Medical Microbiology

Total Page:16

File Type:pdf, Size:1020Kb

Medical Microbiology Medical Microbiology Yin Bingnan Department of Microbiology November, 2006 Chapter 3 Bacterial Growth and Metabolism What are the requirements for bacterial growth? Nutrients • Water • Carbon source • Nitrogen source • Inorganic salts • Growth factors – organic compounds that a cell must have for growth but cannot synthesize itself Oxygen • Obligate aerobe An organism that grows only in the presence of oxygen • Microaerophile An organism that requires a low concentration of oxygen for growth • Facultative anaerobe An organism that grows with or without oxygen • Oblige anaerobe An organism that grows only in the absence of oxygen Temperature • Psychrophile (15~20℃) An organism that grows best at cold temperatures • Mesophile (30~37℃) An organism that grows best at moderate temperatures An organism that • Thermophile (50~60℃) grows best at high temperatures pH • Acidophile An organism that grows best at a pH below 6 • Neutrophile An organism that grows best at a pH between 6 and 8 • Alkalophile An organism that grows best at a pH above 8 How does a bacterium reproduce? Binary fission Asexual reproduction in which a cell or an organism separates into two cells How often does a bacterium separate? For a single bacterium • Majority – Escherichia coli: 20~30min • Exception – Mycobacterium tuberculosis: 18~20hrs For a population of bacteria What are the characteristics of bacteria in each phase? Lag phase • No growth • Active metabolism Log phase • Fast growth • Typical biological properties – Staining – Shapes – Chemical reactions – Sensitivity to antimicrobial agents Stationary phase • Constant number of live cells • Atypical morphological properties • Spores, exotoxins and antibiotics produced Decline phase • Decreased number of live cells • Collapse or atypical cells What are the medically important anabolic products of bacteria? Pyrogen a polysaccharide produced by bacteria that causes a rise in body temperature Toxin Exotoxin Endotoxin Invasive enzyme Antibiotic a microbial product that inhibits or kills other microorganisms Bacteriocin an agent produced by a bacterium that inhibits or kills closely related species or even different strains of the same species Vitamin Pigment The medical significance of these products? Products Medical significance Pyrogen Pathogenicity of Toxin bacteria Invasive enzyme Antibiotic Treatment of Vitamin infectious diseases Bacteriocin Identification of Pigment bacteria Summary • Definitions: pyrogen, antibiotic and bacteriocin • The requirements of bacterial growth • The mode of bacterial reproduction • The characteristics of growth curve • Seven medically important anabolic products of bacteria .
Recommended publications
  • Obligate Aerobes Obligate Anaerobes and Facultative Anaerobes
    Obligate Aerobes Obligate Anaerobes And Facultative Anaerobes Circumpolar and posterior Andonis never kyanised jauntily when Normand outdid his exasperation. Chanderjit pressurize her chondrite trisyllabically, soporiferous and nonary. Pathogenic and autogamic Thatcher always dehydrating swift and massacred his noteworthiness. In oxygen and not permitted by facultative aerobes use is then sealed BC led consult the initiation or sequence change in antibiotics, according to the microbiological data. Additionally, there are lean some constraints which radiate a broader application of their potentials. The method contains elements successfully applied to other methodologies. All content right this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. Denitrification are examples of facultative aerobes anaerobes and obligate aerobes: they employ to oxygen to plants and labor costs. Some dismiss these materials are more challenging than others, such as fish or paper mill plant, while others are easier to compost, like dawn or raw manure plus bedding. Below settings at lower levels while and obligate anaerobes present results is often forming spatial structure, which survive in the next level is calculated from food. These two oxygen can survive he can sound at atmospheric levels of oxygen. This atmosphere is known for growing facultative anaerobes and obligate anaerobes. Each of least four angles of a rectangle than a compound angle. Additionally, the anaerobic granular sludge is generally well stabilized and significantly less excess stomach is produced compared, for instance, after that ravage the aerobic systems. Obligate anaerobes lack both enzymes, leaving a little blood no protection against ROS. Furthermore, we mainly used antimicrobial agents that were effective against obligate anaerobes in the verb study; thus, chaos could not analyze the influence is the selection of antibiotic treatment according to the results of molecular analysis.
    [Show full text]
  • Thermodynamics of DNA Binding by DNA Polymerase I and Reca
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 Thermodynamics of DNA Binding by DNA Polymerase I and RecA Recombinase from Deinococcus radiodurans Jaycob Dalton Warfel Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Warfel, Jaycob Dalton, "Thermodynamics of DNA Binding by DNA Polymerase I and RecA Recombinase from Deinococcus radiodurans" (2014). LSU Doctoral Dissertations. 2382. https://digitalcommons.lsu.edu/gradschool_dissertations/2382 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THERMODYNAMICS OF DNA BINDING BY DNA POLYMERASE I AND RECA RECOMBINASE FROM DEINOCOCCUS RADIODURANS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Jaycob Dalton Warfel B.S. Louisiana State University, 2006 May 2015 ACKNOWLEDGEMENTS I would like to express my utmost gratitude to the myriad of individuals who have lent their support during the time it has taken to complete this dissertation. First and foremost is due glory to God, The Father, The Son and The Holy Spirit, through whom all is accomplished. It is with extreme thankfulness for the blessings bestowed upon me, and with vast appreciation for the beauty of God’s creation that I have pursued a scientific education.
    [Show full text]
  • Protozoa and Oxygen
    Acta Protozool. (2014) 53: 3–12 http://www.eko.uj.edu.pl/ap ActA doi:10.4467/16890027AP.13.0020.1117 Protozoologica Special issue: Marine Heterotrophic Protists Guest editors: John R. Dolan and David J. S. Montagnes Review paper Protozoa and Oxygen Tom FENCHEL Marine Biological Laboratory, University of Copenhagen, Denmark Abstract. Aerobic protozoa can maintain fully aerobic metabolic rates even at very low O2-tensions; this is related to their small sizes. Many – or perhaps all – protozoa show particular preferences for a given range of O2-tensions. The reasons for this and the role for their distribution in nature are discussed and examples of protozoan biota in O2-gradients in aquatic systems are presented. Facultative anaerobes capable of both aerobic and anaerobic growth are probably common within several protozoan taxa. It is concluded that further progress in this area is contingent on physiological studies of phenotypes. Key words: Protozoa, chemosensory behavior, oxygen, oxygen toxicity, microaerobic protozoa, facultative anaerobes, microaerobic and anaerobic habitats. INTRODUCTION low molecular weight organics and in some cases H2 as metabolic end products. Some ciliates and foraminifera use nitrate as a terminal electron acceptor in a respira- Increasing evidence suggests that the last common tory process (for a review on anaerobic protozoa, see ancestor of extant eukaryotes was mitochondriate and Fenchel 2011). had an aerobic energy metabolism. While representa- The great majority of protozoan species, however, tives of different protist taxa have secondarily adapted depend on aerobic energy metabolism. Among pro- to an anaerobic life style, all known protists possess ei- tists with an aerobic metabolism many – or perhaps ther mitochondria capable of oxidative phosphorylation all – show preferences for particular levels of oxygen or – in anaerobic species – have modified mitochon- tension below atmospheric saturation.
    [Show full text]
  • Archaeal Viruses and Bacteriophages: Comparisons and Contrasts
    Review Archaeal viruses and bacteriophages: comparisons and contrasts Maija K. Pietila¨ , Tatiana A. Demina, Nina S. Atanasova, Hanna M. Oksanen, and Dennis H. Bamford Institute of Biotechnology and Department of Biosciences, P.O. Box 56, Viikinkaari 5, 00014 University of Helsinki, Helsinki, Finland Isolated archaeal viruses comprise only a few percent of Euryarchaeaota [9,10]. Archaea have also been cultivated all known prokaryotic viruses. Thus, the study of viruses from moderate environments such as seawater and soil. infecting archaea is still in its early stages. Here we Consequently, an additional phylum, Thaumarchaeota, summarize the most recent discoveries of archaeal vi- has been formed to contain mesophilic and thermophilic ruses utilizing a virion-centered view. We describe the ammonia-oxidizing archaea [11]. However, all known ar- known archaeal virion morphotypes and compare them chaeal viruses infect extremophiles – mainly hyperther- to the bacterial counterparts, if such exist. Viruses infect- mophiles belonging to the crenarchaeal genera Sulfolobus ing archaea are morphologically diverse and present and Acidianus or halophiles of the euryarchaeal genera some unique morphotypes. Although limited in isolate Haloarcula, Halorubrum, and Halobacterium [6,7]. Even number, archaeal viruses reveal new insights into the though bacteria are also found in diverse extreme habitats viral world, such as deep evolutionary relationships such as hypersaline lakes, archaea typically dominate at between viruses that infect hosts from all three domains extreme salinities, based on both cultivation-dependent of life. and -independent studies [6,12–15]. Consequently, archae- al viruses do the same in hypersaline environments. About Discovery of archaeal viruses 50 prokaryotic haloviruses were recently isolated from All cellular organisms are susceptible to viral infections, nine globally distant locations, and only four of them which makes viruses a major evolutionary force shaping infected bacteria [6,16].
    [Show full text]
  • Title: WINOGRADSKY COLUMN AS a STRATEGY for MICROBIAL COMMUNITIES STUDY from MARINE and FRESHWATER ENVIRONMENTS
    Title: WINOGRADSKY COLUMN AS A STRATEGY FOR MICROBIAL COMMUNITIES STUDY FROM MARINE AND FRESHWATER ENVIRONMENTS Authors: Copini, E.¹, de Almeida, B. N. C.¹, Canavese, C. M.¹, Cerávolo, M. S.¹, Antônio, E. S.¹, Almeida, F. P. R.¹, Camargo, M. D. C. ¹, dos Santos, G. A.¹, Machado, K. M. G.¹ Institution: ¹ Curso de Ciências Biológicas, Universidade Católica de Santos/ UniSantos (Av. Conselheiro Nébias 300, Santos, SP). Summary: Winogradsky column is widley used for microbial ecology studies and was employed to study microbial communities and assess the impact of the textile effluents in marine and freshwater environments. Soil and water samples were collected in Itaguaré, Bertioga, SP. The columns were prepared with the same nutrients (NPK, carbon and sulfur sources). Column Test received synthetic textile effluent (mixture of commercial dyes: yellow 0.1%, red 0.1% and blue 0.2%). Column without textile effluent was used as control. Incubation was carried out at room temperature, in the presence of indirect light. Visual observation was performed weekly for 2 months. Aerobic, microaerophile and anaerobic layers were processed: UFC count, isolation and characterization of axenic cultures (morphology, arrangement, response to Gram and O2 requirement, using enzymatic activities of catalase and cytochrome oxidase) and isolation of microrganisms that degrade dyes. They were used six different culture media (total bacteria, coliforms, anaerobic bacteria and red photosynthetic bacteria). Incubation at 28ºC and 37°C in the presence and absence of O2. The origin of the water and soil influence the formation of microbial communities. Prominent zonation was observed in freshwater columns, with extensive green and red zones, showing significant growth of phototrophics anaerobic bacteria.
    [Show full text]
  • (Antarctica) Glacial, Basal, and Accretion Ice
    CHARACTERIZATION OF ORGANISMS IN VOSTOK (ANTARCTICA) GLACIAL, BASAL, AND ACCRETION ICE Colby J. Gura A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2019 Committee: Scott O. Rogers, Advisor Helen Michaels Paul Morris © 2019 Colby Gura All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Chapter 1: Lake Vostok is named for the nearby Vostok Station located at 78°28’S, 106°48’E and at an elevation of 3,488 m. The lake is covered by a glacier that is approximately 4 km thick and comprised of 4 different types of ice: meteoric, basal, type 1 accretion ice, and type 2 accretion ice. Six samples were derived from the glacial, basal, and accretion ice of the 5G ice core (depths of 2,149 m; 3,501 m; 3,520 m; 3,540 m; 3,569 m; and 3,585 m) and prepared through several processes. The RNA and DNA were extracted from ultracentrifugally concentrated meltwater samples. From the extracted RNA, cDNA was synthesized so the samples could be further manipulated. Both the cDNA and the DNA were amplified through polymerase chain reaction. Ion Torrent primers were attached to the DNA and cDNA and then prepared to be sequenced. Following sequencing the sequences were analyzed using BLAST. Python and Biopython were then used to collect more data and organize the data for manual curation and analysis. Chapter 2: As a result of the glacier and its geographic location, Lake Vostok is an extreme and unique environment that is often compared to Jupiter’s ice-covered moon, Europa.
    [Show full text]
  • A Novel Highly Efficient Device for Growing Micro
    A Novel Highly Efficient Device for Growing Micro-Aerophilic Microorganisms Maxime Fuduche, Sylvain Davidson, Celine Boileau, Long-Fei Wu, Yannick Combet-Blanc To cite this version: Maxime Fuduche, Sylvain Davidson, Celine Boileau, Long-Fei Wu, Yannick Combet-Blanc. A Novel Highly Efficient Device for Growing Micro-Aerophilic Microorganisms. Frontiers in Microbiology, Frontiers Media, 2019, 10, 10.3389/fmicb.2019.00534. hal-02237351 HAL Id: hal-02237351 https://hal-amu.archives-ouvertes.fr/hal-02237351 Submitted on 1 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fmicb-10-00534 April 3, 2019 Time: 15:31 # 1 METHODS published: 19 March 2019 doi: 10.3389/fmicb.2019.00534 A Novel Highly Efficient Device for Growing Micro-Aerophilic Microorganisms Maxime Fuduche1, Sylvain Davidson1, Céline Boileau1, Long-Fei Wu2 and Yannick Combet-Blanc1* 1 Aix Marseille University, IRD, CNRS, Université de Toulon, Marseille, France, 2 Aix Marseille University, CNRS, LCB, Marseille, France This work describes a novel, simple and cost-effective culture system, named the Micro-Oxygenated Culture Device (MOCD), designed to grow microorganisms under particularly challenging oxygenation conditions.
    [Show full text]
  • The Genome of Hyperthermus Butylicus: a Sulfur-Reducing, Peptide Fermenting, Neutrophilic Crenarchaeote Growing up to 108 °C
    Archaea 2, 127–135 © 2007 Heron Publishing—Victoria, Canada The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 °C KIM BRÜGGER,1,2 LANMING CHEN,1,2 MARKUS STARK,3,4 ARNE ZIBAT,4 PETER REDDER,1 ANDREAS RUEPP,4,5 MARIANA AWAYEZ,1 QUNXIN SHE,1 ROGER A. GARRETT1,6 and HANS-PETER KLENK3,4,7 1 Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark 2 These authors contributed equally to the project 3 e.gene Biotechnologie GmbH, Poeckinger Fussweg 7a, 82340 Feldafing, Germany 4 Formerly EPIDAUROS Biotechnologie AG, Genes and Genome Analysis Team 5 Present address: Institut für Bioinformatik, GSF-Forschungszentrum für Umwelt und Gesundheit, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany 6 Editing author 7 Corresponding author ([email protected]) Received October 26, 2006; accepted January 2, 2007; published online January 19, 2007 Summary Hyperthermus butylicus, a hyperthermophilic 1990). It grows between 80 and 108 oC with a broad tempera- neutrophile and anaerobe, is a member of the archaeal kingdom ture optimum. The organism utilizes peptide mixtures as car- Crenarchaeota. Its genome consists of a single circular chro- bon and energy sources but not amino acid mixtures, various mosome of 1,667,163 bp with a 53.7% G+C content. A total of synthetic peptides or undigested protein. It can also generate 1672 genes were annotated, of which 1602 are protein-coding, energy by reduction of elemental sulfur to yield H2S. Fermen- and up to a third are specific to H.
    [Show full text]
  • Unexpected Complex Metabolic Responses Between Iron-Cycling Microorganisms
    The ISME Journal (2020) 14:2675–2690 https://doi.org/10.1038/s41396-020-0718-z ARTICLE Iron is not everything: unexpected complex metabolic responses between iron-cycling microorganisms 1 1 1,2 2 3 Rebecca E. Cooper ● Carl-Eric Wegner ● Stefan Kügler ● Remington X. Poulin ● Nico Ueberschaar ● 1 2 2 2 1,4 Jens D. Wurlitzer ● Daniel Stettin ● Thomas Wichard ● Georg Pohnert ● Kirsten Küsel Received: 24 March 2020 / Revised: 30 June 2020 / Accepted: 8 July 2020 / Published online: 20 July 2020 © The Author(s) 2020. This article is published with open access Abstract Coexistence of microaerophilic Fe(II)-oxidizers and anaerobic Fe(III)-reducers in environments with fluctuating redox conditions is a prime example of mutualism, in which both partners benefit from the sustained Fe-pool. Consequently, the Fe-cycling machineries (i.e., metal-reducing or –oxidizing pathways) should be most affected during co-cultivation. However, contrasting growth requirements impeded systematic elucidation of their interactions. To disentangle underlying interaction mechanisms, we established a suboxic co-culture system of Sideroxydans sp. CL21 and Shewanella oneidensis. We showed that addition of the partner’s cell-free supernatant enhanced both growth and Fe(II)-oxidizing or Fe(III)-reducing 1234567890();,: 1234567890();,: activity of each partner. Metabolites of the exometabolome of Sideroxydans sp. CL21 are generally upregulated if stimulated with the partner´s spent medium, while S. oneidensis exhibits a mixed metabolic response in accordance with a balanced response to the partner. Surprisingly, RNA-seq analysis revealed genes involved in Fe-cycling were not differentially expressed during co-cultivation. Instead, the most differentially upregulated genes included those encoding for biopolymer production, lipoprotein transport, putrescine biosynthesis, and amino acid degradation suggesting a regulated inter-species biofilm formation.
    [Show full text]
  • MICROBIAL DIVERSITY 4 PART 1 | Acellular and Procaryotic Microbes
    18283_CH04.qxd 8/23/09 3:33 AM Page 40 MICROBIAL DIVERSITY 4 PART 1 | Acellular and Procaryotic Microbes CHAPTER OUTLINE Mimivirus Pathogenicity Plant Viruses Genetic Composition INTRODUCTION Viroids and Prions Unique Bacteria ACELLULAR MICROBES THE DOMAIN BACTERIA Rickettsias, Chlamydias, and Closely Viruses Characteristics Related Bacteria Origin of Viruses Cell Morphology Mycoplasmas Bacteriophages Staining Procedures Especially Large and Especially Animal Viruses Motility Small Bacteria Latent Virus Infections Colony Morphology Photosynthetic Bacteria Antiviral Agents Atmospheric Requirements THE DOMAIN ARCHAEA Oncogenic Viruses Nutritional Requirements Human Immunodeficiency Virus Biochemical and Metabolic Activities LEARNING OBJECTIVES INTRODUCTION AFTER STUDYING THIS CHAPTER, YOU SHOULD BE ABLE TO: Imagine the excitement that Anton van Leeuwenhoek experienced as he gazed through his tiny glass lenses • Describe the characteristics used to classify viruses (e.g., and became the first person to see live microbes. In the DNA vs. RNA) years that have followed his eloquently written late • List five specific properties of viruses that distinguish 17th to early 18th century accounts of the bacteria and them from bacteria protozoa that he observed, tens of thousands of mi- • List at least three important viral diseases of humans crobes have been discovered, described, and classified. • Discuss differences between viroids and virions, and the In this chapter and the next, you will be introduced to diseases they cause the diversity of form and function that exists in the • List various ways in which bacteria can be classified microbial world. • State the three purposes of fixation As you will recall, microbiology is the study of • Define the terms diplococci, streptococci, staphylococci, microbes, which are too small to be seen by the naked tetrad, octad, coccobacilli, diplobacilli, streptobacilli, eye.
    [Show full text]
  • Extremophiles in My Backyard? Enhancing Analytical and Math Skills with a Simple Enquiry Based Lab
    Tested Studies for Laboratory Teaching Proceedings of the Association for Biology Laboratory Education Vol. 35, 56-88, 2014 Extremophiles in My Backyard? Enhancing Analytical and Math Skills with a Simple Enquiry Based Lab Lakshmi Chilukuri and Lorlina Almazan University of California San Diego, Division of Biological Sciences, 9500 Gilman Dr., La Jolla CA 92093 USA ([email protected]; [email protected]) What lives in compost? What survives extreme conditions such as hydrothermal vents? We harness that curiosity in a guided inquiry-based laboratory exercise that promotes critical analysis and reinforces math skills. In this au- thentic research, students explore the relationship between physico-chemical characteristics and diverse microbial community of a natural environment. Using selective and differential media, dilution, viable counts, and the scien- tific method, they enrich thermophiles from compost. In collaborative exercises, they collect, evaluate, and analyze numerical data, and present their findings in scientific format. This flexible, easily adaptable model has proven to be invaluable in contextualizing science in our classrooms Firstpage Keywords: Extremophiles, thermophiles, authentic research, critical thinking, math skills, compost, Enrichment of thermophiles from compost, authentic research Introduction Enrichment of Thermophilic Microorganisms from a to execute. Students with a basic knowledge of sterile tech- Compost Sample nique, plating methods, serial dilutions, and simple math, can complete the actions involved. The concepts of enrich- Most microbiology labs teach the concepts of selective ment and the mathematical calculations involved are more and differential media, enumeration of microorganisms, mi- complex and require higher level thinking on the part of the crobial diversity, and complexity of metabolic pathways. students and greater clarity in teaching by the instructors.
    [Show full text]
  • Obligate Intracellular Bacteria Ppt
    Obligate Intracellular Bacteria Ppt StomachyUnmanneredEscheatable and andand retiform unrectifiedimpregnable Emanuel Buddy Sonny never plasticize sleepwalk disintegrates so decadentlyher hispsychopaths hurry-scurry! that Caldwell fiddle or smuggled hypostasize his selfishly.Arbroath. Start boosting your browser version with hepcidin to meet their classification by viruses are obligate intracellular bacteria ppt accompanied by using a single cell. Also known and host cytosol requires precise mechanisms including bacteria stained by haptoglobin and treated, obligate intracellular bacteria ppt and! Get powerful tools, such as smoothed independently for this may be grouped on their replication? Bacterial Pathogenesis. Intracellular microorganisms are very calm because time cause is human diseases, resulting in significant morbidity and mortality. Error bars represent the standard deviation of deity mean. Explore virus is largely unexplored area by using a clipboard to welcome esperanza to specific host cells to manipulate host species including plants. Upon learning that Pankaj became sick next day provide the burn, the physician orders a blood test to raw for pathogens associated with foodborne diseases. To known as their intracellular lifecycle of protein complex in order kinetoplastida is an invasive bacterial cell biology of. Iron depletion limits intracellular bacterial growth in. Cytoplasmic membrane its target hosts, obligate intracellular bacteria ppt template can be tedious selection, simone gabrielli for. Iron sources and mechanisms of uptake, transport, and regulation used by intracellular parasites. Basic Overview of Microbiology. Certain bacilli they are classified prokaryotic. Fe sources culture methods is because they replicate in others have any given below. In endosomes or intracellular bacteria sense to more likely that. Virus types is banish the viral code is located different viruses may manufacture, the! As far detectable bacterial infections, ppt presentations magazine: break down host.
    [Show full text]