Strain-Induced Helical Chirality in Polyaromatic Systems Cite This: Chem

Total Page:16

File Type:pdf, Size:1020Kb

Strain-Induced Helical Chirality in Polyaromatic Systems Cite This: Chem Chem Soc Rev View Article Online TUTORIAL REVIEW View Journal | View Issue Strain-induced helical chirality in polyaromatic systems Cite this: Chem. Soc. Rev., 2016, 45,1542 a abc a Michel Rickhaus, Marcel Mayor* and Michal Jurı´cˇek Helicity in a molecule arises when the molecule contains a stereogenic axis instead of a stereogenic centre. In a molecule that is not inherently helically chiral, helicity can be induced by designing the molecule such that an unfavourable steric interaction, or strain, is present in its planar conformation. The release of this strain forces the molecule to adopt a helical twist against the cost of the torsional strain induced in the backbone, an interplay of forces, which must be balanced in favour of the helical conformation over the planar one. In this tutorial review, design principles that govern this process are analysed and the selected examples are categorised into three main (I, II and III) and two related (IV and V) classes, simply by their relation to one of the three types of helically twisted ribbons or two types of helically Received 10th August 2015 twisted cyclic ribbons, respectively. The presented examples were selected such that they illustrate their Creative Commons Attribution 3.0 Unported Licence. DOI: 10.1039/c5cs00620a category in the best possible way, as well as based on availability of their solid-state structures and racemisation energy barriers. Finally, the relationship between the structure and properties is discussed, www.rsc.org/chemsocrev highlighting the cases in which induced helicity gave rise to unprecedented phenomena. Key learning points (1) Chirality can arise without stereogenic centres. (2) Strain introduced into a sufficiently rigid backbone can induce helical chirality. (3) Linked or fused aromatic rings are ideally suited to relay helicity within a structure. This article is licensed under a (4) Strained helical molecules often show surprisingly low racemisation barriers and are more flexible than is generally believed. (5) Helicity induced in a p-conjugated system often leads to an unusual electronic structure and unexpected properties. Open Access Article. Published on 14 January 2016. Downloaded 17/05/2016 12:00:21. 1. Introduction Helical chirality is a property of chiral systems3 that do not contain stereogenic centres, that is, asymmetric units Since its elucidation in 1953, the double-helix structure of DNA where four non-equivalent points represent the vertices of a has fostered the role that chirality plays1 in living systems, tetrahedron. In a helical stereogenic unit, four points that can namely, providing function with complexity. Helical chirality, be identical are placed in a three-dimensional space such that in particular, governs2 formation of many supramolecular the system is not superimposable on its mirror image. This type assemblies composed of chiral or even achiral molecular build- of chirality is also known as axial chirality because of the ing blocks in both biological and artificial systems. The helical presence of a stereogenic axis instead of a centre. In molecules secondary structure often defines the function of complex that are not inherently helically chiral, helicity can be induced. assemblies beyond a single stereogenic centre and translates Flexible molecules, such as DNA, can be folded into a helical chirality from the molecular level to the nanometer scale. conformation by specific directional non-covalent interactions, for Understanding how complexity arises from simple building example, hydrogen bonding. In rigid molecules, helical conforma- blocks and the role of chirality in this process is the key to tions can arise if unfavourable steric interactions, or strain, are the design of functional systems. present in their non-helical conformations, which is the driving force towards formation of the energetically favoured helical conformations. This second type of helical chirality, here referred a Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, to as strain-induced, is the subject of this tutorial review. Switzerland. E-mail: [email protected] The helical conformation is induced4 by minimising the b Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany steric interactions present in the planar conformation against the c Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University, energy cost of the torsional strain, or deformation, induced upon Guangzhou, P. R. China twisting the molecule. The main requirement for a molecule to 1542 | Chem. Soc. Rev., 2016, 45, 1542--1556 This journal is © The Royal Society of Chemistry 2016 View Article Online Tutorial Review Chem Soc Rev adopt a helical conformation is therefore the right balance of of induced strain, structural and dynamic parameters are discussed the two forces, the first one being the driving force. As a in detail. Therefore, compounds, whose solid-state structures as consequence, it is necessary that the molecule is both rigid well as the Gibbs free energy barriers (DG‡) of racemisation are and flexible at the same time. Fused or linked polyaromatic available, were selected preferentially. In the case of less recent systems are ideally suited to serve this purpose because their examples, the DG‡ values were estimated from the activation core is sufficiently rigid. In parallel, the induced deformation is energies (Ea) of racemisation and the corresponding A values, typically spread over a large number of bonds, which makes the using the Arrhenius and Eyring equations. In addition, we have core relatively flexible. Conceptually different types of strain- tried to include as many recent significant examples as possible, induced polyaromatic helices have been reported in the literature. which have not been reviewed before. These numerous significant achievements notwithstanding, there Fig. 1 illustrates three limiting cases of twisting a ribbon is still intellectual space left for designing conceptually new helical with edges highlighted in black and blue for clarity. Depending systems, which are induced by strain and which adopt well- on the position of the stereogenic axis, three types, namely, I, defined geometries. Understanding how helicity arises and how II and III, can be recognised. A type I helical ribbon coils around it is translated into properties in these systems is crucial for an axis, which does not have an intersection with the ribbon, understanding the interplay between chirality and function. leading to a structure reminiscent of a staircase. As a result, the It is important to note that numerous examples are known blue and black edges do not have the same length, the blue edge in the literature, many of which could not be included in this being consistently the longer one in this review (except for the review because of space restrictions. As most of these have case of equal lengths of the two edges). Molecular analogues are recently been reviewed exhaustedly, we focused on the qualita- known as helicenes (Section 2), the most archetypal examples of tive rather than quantitative analysis and classification of the helical polyaromatic systems. The steric interaction between selected examples. Previous reviews on helically chiral strained overlapping or partially overlapping rings forces helicenes to polyaromatic compounds include four recent, extensive reviews adopt a helical conformation against the energy cost of the 5–7 8 9 Creative Commons Attribution 3.0 Unported Licence. on [n]helicenes and twistacenes and one other review torsional strain induced in the helicene backbone. highlighting specific examples. Each review, however, deals mostly Type II features a stereogenic axis that is identical to the with one class of helical molecules and focuses on different main axis of the untwisted, planar ribbon. When the ribbon is synthetic approaches, including stereoselective synthesis, to these twisted around this axis, both edges have the same length and targets. A general concept bringing all the structural motifs together are pirouetting around the axis similarly to the strands of in a systematic way has been missing in the literature and is double-helix DNA. The closest molecular analogues of type II addressed in this conceptual review. The strain-induced helical ribbon are known as twistacenes (Section 3). Unfavourable steric architectures are organised by means that they adopt a helical interactions are achieved by introducing steric crowdedness conformation, and their structural design and its consequences are around the periphery. The energy benefit of minimising these This article is licensed under a discussed. Because of the vast number of examples, the presented steric interactions is optimised against the energy cost of structures were selected thoroughly, such that they illustrate the distorting the p-system from planarity. differences between various types of strain-induced helical systems In type III, the stereogenic axis and the black edge of a ribbon, Open Access Article. Published on 14 January 2016. Downloaded 17/05/2016 12:00:21. as clearly and simply as possible. To qualitatively assess the amount instead of the main axis of its planar form, are identical. Michel Rickhaus obtained his MSc (2011) and PhD (2015) from the University of Basel under the supervision of Professor Marcel Mayor. His research interests involve the development of new concepts for inducing twists and strain in aromatic materials. Under the supervision
Recommended publications
  • Appendix 1 Table of Contents
    @ECHA EUROPEAN CHEMICALS AGENCY Appendix 1 Table of Contents: Supplementary Table C:Substances on Annex II of the Cosmetic Products Regulation ... 1 Supplementary Table D: Substances proposed to be restricted due their use restriction in CPR Annex IV column 9..,,.. 119 Supplementary Table E: Substances allowed in tattoo inks subject to the conditions specified in CPR Annex IV columns h and i ......r29 Annankatu 18. P.O. Box 400, FI-00121 Helsinki, Finland I Tel. +358 9 686180 | Fax +358 9 68618210 | echa.europa.eu ANNEX XV RESTRICTION REPORT - SUBSTANCES IN TATTOO INKS AND PERMANENT MAKE UP Su lemen Table C:Substances on Annex II of the Cosmetic Products Re ulationl Substance EC# cAs # Substance EC# cAs # R T T T A- s c R I T Name Name e b b b II s M 7 c I s I I I #4 5 6 D 9 2 1 2 3 a 3 3 3 N-(s- Chlorobenzoxa zol-2- 35783- vl)acetamide 57-4 1 (2- Acetoxyethyl)t rimethylammo (2- nium acetoxyethyl hydroxide )trimethyla 200- (Acetylcholine) 200- mmonium 124-9 5 1-84-3 and its salts t2a-9 51-84-3 2 Deanol Deanol 222- 3342- aceglumate 222- 3342- aceqlumate 085-5 61-8 (INN) 085-5 61-8 3 Spironolacto 200- Spironolactone 200- ne 133-6 52-O1-7 rINN) 133-6 52-0L-7 4 14-(4- Hydroxy-3- iodophenoxy)- 3,5- diiodophenylla cetic acid (Tiratricol 200- (INN)) and its 200- Tiratricol 086- 1 5r-24-7 salts 086- 1 5l-24-7 5 Methotrexat 200- Methotrexate 200- e 413-8 59-05-2 (INN) 413-8 59-05-2 6 Aminocaproic Aminocaproi 200- acid (INN) and 200- c acid 469-3 60-32-2 its salts 469-3 60-32-2 7 Cinchophen (rNN), its salts, derivatives and salts of 205- 132-60- these 205- 132-60- Cinchophen 067-r 5 derivatives 067-l 5 Thyropropic acid (INN) and its salts 5L-26-3 9 Trichloroacet 200- Trichloroacetic 200- ic acid 927-2 75-03-9 acid 927-2 76-03-9 l0 Aconitum napellus L.
    [Show full text]
  • Azulene Chemistry
    Azulene Chemistry What follows is a summary of the synthesis reactions related to Azulene, its generation and its derivatives based on the references I was able to review. I hope that this summary will be of help to those who might be interested in this subject. Nozoe, T., Seto, S., & Matsumura, S. (1962). Synthesis of 2-substituted azulenes by nucleophilic substitution reactions of 2-haloazulene derivatives. Bulletin of the Chemical Society of Japan, 35(12), 1990-1998. Nozoe, T., Takase, K., & Tada, M. (1965). The Anionoid Substitution Reaction of Diethyl 6-Bromoazulene-1, 3- dicarboxylate. Bulletin of the Chemical Society of Japan, 38(2), 247-251. Tada, M. (1966). The Anionoid Substitution Reaction of Diethyl 2-Acetamido-6-bromoazulene-1, 3-dicarboxylate. Bulletin of the Chemical Society of Japan, 39(9), 1954-1961. Saito, M., Morita, T., & Takase, K. (1980). Synthesis of 2-Formylazulene and Its Derivatives by Oxidative Cleavage of 2-Styrylazulenes. Bulletin of the Chemical Society of Japan, 53(12), 3696-3700. Asao, T., & Ito, S. (1996). Synthesis and Properties of Novel Azulenic π-Electronic Compounds. Journal of Synthetic Organic Chemistry, Japan, 54(1), 2-14. Kurotobi, K., Tabata, H., Miyauchi, M., Mustafizur, R. A., Migita, K., Murafuji, T., ... & Fujimori, K. (2003). The first generation of azulenyl-lithium and-magnesium: A novel, versatile method of introducing a substituent at the 2- position of an azulene skeleton. Synthesis, 1(01), 0030-0034. Crombie, A. L., Kane, J. L., Shea, K. M., & Danheiser, R. L. (2004). Ring expansion-annulation strategy for the synthesis of substituted azulenes and oligoazulenes. 2. Synthesis of azulenyl halides, sulfonates, and azulenylmetal compounds and their application in transition-metal-mediated coupling reactions.
    [Show full text]
  • Annual Progress Report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998
    Ris0-R-1O99(EN) DK9900089 Annual Progress Report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998 Edited by K. Bechgaard, K.N. Clausen, R. Feidenhans'l and I. Johannsen Ris0 National Laboratory, Roskilde, Denmark April 1999 30-31 Ris0-R-1O99(EN) Annual Progress Report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998 Edited by K. Bechgaard, K.N. Clausen, R. Feidenhans'l and I. Johannsen Ris0 National Laboratory, Roskilde, Denmark April 1999 Abstract The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. The readers are invited to contact the department or the authors of the individual contributions for more detailed information than can be given in this report. The postal address is: Condensed Matter Physics and Chemistry Department, Ris0 National Laboratory. P.O. Box 49, DK-4000 Roskilde, Denmark. E-mail addresses may be found on the last page of this report.
    [Show full text]
  • Π‐Extended Diaza[7]Helicenes by Hybridization of Naphthalene
    Full Paper Chemistry—A European Journal doi.org/10.1002/chem.202003402 & Organic chemistry |HotPaper| p-Extended Diaza[7]helicenes by Hybridization of Naphthalene Diimides and Hexa-peri-hexabenzocoronenes Carolin Dusold,[a] Dmitry I. Sharapa,[b] Frank Hampel,[a] and Andreas Hirsch*[a] Abstract: The synthesis of an unprecedented, p-extended mation of the diaza[7]helicene moiety in the final Scholl oxi- hexabenzocorene (HBC)-based diaza[7]helicene is presented. dation is favoured, affording the symmetric p-extended heli- The target compound was synthesized by an ortho-fusion of cene as the major product as apair of enantiomers. The sep- two naphthalene diimide (NDI) units to aHBC-skeleton. A aration of the enantiomers was successfully accomplished combination of Diels–Alder and Scholl-type oxidation reac- by HPLC involving achiral stationary phase. The absolute tions involving asymmetric di-NDI-tolane precursor were configuration of the enantiomers was assigned by compari- crucial for the very selectiveformation of the helical super- son of circular dichroismspectrawith quantum mechanical structure via ahexaphenyl-benzene (HPB) derivative. The for- calculations. Introduction can notably tune optical, electronical and supramolecular properties.[10] Elongation of the spiral arrangementofthe con- The development of nonplanar PAHs is currently an emerging jugated p-systemrepresents the most common way to pre- field in synthetic organic chemistry.[1] Among the most impor- pare higher helicene derivatives.[11] In contrasttothat, the ex- tant
    [Show full text]
  • Synthesis and Properties of Heterocyclic Acene Diimides
    ORGANIC LETTERS XXXX Synthesis and Properties of Heterocyclic Vol. XX, No. XX Acene Diimides 000–000 Cheng Li,†,‡ Chengyi Xiao,†,‡ Yan Li,*,† and Zhaohui Wang*,† Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, and University of Chinese Academy of Sciences, Beijing 100049, China [email protected]; [email protected] Received December 27, 2012 ABSTRACT A series of heterocyclic acene diimides were synthesized effectively based on the condensation of o-phenylenediamine, 1,2-benzenedithiol, and 2-aminothiophenol with 2,3,6,7-tetrabromo-1,4,5,8-naphthalene tetracarboxylic diimide. The diimides exhibit interesting optical and electrical properties with one of them showing a hole mobility up to 0.02 cm2 VÀ1 sÀ1. In recent years, naphthalene tetracarboxylic diimides has been applied as high-performance solution-deposited (NDIs, 1, Figure 1) and their core-expanded derivatives ambipolar organic transistors.2 In contrast, the expansion have attracted a great deal of attention due to their of the π-system along the lateral position of NDIs has been interesting electro-optical properties and potential appli- demonstrated only recently due to the synthetic difficulties. cations as organic semiconductors in organic electronics.1 Recently, the synthesis of tetracene tetracarboxylic The π-skeleton of NDIs could be expanded along two diimides based on two methods of direct double ring directions: the peri position (1, 4, 5, 8) and the lateral extension of electron-deficient NDIs involving metal- position (2, 3, 6, 7). The expansion of the π-system along lacyclopentadienes and bismuth-triflate-mediated double- the peri position has been studied for many decades cyclization reaction of acid chlorides and isocyanates has because it induces impressive bathochromic shifts and been reported, which displays dramatic bathochromic shifts, smaller energy band gaps, and is a promising can- 3 † Institute of Chemistry, Chinese Academy of Sciences.
    [Show full text]
  • Chemistry of Acenes, [60]Fullerenes, Cyclacenes and Carbon Nanotubes
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2011 Chemistry of acenes, [60]fullerenes, cyclacenes and carbon nanotubes Chandrani Pramanik University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Pramanik, Chandrani, "Chemistry of acenes, [60]fullerenes, cyclacenes and carbon nanotubes" (2011). Doctoral Dissertations. 574. https://scholars.unh.edu/dissertation/574 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. CHEMISTRY OF ACENES, [60]FULLERENES, CYCLACENES AND CARBON NANOTUBES BY CHANDRANI PRAMANIK B.Sc., Jadavpur University, Kolkata, India, 2002 M.Sc, Indian Institute of Technology Kanpur, India, 2004 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Materials Science May 2011 UMI Number: 3467368 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 3467368 Copyright 2011 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O.
    [Show full text]
  • Community Soil Study
    Tonawanda Community Fund An affiliate of “The Wellness Institute of Greater Buffalo” Community Soil Study Fact Sheet In November 2012, Tonawanda Community Fund (TCF) led a preliminary study in a Tonawanda neighborhood to find out if air toxins were contaminating surface soil; and, if pollutants were present, do levels pose a health risk. TCF tested the soil for toxic chemicals on Kaufman Ave/James Ave/Sawyers Ave. streets in the Town of Tonawanda, NY. This neighborhood is located off of River Rd in the heart of Tonawanda’s industrial corridor. The study was initiated due to recent community complaints of a black gooey substance apparently coming from a close by air source and depositing on soil, vegetation and vehicles. The study gained more significance when Jackie James Creedon, TCF member and former director of the Clean Air Coalition of WNY, learned that a similar community’s surface soil in Birmingham, AL, where two foundry coke plants reside, was contaminated with a dangerous chemical called Benzo[a]pyrene (BAP). How the Soil was Sampled and Tested Ken‐Ton residents and TCF members, Charles Matteliano from TEQ Solutions, and Andrew Baumgartner, a student at University of Buffalo mentoring under Chemistry professor Dr .Joe Gardella, collected soil samples from a playground and 5 homes in the neighborhood. They also collected a background sample at Beaver Island State Park. Each soil sample, a composite of 6 sub samples, was tested at Test America (Amherst, NY) for 16 polycyclic aromatic hydrocarbon (PAH) compounds and 8 heavy metals. What Was Found Harmful Chemicals: Many chemicals were elevated above background sample.
    [Show full text]
  • Journal of Fluorine Chemistry 221 (2019) 1–7
    Journal of Fluorine Chemistry 221 (2019) 1–7 Contents lists available at ScienceDirect Journal of Fluorine Chemistry journal homepage: www.elsevier.com/locate/fluor Steric and electronic effects of3 CF conformations in acene(CF3)n derivatives T Nicholas J. DeWeerda, Eric V. Bukovskya, Karlee P. Castroa, Igor V. Kuvychkoa, ⁎ ⁎ ⁎ Alexey A. Popovb, , Steven H. Straussa, , Olga V. Boltalinaa, a Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States b Liebniz Institute for Solid State and Materials Research (IFW), Dresden 01069, Germany ARTICLE INFO ABSTRACT Keywords: The X-ray and DFT-optimized structures of the electron acceptor 2,3,6,7,9,10-anthra-cene(CF3)6 (ANTH-6-1) and Trifluoromethyl the 1/2 donor/acceptor co-crystal pyrene/(ANTH-6-1)2 are reported. These structures, along with extensive DFT PAH calculations on various conformations of ANTH-6-1 and 9,10-ANTH(CF3)2, suggest that the degree of bending of Acene the aromatic core in ANTH-6-1 and the DFT-predicted energies of ANTH-6-1 and 9,10-ANTH(CF3)2 are strongly Conformations 2 correlated with the relative eclipsed vs. staggered conformations of the CF3 groups attached to the central C(sp ) Bent pi systems carbon atoms (C9 and C10). Other literature X-ray and DFT-optimized structures of anthracene and pentacene X-ray structures 2 DFT calculations derivatives with n-C8F17 and/or CF3 substituents on the central C(sp ) atoms are analyzed and show (i) that the eclipsed vs. staggered correlation with the degree of bending of the aromatic cores may be a general phenom- enon and (ii) that molecules of this type are probably more stable when the acene core is bent than when it is planar.
    [Show full text]
  • Fullerene-Acene Chemistry
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2007 Fullerene-acene chemistry: Part I Studies on the regioselective reduction of acenes and acene quinones; Part II Progress toward the synthesis of large acenes and their Diels-Alder chemistry with [60]fullerene Andreas John Athans University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Athans, Andreas John, "Fullerene-acene chemistry: Part I Studies on the regioselective reduction of acenes and acene quinones; Part II Progress toward the synthesis of large acenes and their Diels-Alder chemistry with [60]fullerene" (2007). Doctoral Dissertations. 363. https://scholars.unh.edu/dissertation/363 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. FULLERENE-ACENE CHEMISTRY: PART I: STUDIES ON THE REGIOSELECTIVE REDUCTION OF ACENES AND ACENE QUINONES; PART II: PROGRESS TOWARD THE SYNTHESIS OF LARGE ACENES AND THEIR DIELS- ALDER CHEMISTRY WITH [60]FULLERENE VOLUME 1 CHAPTERS 1-5 BY ANDREAS JOHN ATHANS B.S. University of New Hampshire, 2001 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy m Chemistry May, 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3 2 6 0 5 8 6 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative (Part I) Synthesis of Platinum and Ethynyl-Platinum Corannulenes (Part II)
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative (Part I) Synthesis of Platinum and Ethynyl-Platinum Corannulenes (Part II) Maag, Roman M Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-164179 Dissertation Published Version Originally published at: Maag, Roman M. Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative (Part I) Synthesis of Platinum and Ethynyl-Platinum Corannulenes (Part II). 2012, University of Zurich, Faculty of Science. Part I: Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative and Part II: Synthesis of Platinum and Ethynyl-Platinum Corannulenes Dissertation zur Erlangung der naturwissenschaftlichen Doktorwurde¨ Dr. sc. nat. vorgelegt der Mathematisch-naturwissenschaftlichen Fakult¨at der Universit¨at Zurich¨ von Roman M. Maag von Winkel ZH Promotionskommitee: Prof. Dr. Jay S. Siegel (Vorsitz) Prof. Dr. Kim K. Baldridge Prof. Dr. Cristina Nevado Prof. Dr. Roger Alberto Zurich,¨ 2012 Abstract of the Dissertation Part I: Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative and Part II: Synthesis of Platinum and Ethynyl-Platinum Corannulenes by Roman M. Maag University of Zurich, 2012 Prof. Dr. Jay S. Siegel, Chair Corannulene (C20H10) is a polyaromatic hydrocarbon that can be considered as the smallest fragment of Buckminsterfullerene exhibiting a curved surface. Among the in- teresting properties of corannulene are rapid bowl inversion and esthetically appealing fivefold symmetry (C5v), which is rare in chemistry. Whereas the first synthesis in 1968 only afforded milligram quantities, several improvements in the synthetic strategy finally culminated in the development of an efficient process which today furnishes corannulene in kilogram quantities.
    [Show full text]
  • Molecular Assembly of Polycyanoarenes with Silver Salts
    MOLECULAR ASSEMBLY OF POLYCYANOARENES WITH SILVER SALTS AND SYNTHESIS OF POLYCYCLIC AROMATIC HYDROCARBONS A DISSERTATION IN Chemistry and Pharmaceutical Sciences Presented to the Faculty of the University of Missouri-Kansas City in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY by GERARDO B. MÁRQUEZ B.Sc. Central University of Venezuela, 1993 Kansas City, Missouri 2012 © 2012 GERARDO B. MÁRQUEZ ALL RIGHTS RESERVEDED MOLECULAR ASSEMBLY OF POLYCYANORENES WITH SILVER SALTS AND SYNTHESIS OF POLYCYCLIC AROMATIC HYDROCARBONS Gerardo Batalla Márquez, Candidate for the Doctor of Philosophy Degree University of Missouri-Kansas City, 2012 ABSTRACT This dissertation encompasses the investigation of two distinct subjects. In the first part, which is in the area of molecular self-assembly, the complexation of organonitrile aryl compounds with three different types of silver (I) salts is examined in the solid state. The assembly of 1-(2,2-dicyanovinyl)naphthalene with silver hexafluoroantimonate resulted in a cationic 3D network. Complexation of 4-(2,2-dicyanovinyl)biphenyl with silver tetrafluoroborate and hexafluoroantimonate from benzene generated two similar structures. While the former displays a cationic 3D network, the latter is defined by cationic 2D sheets. Complexation of 9-(2,2-dicyanovinyl)anthracene with silver hexafluoroantimonate from toluene afforded a cationic 2D ribbon, and from benzene, it yielded cationic 2D sheets. These complexes contained solvent bonded to their structures. However, the hexafluoroantimonate ion is nonbonding. The crystal association of 1,4-bis(cyanovinyl)benzene with silver triflate from benzene yielded neutral 2D sheets whose imperfect-rectangular macrocyclic arrangements are interconnected on both sides by bridges of benzene. On the other hand, the assembly of 1,3- bis(cyanovinyl)benzene with silver triflate from benzene afforded a neutral 3D network formed by two interconnected rings.
    [Show full text]
  • Anti‐Aromatic Versus Induced Paratropicity ... -.:. Michael Pittelkow
    Angewandte Forschungsartikel Chemie Deutsche Ausgabe:DOI:10.1002/ange.201913552 Circulenes Internationale Ausgabe:DOI:10.1002/anie.201913552 Anti-Aromatic versus Induced Paratropicity:Synthesis and InterrogationofaDihydro-diazatrioxa[9]circulene with aProton Placed Directly above the Central Ring Stephan K. Pedersen, Kristina Eriksen, Nataliya N. Karaush-Karmazin, Boris Minaev, Hans gren, Gleb V. Baryshnikov* und Michael Pittelkow* Abstract: We present ahigh-yielding intramolecular oxidative coupling within adiazadioxa[10]helicene to give adihydro- diazatrioxa[9]circulene.This is the first [n]circulene contain- ing more than eight ortho-annulated rings (n > 8). The single- crystal X-raystructure reveals atight columnar packing, with aproton from apendant naphthalene moiety centred directly abovethe central nine-membered ring. This distinct environ- ment induces asignificant magnetic deshielding effect on that particular proton as determined by 1HNMR spectroscopy. The origin of the deshielding effect was investigated computation- ally in terms of the NICS values.Itisestablished that the deshielding effect originates from an induced paratropic ring current from the seven aromatic rings of the [9]circulene structure,and is not due to the nine-membered ring being antiaromatic.UV/Vis spectroscopyreveals more efficient Figure 1. Simplified illustration of the influence of diatropic and para- conjugation in the prepared diazatrioxa[9]circulene compared tropic ring currents on the 1Hchemical shift inside and outside of to the parent helical azaoxa[10]helicenes,and
    [Show full text]