithms that construct the convex hull of a set of n points in two or three dimensions in worst-case optimal O (n log h) time and O(n) space, where h denotes the number of vertices of the convex hull. 1. Introduction Given a set P ofn points in the Euclidean plane E 2 or Euclidean space E 3, we consider the problem of computing the convex hull of P, cony(P), which is defined as the smallest convex set containing P. The convex hull problem has received considerable attention in computational geometry [11], [21], [23], [25]. In E 2 an algorithm known as Graham's scan [15] achieves O(n logn) rtmning time, and in E 3 an algorithm by Preparata and Hong [24] has the same complexity. These algorithms are optimal in the worst case, but if h, the number of hull vertices, is small, then it is possible to obtain better time bounds. For example, in E 2, a simple algorithm called Jarvis's march [ 19] can construct the convex hull in O(nh) time. This bound was later improved to O(nlogh) by an algorithm due to Kirkpatrick and Seidel [20], who also provided a matching lower bound; a simplification of their algorithm has been recently reported by Chan et al.
    [Show full text]
  • A Framework for Multi-Core Implementations of Divide and Conquer Algorithms and Its Application to the Convex Hull Problem ∗
    CCCG 2008, Montr´eal, Qu´ebec, August 13–15, 2008 A Framework for Multi-Core Implementations of Divide and Conquer Algorithms and its Application to the Convex Hull Problem ∗ Stefan N¨aher Daniel Schmitt † Abstract 2 Divide and Conquer Algorithms We present a framework for multi-core implementations Divide and conquer algorithms solve problems by di- of divide and conquer algorithms and show its efficiency viding them into subproblems, solving each subprob- and ease of use by applying it to the fundamental geo- lem recursively and merging the corresponding results metric problem of computing the convex hull of a point to a complete solution. All subproblems have exactly set. We concentrate on the Quickhull algorithm intro- the same structure as the original problem and can be duced in [2]. In general the framework can easily be solved independently from each other, and so can eas- used for any D&C-algorithm. It is only required that ily be distributed over a number of parallel processes the algorithm is implemented by a C++ class imple- or threads. This is probably the most straightforward menting the job-interface introduced in section 3 of this parallelization strategy. However, in general it can not paper. be guaranteed that always enough subproblems exist, which leads to non-optimal speedups. This is in partic- 1 Introduction ular true for the first divide step and the final merging step but is also a problem in cases where the recur- Performance gain in computing is no longer achieved sion tree is unbalanced such that the number of open by increasing cpu clock rates but by multiple cpu cores sub-problems is smaller than the number of available working on shared memory and a common cache.
    [Show full text]
  • Convex Hull in 3 Dimensions
    CONVEX HULL IN 3 DIMENSIONS PETR FELKEL FEL CTU PRAGUE [email protected] https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg], [Preparata], [Rourke] and [Boissonnat] Version from 16.11.2017 Talk overview Upper bounds for convex hull in 2D and 3D Other criteria for CH algorithm classification Recapitulation of CH algorithms Terminology refresh Convex hull in 3D – Terminology – Algorithms • Gift wrapping • D&C Merge • Randomized Incremental www.cguu.com www.cguu.com Computational geometry (2 / 41) Upper bounds for Convex hull algorithms O(n) for sorted points and for simple polygon 2 3 O(n log n) in E ,E with sorting – insensitive about output O(n h), O(n logh), h is number of CH facets – output sensitive –O(n2) or O(n logn) for n ~ h O(log n) for new point insertion in realtime algs. => O(n log n) for n-points O(log n) search where to insert Computational geometry (3 / 41) Other criteria for CH algorithm classification Optimality – depends on data order (or distribution) In the worst case x In the expected case Output sensitivity – depends on the result ~ O(f(h)) Extendable to higher dimensions? Off-line versus on-line – Off-line – all points available, preprocessing for search speedup – On-line – stream of points, new point pi on demand, just one new point at a time, CH valid for {p1,p2 ,…, pi } – Real-time – points come as they “want” (come not faster than optimal constant O(log n) inter-arrival delay) Parallelizable x serial Dynamic – points can be deleted Deterministic x approximate (lecture 13) Computational
    [Show full text]
  • An Overview of Computational Geometry
    An Overview of Computational Geometry Alex Scheffelin Contents 1 Abstract 2 2 Introduction 3 2.1 Basic Definitions . .3 3 Floating Point Error 4 3.1 Imprecision in Floating Point Operations . .4 3.2 Precision in the Calculation of the Area of a Polygon . .5 4 Speed 7 4.1 Big O Notation . .7 4.2 A More Efficient Algorithm to Calculate Intersections of Lines . .8 4.3 Recap on Speed . 15 5 How Can Pure Mathematics Influence Computational Geometry? 16 5.1 Point in Polygon Calculation . 16 5.2 Why Do We Care? . 19 6 Convex Hull Algorithms 19 6.1 What is a Convex Hull . 19 6.2 The Jarvis March Algorithm . 19 6.3 The Graham Scan Algorithm . 21 6.4 Other Efficient Algorithms . 22 6.5 Generalizations to the Convex Hull . 23 7 Conclusion 23 1 1 Abstract Computational geometry is an applied math field which can be described as the intersection of geometry and computer science. It has many real world applications, including in 3D mod- elling programs, graphics processing, etc. We will provide an overview of the methodology of computational geometry in the limited case of 2D objects, culminating in the discussion of the construction of convex hulls, a type of polygon in the plane which is determined by a set of points. Along the way we will try to explain some unique difficulties one faces when using a computer to compute things, and attempt to highlight the methods of proof used. 2 2 Introduction 2.1 Basic Definitions I will define a few geometric objects, and give example about how one might represent them in a computer.
    [Show full text]
  • An Algorithm for Finding Convex Hulls of Planar Point Sets
    An Algorithm for Finding Convex Hulls of Planar Point Sets Gang Mei, John C.Tipper Nengxiong Xu Institut für Geowissenschaften – Geologie School of Engineering and Technology Albert-Ludwigs-Universität Freiburg China University of Geosciences (Beijing) Freiburg im Breisgau, Germany Beijing, China {gang.mei, john.tipper}@geologie.uni-freiburg.de [email protected] Abstract —This paper presents an alternate choice of computing Liu and Wang [13] propose a reliable and effective CH the convex hulls (CHs) for planar point sets. We firstly discard algorithm based on a technique named Principle Component the interior points and then sort the remaining vertices by x- / y- Analysis for preprocessing the planar point set. A fast CH coordinates separately, and later create a group of quadrilaterals algorithm with maximum inscribed circle affine transformation (e-Quads) recursively according to the sequences of the sorted is developed in [14]; and another two quite fast algorithms are lists of points. Finally, the desired CH is built based on a simple both designed based on GPU [15, 16]. polygon derived from all e-Quads. Besides the preprocessing for original planar point sets, this algorithm has another mechanism In this paper, we present an alternate algorithm to produce of discarding interior point when form e-Quads and assemble the the convex hull for points in the plane. The main ideas of the simple polygon. Compared with three popular CH algorithms, proposed algorithms are as follows. A planar point set is firstly the proposed algorithm can generate CHs faster than the three preprocessed by discarding its interior points; secondly the but has a penalty in space cost.
    [Show full text]
  • Frequently Asked Questions in Polyhedral Computation
    Frequently Asked Questions in Polyhedral Computation http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html Komei Fukuda Swiss Federal Institute of Technology Lausanne and Zurich, Switzerland [email protected] Version June 18, 2004 Contents 1 What is Polyhedral Computation FAQ? 2 2 Convex Polyhedron 3 2.1 What is convex polytope/polyhedron? . 3 2.2 What are the faces of a convex polytope/polyhedron? . 3 2.3 What is the face lattice of a convex polytope . 4 2.4 What is a dual of a convex polytope? . 4 2.5 What is simplex? . 4 2.6 What is cube/hypercube/cross polytope? . 5 2.7 What is simple/simplicial polytope? . 5 2.8 What is 0-1 polytope? . 5 2.9 What is the best upper bound of the numbers of k-dimensional faces of a d- polytope with n vertices? . 5 2.10 What is convex hull? What is the convex hull problem? . 6 2.11 What is the Minkowski-Weyl theorem for convex polyhedra? . 6 2.12 What is the vertex enumeration problem, and what is the facet enumeration problem? . 7 1 2.13 How can one enumerate all faces of a convex polyhedron? . 7 2.14 What computer models are appropriate for the polyhedral computation? . 8 2.15 How do we measure the complexity of a convex hull algorithm? . 8 2.16 How many facets does the average polytope with n vertices in Rd have? . 9 2.17 How many facets can a 0-1 polytope with n vertices in Rd have? . 10 2.18 How hard is it to verify that an H-polyhedron PH and a V-polyhedron PV are equal? .
    [Show full text]
  • Algorithms for Computing Convex Hulls Using Linear Programming Bo Mortensen, 20073241
    Algorithms for Computing Convex Hulls Using Linear Programming Bo Mortensen, 20073241 Master's Thesis, Computer Science February 2015 Advisor: Peyman Afshani Advisor: Gerth Stølting Brodal AARHUS AU UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE ii ABSTRACT The computation of convex hulls is a major field of study in computa- tional geometry, with applications in many areas: from mathematical optimization, to pattern matching and image processing. Therefore, a large amount of research has gone into developing more efficient algorithms for solving the convex hull problem. This thesis tests and compares different methods of computing the convex hull of a set of points, both in 2D and 3D. It further shows if using linear programming techniques can help improve the running times of the theoretically fastest of these algorithms. It also presents a method for increasing the efficiency of multiple linear programming queries on the same constraint set. In 2D, the convex hull algorithms include an incremental approach, an intuitive gift wrapping algorithm, and an advanced algorithm us- ing a variant of the divide-and-conquer approach called marriage- before-conquest. The thesis also compares the effect of substituting one of the more time-consuming subroutines of the marriage-before- conquest algorithm, with linear programming. An extension of the gift wrapping algorithm into 3D is presented and tested, along with a description of an algorithm for using linear programming to compute convex hulls in 3D. Results of various tests are presented and compared with theoreti- cal predictions. These results show that in some cases, the marriage- before-conquest algorithm is faster than the other algorithms, but when the hull size is a large part of the input, the incremental convex hull algorithm is faster.
    [Show full text]
  • Convex Hull in Higher Dimensions
    Comp 163: Computational Geometry Professor Diane Souvaine Tufts University, Spring 2005 1991 Scribe: Gabor M. Czako, 1990 Scribe: Sesh Venugopal, 2004 Scrib Higher Dimensional Convex Hull Algorithms 1 Convex hulls 1.0.1 Definitions The following definitions will be used throughout. Define • Sd:Ad-Simplex The simplest convex polytope in Rd.Ad-simplex is always the convex hull of some d + 1 affinely independent points. For example, a line segment is a 1 − simplex i.e., the smallest convex subspace which con- tains two points. A triangle is a 2 − simplex and a tetrahedron is a 3 − simplex. • P: A Simplicial Polytope. A polytope where each facet is a d − 1 simplex. By our assumption, a convex hull in 3-D has triangular facets and in 4-D, a convex hull has tetrahedral facets. •P: number of facets of Pi • F : a facet of P • R:aridgeofF • G:afaceofP d+1 • fj(Pi ): The number of j-faces of P .Notethatfj(Sd)=C(j+1). 1.0.2 An Upper Bound on Time Complexity: Cyclic Polytope d 1 2 d Consider the curve Md in R defined as x(t)=(t ,t , ..., t ), t ∈ R.LetH be the hyperplane defined as a0 + a1x1 + a2x2 + ... + adxd = 0. The intersection 2 d of Md and H is the set of points that satisfy a0 + a1t + a2t + ...adt =0. This polynomial has at most d real roots and therefore d real solutions. → H intersects Md in at most d points. This brings us to the following definition: A convex polytope in Rd is a cyclic polytope if it is the convex hull of a 1 set of at least d +1pointsonMd.
    [Show full text]
  • Algorithms and Software
    Project number IST-25582 CGL Computational Geometric Learning High Dimensional Predicates: Algorithms and Software STREP Information Society Technologies Period covered: November 1, 2011 { October 31, 2012 Date of preparation: October 12, 2012 Date of revision: October 12, 2012 Start date of project: November 1, 2010 Duration: 3 years Project coordinator name: Joachim Giesen (FSU) Project coordinator organisation: Friedrich-Schiller-Universit¨atJena Jena, Germany High Dimensional Predicates: Algorithms and Software Ioannis Z. Emiris∗ Vissarion Fisikopoulos∗ Luis Pe~naranda∗∗ October 12, 2012 Abstract Determinant predicates are the core procedures in many important geometric algorithms, such as convex hull computations and point location. As the dimension of the computation space grows, a higher percentage of the computation time is consumed by these predicates. We study the sequences of determinants that appear in geometric algorithms. We use dynamic determinant algorithms to speed-up the computation of each predicate by using information from previously computed predicates. We propose two dynamic determinant algorithms with quadratic complexity when em- ployed in convex hull computations, and with linear complexity when used in point location problems. Moreover, we implement them and perform an experimental analysis. Our imple- mentations are based on CGAL and can be easily integrated. They outperform the state- of-the-art determinant and convex hull implementations in most of the tested scenarios, as well as giving a speed-up of 78 times in point location problems. Another contribution focuses on hashing (minors of) determinantal predicates when com- puting regular triangulations, which accelerates execution up to 100 times when computing resultant polytopes. This has been implemented and submitted to CGAL.
    [Show full text]
  • E Convex Hulls
    CS 373 Non-Lecture E: Convex Hulls Fall 2002 E Convex Hulls E.1 Definitions We are given a set P of n points in the plane. We want to compute something called the convex hull of P . Intuitively, the convex hull is what you get by driving a nail into the plane at each point and then wrapping a piece of string around the nails. More formally, the convex hull is the smallest convex polygon containing the points: • polygon: A region of the plane bounded by a cycle of line segments, called edges, joined end-to-end in a cycle. Points where two successive edges meet are called vertices. • convex: For any two points p; q inside the polygon, the line segment pq is completely inside the polygon. • smallest: Any convex proper subset of the convex hull excludes at least one point in P . This implies that every vertex of the convex hull is a point in P . We can also define the convex hull as the largest convex polygon whose vertices are all points in P , or the unique convex polygon that contains P and whose vertices are all points in P . Notice that P might have interior points that are not vertices of the convex hull. A set of points and its convex hull. Convex hull vertices are black; interior points are white. Just to make things concrete, we will represent the points in P by their Cartesian coordinates, in two arrays X[1 :: n] and Y [1 :: n]. We will represent the convex hull as a circular linked list of vertices in counterclockwise order.
    [Show full text]