UC Berkeley UC Berkeley Electronic Theses and Dissertations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Onetouch 4.0 Scanned Documents
352.1 REPTILIA: SQUAMATA: SERPENTES: COLUBRIDAE TRIMORPHODON Catalogue of American Amphibians and Reptiles. and Zacatecas; through the Pacific lowlands and some dry interior valleys of Guatemala, Honduras, El Salvador, and Nicaragua to SCOTT, NORMAN J., JR., AND ROY W. MCDIARMID. 1984. Tri- Guanacaste and Puntarenas provinces of northwestern Costa Rica. morpkodon. A record for Panamá (Boulenger, 1896) is not confirmed and prob- ably erroneous. Elevational range from sea level to 2600 m. Trimorphodon Cope • FOSSIL RECORD. See species accounts. Lyre Snakes • PERTINENT LITERATURE. McDiarmid and Scott (1970) re- Trimorphodon Cope, 1861:297, Type species, Lycodon lyro- viewed T. tau, and Gehlbach (1971) revised T. biscutatus-, see these phanes Cope, 1860, by original designation. and the species accounts for additional references. Eteirodipsas Jan, 1863:105. Type species, Dipsas biscutata Du- • KEY TO SPECIES, méril, Bibron, and Duméríl, 1854, by subsequent designation (Smith and Taylor, 1945; Mertens, 1952). Pole band on nape broad with a straight or slightly indented Hetaerodipsas Berg, 1901:90. Emendation of Eteirodipsas Jan. posterior border; most dorsal dark saddles confluent with dark markings on ventrals 7^ tau • CONTENT. TWO species are recognized: T biscutatus and T. Pale band on nape narrow and chevron or lyre shaped, posterior tau. border A or U-shaped; most dorsal dark saddles separated » DEnNlTlON AND DuGNOSis. A colubrid snake genus with lat- from dark spots on tips of ventrals T. biscutatus eral head scales fragmented, numerous, -
2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon
INFORMATION REPORTS NUMBER 2010-05 FISH DIVISION Oregon Department of Fish and Wildlife 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon Oregon Department of Fish and Wildlife prohibits discrimination in all of its programs and services on the basis of race, color, national origin, age, sex or disability. If you believe that you have been discriminated against as described above in any program, activity, or facility, or if you desire further information, please contact ADA Coordinator, Oregon Department of Fish and Wildlife, 3406 Cherry Drive NE, Salem, OR, 503-947-6000. This material will be furnished in alternate format for people with disabilities if needed. Please call 541-757-4263 to request 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon Sharon E. Tippery Brian L. Bangs Kim K. Jones Oregon Department of Fish and Wildlife Corvallis, OR November, 2010 This project was financed with funds administered by the U.S. Fish and Wildlife Service State Wildlife Grants under contract T-17-1 and the Oregon Department of Fish and Wildlife, Oregon Plan for Salmon and Watersheds. Citation: Tippery, S. E., B. L Bangs and K. K. Jones. 2010. 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon. Information Report 2010-05, Oregon Department of Fish and Wildlife, Corvallis. CONTENTS FIGURES....................................................................................................................................... -
Onetouch 4.0 Scanned Documents
354.1 REPTILIA: SQUAMATA: SERPENTES: COLUBRIDAE TRIMORPHODON TAU Catal4»gue of American Amphibians and Reptiles. • FOSSIL RECORD. None. SCOTT, NORMAN J., JR., AND ROY W. MCDIARMID. 1984. 7>t- • PERTINENT LITERATURE. McDiarmid and Scott (1970) sum- morphodon tau. marized the nomenclatura! history, biology, and zoogeography of the species. Bowler (1977) included a longevity record. Trimorphodon tau Cope • ETYMOLOGY. Cope (1870, 1886) used Greek letters to de- Mexican Lyre Snake scribe the patterns on the head and nape of three forms of Trimor- phodon. TcM refers to the T-shaped mark that extends transversely Eieirodipsas biscutata: Jan, 1863:105 (part). between the orbits and longitudinally to the end of the snout. The Trimorphodon tau Gipe, 1870:152. Type-locality, "western part term latifiiscia probably refers to the characteristic broad, dark of the Istlrmua of Tehiuuitepec, Mexico," in error; Sumichrast dorsal bands. (1882) stated that the bobtype came from near Quiotepec, Oasaca, between Tehuacán and Oaxaca. Holotype, U.S. Nat. Mus. 30338, juvenile, collected by Francois Sumicbraat, date 1. Trimorphodon tau tau Cope of collection unknown (examined by authors). Trimorphodon upsilon Cope, 1870:152. Type-locality, "Cuadalax- Trimorphodon tau Cope, 1870:152 (see species synonymy). ara. West Mexico." Holotype, U.S. Nat. Mus. 31358, male, Trimorphodon tau taw. Smith and Darling, 1952:85. collected by J. J. Major, date of collection unknown (examined Trimorphodon tau upsilon: Smith and Darling, 1952:85. by authors). • DEFINITION. Head cap usually pale to medium gray, with a Trimorphodon coUarit Cope, 1875:131. Type-locality, "Orizaba, light snout or prefrontal bar, complete interocular bar and variable Vera Cruz," México, in error; Sumichrast (1882) stated that light parietal markings. -
Species Selection Process
FINAL Appendix J to S Volume 3, Book 2 JULY 2008 COYOTE SPRINGS INVESTMENT PLANNED DEVELOPMENT PROJECT FINAL VOLUME 3 Coyote Springs Investment Planned Development Project Appendix J to S July 2008 Prepared EIS for: LEAD AGENCY U.S. Fish and Wildlife Service Reno, NV COOPERATING AGENCIES U.S. Army Corps of Engineers St. George, UT U.S. Bureau of Land Management Ely, NV Prepared MSHCP for: Coyote Springs Investment LLC 6600 North Wingfield Parkway Sparks, NV 89496 Prepared by: ENTRIX, Inc. 2300 Clayton Road, Suite 200 Concord, CA 94520 Huffman-Broadway Group 828 Mission Avenue San Rafael, CA 94901 Resource Concepts, Inc. 340 North Minnesota Street Carson City, NV 89703 PROJECT NO. 3132201 COYOTE SPRINGS INVESTMENT PLANNED DEVELOPMENT PROJECT Appendix J to S ENTRIX, Inc. Huffman-Broadway Group Resource Concepts, Inc. 2300 Clayton Road, Suite 200 828 Mission Avenue 340 North Minnesota Street Concord, CA 94520 San Rafael, CA 94901 Carson City, NV 89703 Phone 925.935.9920 Fax 925.935.5368 Phone 415.925.2000 Fax 415.925.2006 Phone 775.883.1600 Fax 775.883.1656 LIST OF APPENDICES Appendix J Mitigation Plan, The Coyote Springs Development Project, Lincoln County, Nevada Appendix K Summary of Nevada Water Law and its Administration Appendix L Alternate Sites and Scenarios Appendix M Section 106 and Tribal Consultation Documents Appendix N Fiscal Impact Analysis Appendix O Executive Summary of Master Traffic Study for Clark County Development Appendix P Applicant for Clean Water Act Section 404 Permit Application, Coyote Springs Project, Lincoln County, Nevada Appendix Q Response to Comments on the Draft EIS Appendix R Agreement for Settlement of all Claims to Groundwater in the Coyote Spring Basin Appendix S Species Selection Process JULY 2008 FINAL i APPENDIX S Species Selection Process Table of Contents Appendix S: Species Selection Process ........................................................................................................ -
Trimorphodon Biscutatus
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2003 Systematics of the Western Lyresnake (Trimorphodon biscutatus) complex: implications for North and Middle American aridland biogeography Thomas James Devitt Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Recommended Citation Devitt, Thomas James, "Systematics of the Western Lyresnake (Trimorphodon biscutatus) complex: implications for North and Middle American aridland biogeography" (2003). LSU Master's Theses. 1201. https://digitalcommons.lsu.edu/gradschool_theses/1201 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. SYSTEMATICS OF THE WESTERN LYRESNAKE (TRIMORPHODON BISCUTATUS ) COMPLEX: IMPLICATIONS FOR NORTH AND MIDDLE AMERICAN ARIDLAND BIOGEOGRAPHY A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Biological Sciences by Thomas James Devitt B.S., University of Texas at Austin, 1999 May 2003 ACKNOWLEDGEMENTS For support and guidance throughout the course of this project, I am indebted to my advisor, Jim McGuire. For thoughtful insight and discussion, I thank my committee members, Fred Sheldon, Mark Hafner, and Mike Hellberg. For assistance with various aspects of this work, I thank Adam Leaché, Frank Burbrink, Mark McRae, Rob Moyle, Jessica Light, Sara Brant, Nannette Crochet, Doug Creer, Matt Fujita and Todd Castoe. -
BACKGROUND ENVIRONMENTAL REPORT Existing Conditions | January 2020
Thousand Oaks BACKGROUND ENVIRONMENTAL REPORT Existing Conditions | January 2020 EXISTING CONDITIONS REPORT: BACKGROUND ENVIRONMENTAL Age, including mastodon, ground sloth, and saber-toothed cat CHAPTER 1: CULTURAL (City of Thousand Oaks 2011). RESOURCES Native American Era The earliest inhabitants of Southern California were transient hunters visiting the region approximately 12,000 B.C.E., who were the cultural ancestors of the Chumash. Evidence of significant and Cultural Setting continuous habitation of the Conejo Valley region began around The cultural history of the City of Thousand Oaks and the 5,500 B.C.E. Specifically, during the Millingstone (5,500 B.C.E – surrounding Conejo Valley can be divided in to three major eras: 1,500 B.C.E.) and the Intermediate (1,500 B.C.E. – 500 C.E.) Native-American, Spanish-Mexican, and Anglo-American. periods, the Conejo Valley experienced a year-round stable Remnants from these unique eras exist in the region as a diverse population of an estimated 400-600 people. During this time, range of tribal, archaeological and architectural resources. The people typically lived in largely open sites along water courses Conejo Valley served as an integral part of the larger Chumash and in caves and rock shelters; however, a number of site types territory that extended from the coast and Channel Islands to have been discovered, including permanent villages, semi- include Santa Barbara, most of Ventura, parts of San Luis Obispo, permanent seasonal stations, hunting camps and gathering Kern and Los Angeles Counties. The late 18th and early 19th localities focused on plant resources (City of Thousand Oaks 2011). -
California Leaf-Nosed Bat (Macrotus Californicus) (CLNB) Basic Conceptual Ecological Model for the Lower Colorado River
California Leaf-nosed Bat (Macrotus californicus) (CLNB) Basic Conceptual Ecological Model for the Lower Colorado River 1. Pups FA SA GP SP GA 2. Adults Photo courtesy of the Bureau of Reclamation Work conducted under LCR MSCP Work Task G6 May 2020 Lower Colorado River Multi-Species Conservation Program Steering Committee Members Federal Participant Group California Participant Group Bureau of Reclamation California Department of Fish and Wildlife U.S. Fish and Wildlife Service City of Needles National Park Service Coachella Valley Water District Bureau of Land Management Colorado River Board of California Bureau of Indian Affairs Bard Water District Western Area Power Administration Imperial Irrigation District Los Angeles Department of Water and Power Palo Verde Irrigation District Arizona Participant Group San Diego County Water Authority Southern California Edison Company Arizona Department of Water Resources Southern California Public Power Authority Arizona Electric Power Cooperative, Inc. The Metropolitan Water District of Southern Arizona Game and Fish Department California Arizona Power Authority Central Arizona Water Conservation District Cibola Valley Irrigation and Drainage District Nevada Participant Group City of Bullhead City City of Lake Havasu City Colorado River Commission of Nevada City of Mesa Nevada Department of Wildlife City of Somerton Southern Nevada Water Authority City of Yuma Colorado River Commission Power Users Electrical District No. 3, Pinal County, Arizona Basic Water Company Golden Shores Water Conservation -
Biology 2 Lab Packet for Practical 4
1 Biology 2 Lab Packet For Practical 4 2 CLASSIFICATION: Domain: Eukarya Supergroup: Unikonta Clade: Opisthokonts Kingdom: Animalia Phylum: Chordata – Chordates Subphylum: Urochordata - Tunicates Class: Amphibia – Amphibians Subphylum: Cephalochordata - Lancelets Order: Urodela - Salamanders Subphylum: Vertebrata – Vertebrates Order: Apodans - Caecilians Superclass: Agnatha Order: Anurans – Frogs/Toads Order: Myxiniformes – Hagfish Class: Testudines – Turtles Order: Petromyzontiformes – Lamprey Class: Sphenodontia – Tuataras Superclass: Gnathostomata – Jawed Vertebrates Class: Squamata – Lizards/Snakes Class: Chondrichthyes - Cartilaginous Fish Lizards Subclass: Elasmobranchii – Sharks, Skates and Rays Order: Lamniiformes – Great White Sharks Family – Agamidae – Old World Lizards Order: Carcharhiniformes – Ground Sharks Family – Anguidae – Glass Lizards Order: Orectolobiniformes – Whale Sharks Family – Chameleonidae – Chameleons Order: Rajiiformes – Skates Family – Corytophanidae – Helmet Lizards Order: Myliobatiformes - Rays Family - Crotaphytidae – Collared Lizards Subclass: Holocephali – Ratfish Family – Helodermatidae – Gila monster Order: Chimaeriformes - Chimaeras Family – Iguanidae – Iguanids Class: Sarcopterygii – Lobe-finned fish Family – Phrynosomatidae – NA Spiny Lizards Subclass: Actinistia - Coelocanths Family – Polychrotidae – Anoles Subclass: Dipnoi – Lungfish Family – Geckonidae – Geckos Class: Actinopterygii – Ray-finned Fish Family – Scincidae – Skinks Order: Acipenseriformes – Sturgeon, Paddlefish Family – Anniellidae -
Ecological Role of the Salamander Ensatina Eschscholtzii: Direct Impacts on the Arthropod Assemblage and Indirect Influence on the Carbon Cycle
Ecological role of the salamander Ensatina eschscholtzii: direct impacts on the arthropod assemblage and indirect influence on the carbon cycle in mixed hardwood/conifer forest in Northwestern California By Michael Best A Thesis Presented to The faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Masters of Science In Natural Resources: Wildlife August 10, 2012 ABSTRACT Ecological role of the salamander Ensatina eschscholtzii: direct impacts on the arthropod assemblage and indirect influence on the carbon cycle in mixed hardwood/conifer forest in Northwestern California Michael Best Terrestrial salamanders are the most abundant vertebrate predators in northwestern California forests, fulfilling a vital role converting invertebrate to vertebrate biomass. The most common of these salamanders in northwestern California is the salamander Ensatina (Ensatina eschsccholtzii). I examined the top-down effects of Ensatina on leaf litter invertebrates, and how these effects influence the relative amount of leaf litter retained for decomposition, thereby fostering the input of carbon and nutrients to the forest soil. The experiment ran during the wet season (November - May) of two years (2007-2009) in the Mattole watershed of northwest California. In Year One results revealed a top-down effect on multiple invertebrate taxa, resulting in a 13% difference in litter weight. The retention of more leaf litter on salamander plots was attributed to Ensatina’s selective removal of large invertebrate shedders (beetle and fly larva) and grazers (beetles, springtails, and earwigs), which also enabled small grazers (mites; barklice in year two) to become more numerous. Ensatina’s predation modified the composition of the invertebrate assemblage by shifting the densities of members of a key functional group (shredders) resulting in an overall increase in leaf litter retention. -
Diet of the Del Norte Salamander (Plethodon Elongatus): Differences by Age, Gender, and Season
NORTHWESTERN NATURALIST 88:85–94 AUTUMN 2007 DIET OF THE DEL NORTE SALAMANDER (PLETHODON ELONGATUS): DIFFERENCES BY AGE, GENDER, AND SEASON CLARA AWHEELER,NANCY EKARRAKER1,HARTWELL HWELSH,JR, AND LISA MOLLIVIER Redwood Sciences Laboratory, Pacific Southwest Research Station, USDA Forest Service, 1700 Bayview Drive, Arcata, California 95521 ABSTRACT—Terrestrial salamanders are integral components of forest ecosystems and the ex- amination of their feeding habits may provide useful information regarding various ecosystem processes. We studied the diet of the Del Norte Salamander (Plethodon elongatus) and assessed diet differences between age classes, genders, and seasons. The stomachs of 309 subadult and adult salamanders, captured in spring and fall, contained 20 prey types. Nineteen were inver- tebrates, and one was a juvenile Del Norte Salamander, representing the first reported evidence of cannibalism in this species. Mites and ants represented a significant component of the diet across all age classes and genders, and diets of subadult and adult salamanders were fairly similar overall. We detected, however, an ontogenetic shift with termites and ants becoming less important and spiders and mites becoming more important with age. These differences between subadults and adults can likely be attributed to the inability of subadults to consume larger prey items due in part to gape limitation. The diet of the Del Norte Salamander, like other plethodontids, consists of a high diversity of prey items making it an opportunistic, sit-and- wait predator. Key words: Del Norte Salamander, Plethodon elongatus, food habits, diet, northern California, southern Oregon Terrestrial salamanders represent a signifi- 2005), and may require ecological conditions cant component of vertebrate biomass in forest found primarily in late seral stage forests ecosystems (Burton and Likens 1975a) and (Welsh 1990; Welsh and Lind 1995; Jones and strongly influence nutrient dynamics and en- others 2005). -
BIOLOGICAL ASSESSMENT TERACOR Resource Management
APPENDIX B: BIOLOGICAL ASSESSMENT TERACOR Resource Management, Inc., General Biological Assessment for a 4.75-Acre Property in the City of Palmdale, California, January 14, 2019. [This Page Intentionally Left Blank] GENERAL BIOLOGICAL ASSESSMENT FOR A 4.75-ACRE PROPERTY IN THE CITY OF PALMDALE, CALIFORNIA ASSESSOR’S PARCEL NO. 3010-030-023 Located within Section 35 of the Ritter Ridge, California Quadrangle within Township 6 north, Range 12 west Prepared for: City of Palmdale, California and Meta Housing Corporation 11150 W. Olympic Blvd., Suite #620 Los Angeles, California 90064 Prepared by: TERACOR Resource Management, Inc. 27393 Ynez Road, Suite 253 Temecula, California 92591 (951) 694-8000 Principal Investigator: Samuel Reed [email protected] Fieldwork conducted by: Samuel Reed and Jared Reed 14 January 2019 General Biological Assessment TABLE OF CONTENTS 1.0 Introduction ............................................................................................................................................. 1 2.0 Methods .................................................................................................................................................. 3 3.0 Vegetation Communities and Land Covers ........................................................................................... 11 4.0 Wildlife .................................................................................................................................................. 12 5.0 Sensitive Species Analysis .................................................................................................................. -
Snake Communities Worldwide
Web Ecology 6: 44–58. Testing hypotheses on the ecological patterns of rarity using a novel model of study: snake communities worldwide L. Luiselli Luiselli, L. 2006. Testing hypotheses on the ecological patterns of rarity using a novel model of study: snake communities worldwide. – Web Ecol. 6: 44–58. The theoretical and empirical causes and consequences of rarity are of central impor- tance for both ecological theory and conservation. It is not surprising that studies of the biology of rarity have grown tremendously during the past two decades, with particular emphasis on patterns observed in insects, birds, mammals, and plants. I analyse the patterns of the biology of rarity by using a novel model system: snake communities worldwide. I also test some of the main hypotheses that have been proposed to explain and predict rarity in species. I use two operational definitions for rarity in snakes: Rare species (RAR) are those that accounted for 1% to 2% of the total number of individuals captured within a given community; Very rare species (VER) account for ≤ 1% of individuals captured. I analyse each community by sample size, species richness, conti- nent, climatic region, habitat and ecological characteristics of the RAR and VER spe- cies. Positive correlations between total species number and the fraction of RAR and VER species and between sample size and rare species in general were found. As shown in previous insect studies, there is a clear trend for the percentage of RAR and VER snake species to increase in species-rich, tropical African and South American commu- nities. This study also shows that rare species are particularly common in the tropics, although habitat type did not influence the frequency of RAR and VER species.