Polyalphabetic and Polygraphic Ciphers [0.5Ex] (Counting & Probability)

Total Page:16

File Type:pdf, Size:1020Kb

Polyalphabetic and Polygraphic Ciphers [0.5Ex] (Counting & Probability) a. 2 · 26 · 26 · 26 = 35152. b. 2 · 25 · 24 · 23 = 27600. b. 2 · 25 · 24 · 23 = 27600. Scrambling Frequences I To get around the weakness of monoalphabetic ciphers, we need to somehow scramble letter frequences. Polyalphabetic and Polygraphic Ciphers I A polyalphabetic substitution cipher is a cipher in which there is not a 1–1 (Counting & Probability) map between plaintext and ciphertext letters. Example 1. Jim Royer ® Let S = f 00, 01, 02, . , 99 g = two digit strings. ® Define a map ai 7! Si, a subset of S 3 Intro. to Cryptography I S0,..., S25 are a partition of S. I (freq. of a ) ≈ kS k/kSk. September 6, 2018 i i So `e' will have about 12 different codes, but `x' will have just one. ® When encoding ai pick a random element of Si. ® In the ciphertext, the freq. of all two digit seqs. is about the same. To analyze such schemes we need counting & probability. Counting: The Multiplication Principle Counting: The Multiplication Principle The Multiplication Principle (Andrews, x3-1) The Multiplication Principle (Andrews, x3-1) If task 1 can be done p1 ways and If task 1 can be done p1 ways and task 2 can be done p2 ways and task 2 can be done p2 ways and ... ... task k can be done pk ways, task k can be done pk ways, then the total number of ways of doing all k tasks is then the total number of ways of doing all k tasks is p1 × p2 × · · · × pk p1 × p2 × · · · × pk Sample Problems Sample Problems How many different 4-letter radio station call letters Answers How many different 4-letter radio station call letters Answers can be made when can be made when a. 2 · 26 · 26 · 26 = 35152. a. The first letter must be either K or W. a. The first letter must be either K or W. b. The first letter must be either K or W b. The first letter must be either K or W and there are no repeated letters. and there are no repeated letters. Counting: The Multiplication Principle The Multiplication Principle: Puzzles The Multiplication Principle (Andrews, x3-1) If task 1 can be done p1 ways and task 2 can be done p2 ways and ... task k can be done pk ways, How many are there of: then the total number of ways of doing all k tasks is a. license plates with three letters followed by four digits? p1 × p2 × · · · × pk b. license plates as before, but no repeated letters? c. monoalphabetic ciphers? Sample Problems How many different 4-letter radio station call letters Answers can be made when a. 2 · 26 · 26 · 26 = 35152. a. The first letter must be either K or W. b. 2 · 25 · 24 · 23 = 27600. b. The first letter must be either K or W and there are no repeated letters. The Multiplication Principle: Puzzles Poly. Ciphers Permutations Counting How many are there of: a. license plates with three letters followed by four digits? b. license plates as before, but no repeated letters? c. monoalphabetic ciphers? The Multiplication Principle: Puzzles 2018-09-06 The “multiplication principle” is some times called Definition 2. A permutation is an ordering of a set of objects. • “Rule of product” (https://en.wikipedia.org/wiki/Rule_of_product) Puzzles • “general combinatorial principle” (Andrews, page 31) f g How many are there of: a.Q: How many permutations of a, b, c are there? a. license plates with three letters followed by four digits? b. There are four spies. We choose one a pilot and another as co-pilot. Q: How 26 · 26 · 26 · 10 · 10 · 10 · 10 = 263 · 104 = 175760000 many ways are there of doing this? b. license plates as before, but no repeated letters? c. There are five spies. Choose one to go to Miami and another to go to Watertown. Q: How many ways can we do this? 26 · 25 · 24 · 10 · 10 · 10 · 10 = 156000000. d. Same as above, but choose a 3rd to go to Kalamazoo. c. monoalphabetic ciphers? e.Q: How many permutations are there of r objects selected from a set of size n. 26! = 403291461126605635584000000. (Notation: P(r, n).) Permutations Permutations Poly. Ciphers Definition 2. Poly. Ciphers Definition 2. A permutation is an ordering of a set of objects. A permutation is an ordering of a set of objects. Counting Puzzles Counting Puzzles a.Q: How many permutations of f a, b, c g are there? a.Q: How many permutations of f a, b, c g are there? b. There are four spies. We choose one a pilot and another as co-pilot. Q: How b. There are four spies. We choose one a pilot and another as co-pilot. Q: How many ways are there of doing this? many ways are there of doing this? c. There are five spies. Choose one to go to Miami and another to go to c. There are five spies. Choose one to go to Miami and another to go to Watertown. Q: How many ways can we do this? Watertown. Q: How many ways can we do this? Permutations d. Same as above, but choose a 3rd to go to Kalamazoo. Permutations d. Same as above, but choose a 3rd to go to Kalamazoo. e.Q: How many permutations are there of r objects selected from a set of size n. e.Q: How many permutations are there of r objects selected from a set of size n. 2018-09-06 (Notation: P(r, n).) 2018-09-06 (Notation: P(r, n).) v How many permutations of v There are four spies. We choose v There are five spies. Choose one to go to Miami and another to go to Water- f a, b, c g are there? one a pilot and another as co-pilot. town. Question: How many ways are there of doing this? An answer: Question: How many ways are An answer: 5 · 4 = 20. there of doing this? • There are 3 choices for the 1st v Same setup as above, but choose a 3rd to go to Kalamazoo. Question: How letter. An answer: many ways are there of doing this? An answer: 5 · 4 · 3 = 60. • There are 2 choices for the • There are 4 choices for the 1st 2nd letter. spy. v Question: How many permutations are there of r objects selected from a set of size n. • There is 1 choice for the 3rd • There are 3 choices for the n! An answer: P(r, n) = n · (n − 1) · ... · (n − r + 1) = . letter. 2nd spy. (n − r)! • By the Mult. principle, there • By the Mult. principle, there are a total of 3 · 2 · 1 = 6 are a total of 4 · 3 = 12 choices. choices. Combinations Poly. Ciphers Definition 3. a. A combination is a selection of r objects from a size-n set. Combinations (We don’t worry about order.) b.C (n, r) = (n) = n! = 1 · P(n, r). Counting r r!(n−r)! r! = The number of ways of selecting (choosing) r objects from a set of size n is: Puzzles Combinations Suppose a lottery ticket contains 6 numbers from the set f 0, . , 39 g. a. How many tickets are possible when orders matters? Definition 3. 2018-09-06 b. How many when order doesn’t matter? a. A combination is a selection of r objects from a size-n set. Suppose a lottery ticket contains 6 numbers from the set f 0, . , 39 g. (We don’t worry about order.) a. How many tickets are possible when orders matters? ( ) = (n) = n! = 1 · ( ) b.C n, r r r!(n−r)! r! P n, r . P(6, 40) = 2763633600. = The number of ways of selecting (choosing) r b. How many when order doesn’t matter? objects from a set of size n C(6, 40) = 3838380. is: Puzzles Suppose a lottery ticket contains 6 numbers from the set f 0, . , 39 g. a. How many tickets are possible when orders matters? b. How many when order doesn’t matter? Probability Basic Properties of Probability Definition 4. a. Sample space: the possible outcomes of an experiment E.g.: Rolls of a six-sided die = 1, 2, 3, 4, 5, 6 b. Event: a subset of a sample space I :E = f x 2 S x 2/ E g. p(:E) = 1 − p(E). E.g.: Even rolls of a six-sided die = 2, 4, 6 I !! In this course, sample spaces are usually finite. I For all E, 0 ≤ p(E) ≤ 1. I If E and F are events of S, then To determine the probability of an event in a finite sample space, S: p(E [ F) = p(E) + p(F) − p(E \ F). E.g.: Roll of a fair die. 1. Determine the elements of S !!! Computing p(E \ F) can be tricky. a.p (rolling an odd #) = 1/2. 2. S 3 Assign a weight to each element of b.p (rolling a prime) = 1/2. (a) each weight is ≥ 0 and ( ) = (b) the weights sum to 1. c.p rolling an odd prime 1/3. 3. Probability of E = ∑a2E weight(a). Independence Back to Ciphers Definition 5. The problem with the monoalphabetic ciphers is that the frequency of characters is Suppose E, F ⊆ S. unchanged. a.E and F are independent iff p(E \ F) = p(E) · p(F). b.E F p(E \ F) 6= p(E) · p(F) and are dependent iff . Vigerere` Cipher c. If an experiment is repeated in n independent trials Plaintext = mollywillneverbreakthis.
Recommended publications
  • International Journal for Scientific Research & Development
    IJSRD - International Journal for Scientific Research & Development| Vol. 6, Issue 03, 2018 | ISSN (online): 2321-0613 Designing of Decryption Tool Shashank Singh1 Vineet Shrivastava2 Shiva Agrawal3 Shakti Singh Rawat4 1,3,4Student 2Assistant Professor 1,2,3,4Department of Information Technology 1,2,3,4SRM Institute of Science & Technology, India Abstract— In the modern world secure transmission of the r = gk mod p data is very important. Many modern day cryptographic methods can be used to encrypt the message before C. Decryption of the Cipher-text transmitting in the secured medium. In certain situations like The receiver with his private key calculates when there is matter of national security the information t. r−x encrypted has to be decrypted, it is where the cryptanalysis which gives the plaintext. comes into play. Cryptanalysis is the field of Cryptography in But in this algorithm, as there is just one private key, it can which various types of Cryptographic techniques are be guessed by any intruder and is thus not reliable. carefully studied in order to reverse engineer the encrypted information in order to retrieve the sensible information. The III. PROBLEM SOLUTION main aim and function of the Decryption tool is to take the In this project we are modifying the existing conventional input as the encrypted text given from the user and encryption algorithm by dividing the private key and cryptanalyze it and give the output as the decrypted text in assigning them to 2n+1 authorized receivers individually. case more than one sensible decrypted text found it will The persons will be able to decrypt the message received output all the possible decrypted texts.
    [Show full text]
  • Vigenère Cipher Cryptanalysis
    Spring 2015 Chris Christensen MAT/CSC 483 Cryptanalysis of the Vigenère Cipher: Kasiski Test The keyword of a Vigenère cipher describes the rotation among the Caesar cipher alphabets that are used. That rotation leads to patterns that can be exploited by a cryptanalyst. If we know the length of the keyword, we can often determine the keyword and, hence, decrypt all messages encrypted with that keyword. Here is a ciphertext message that has been encrypted with a Vigenère cipher. nifon aicum niswt luvet vxshk nissx wsstb husle chsnv ytsro cdsoy nisgx lnona chvch gnonw yndlh sfrnh npblr yowgf unoca cossu ouoll iuvef issoe xgosa cpbew uormh lftaf cmwak bbbdv cqvek muvil qbgnh ntiri ljgig atwnv yuvev iorim cpbsb hxviv buvet vxshk uorim mjbdb pjrut fbueg ntgof yuwmx miodm ipdek uuswx lfjek sewfy yssnm zscmm bpgeb huvez ysaag usaew mffvb wfgim qpilw bbjeu yfbef vbfrt mtwnz uorig wpbvx hjsnm zpfag uhsnm npglb jbqrh mttrh huwek mpfak ljjen hbbnh ooqew vzdak udvum yucbx yoquf vffew vzonx hjumt lfgef vmwnz uxsiz bumag xbbtb kvotx xumpx qswtx l Assume that, somehow, we have discovered that the keyword has length five (which is conveniently the same as the size of the blocks). Then the first letter of each block is encrypted with the same row of the Vigenère square – they are encrypted with the same Caesar cipher. Similarly, the second letter of each block is encrypted with the same row – the same Caesar cipher. The third letters with the same Caesar cipher. The fourth letters with the same Caesar cipher. And, the fifth letters with the same Caesar cipher.
    [Show full text]
  • Download Download
    International Journal of Integrated Engineering: Special Issue 2018: Data Information Engineering, Vol. 10 No. 6 (2018) p. 183-192. © Penerbit UTHM DOI: https://doi.org/10.30880/ijie.2018.10.06.026 Analysis of Four Historical Ciphers Against Known Plaintext Frequency Statistical Attack Chuah Chai Wen1*, Vivegan A/L Samylingam2, Irfan Darmawan3, P.Siva Shamala A/P Palaniappan4, Cik Feresa Mohd. Foozy5, Sofia Najwa Ramli6, Janaka Alawatugoda7 1,2,4,5,6Information Security Interest Group (ISIG), Faculty Computer Science and Information Technology University Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia E-mail: [email protected], [email protected], {shamala, feresa, sofianajwa}@uthm.edu.my 3School of Industrial Engineering, Telkom University, 40257 Bandung, West Java, Indonesia 7Department of Computer Engineering, University of Peradeniya, Sri Lanka E-mail: [email protected] Received 28 June 2018; accepted 5August 2018, available online 24 August 2018 Abstract: The need of keeping information securely began thousands of years. The practice to keep the information securely is by scrambling the message into unreadable form namely ciphertext. This process is called encryption. Decryption is the reverse process of encryption. For the past, historical ciphers are used to perform encryption and decryption process. For example, the common historical ciphers are Hill cipher, Playfair cipher, Random Substitution cipher and Vigenère cipher. This research is carried out to examine and to analyse the security level of these four historical ciphers by using known plaintext frequency statistical attack. The result had shown that Playfair cipher and Hill cipher have better security compare with Vigenère cipher and Random Substitution cipher.
    [Show full text]
  • COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Cryptography Is Everywhere a Long & Rich History
    COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Cryptography Is Everywhere A Long & Rich History Examples: • ~50 B.C. – Caesar Cipher • 1587 – Babington Plot • WWI – Zimmermann Telegram • WWII – Enigma • 1976/77 – Public Key Cryptography • 1990’s – Widespread adoption on the Internet Increasingly Important COS 433 Practice Theory Inherent to the study of crypto • Working knowledge of fundamentals is crucial • Cannot discern security by experimentation • Proofs, reductions, probability are necessary COS 433 What you should expect to learn: • Foundations and principles of modern cryptography • Core building blocks • Applications Bonus: • Debunking some Hollywood crypto • Better understanding of crypto news COS 433 What you will not learn: • Hacking • Crypto implementations • How to design secure systems • Viruses, worms, buffer overflows, etc Administrivia Course Information Instructor: Mark Zhandry (mzhandry@p) TA: Fermi Ma (fermima1@g) Lectures: MW 1:30-2:50pm Webpage: cs.princeton.edu/~mzhandry/2017-Spring-COS433/ Office Hours: please fill out Doodle poll Piazza piaZZa.com/princeton/spring2017/cos433mat473_s2017 Main channel of communication • Course announcements • Discuss homework problems with other students • Find study groups • Ask content questions to instructors, other students Prerequisites • Ability to read and write mathematical proofs • Familiarity with algorithms, analyZing running time, proving correctness, O notation • Basic probability (random variables, expectation) Helpful: • Familiarity with NP-Completeness, reductions • Basic number theory (modular arithmetic, etc) Reading No required text Computer Science/Mathematics Chapman & Hall/CRC If you want a text to follow along with: Second CRYPTOGRAPHY AND NETWORK SECURITY Cryptography is ubiquitous and plays a key role in ensuring data secrecy and Edition integrity as well as in securing computer systems more broadly.
    [Show full text]
  • An Extension to Traditional Playfair Cryptographic Method
    International Journal of Computer Applications (0975 – 8887) Volume 17– No.5, March 2011 An Extension to Traditional Playfair Cryptographic Method Ravindra Babu K¹, S. Uday Kumar ², A. Vinay Babu ³, I.V.N.S Aditya4 , P. Komuraiah5 ¹Research Scholar (JTNUH) & Professor in CSE, VITS SET, Kareemnagar, AP, India. ²Deputy Director, Professor in CSE. SNIST, JNTUH. Hyderabad, Andhra Pradesh, India. ³Director, Admissions, Jawaharlal Nehru Technological University, Hyderabad, Andhra Pradesh, India. 4Computer Science & Engineering, AZCET, Mancherial. 5HOD IT, VITS SET, Kareemnagar, AP, India. ABSTRACT Fig 1: General cryptographic system. The theme of our research is to provide security for the data that contains alphanumeric values during its transmission. The best known multiple letter encryption cipher is the play fair, which treats the plain text as single units and translates these units into cipher text. It is highly difficult to the intruder to understand or to decrypt the cipher text. In this we discussed about the existing play fair algorithm, its merits and demerits. The existing play fair algorithm is based on the use of a 5 X 5 matrix of letters constructed using a keyword. This algorithm can only allow the text that contains alphabets only. For this we have proposed an enhancement to the existing algorithm, that a 6 X 6 matrix can be constructed. General Terms Encryption, Decryption, Plaintext, Cipher text. 2. EXISTING TECHNIQUES All cryptographic algorithms are based on two general Keywords principals: substitution, in which each element in the plaintext Substitution, Transposition. (bit, letter and group of bits or letters) is mapped into another element and in transposition, the elements of the plaintext have 1.
    [Show full text]
  • Classifying Classic Ciphers Using Machine Learning
    San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 5-20-2019 Classifying Classic Ciphers using Machine Learning Nivedhitha Ramarathnam Krishna San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects Part of the Artificial Intelligence and Robotics Commons, and the Information Security Commons Recommended Citation Krishna, Nivedhitha Ramarathnam, "Classifying Classic Ciphers using Machine Learning" (2019). Master's Projects. 699. DOI: https://doi.org/10.31979/etd.xkgs-5gy6 https://scholarworks.sjsu.edu/etd_projects/699 This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. Classifying Classic Ciphers using Machine Learning A Project Presented to The Faculty of the Department of Computer Science San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Nivedhitha Ramarathnam Krishna May 2019 © 2019 Nivedhitha Ramarathnam Krishna ALL RIGHTS RESERVED The Designated Project Committee Approves the Project Titled Classifying Classic Ciphers using Machine Learning by Nivedhitha Ramarathnam Krishna APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE SAN JOSÉ STATE UNIVERSITY May 2019 Dr. Mark Stamp Department of Computer Science Dr. Thomas Austin Department of Computer Science Professor Fabio Di Troia Department of Computer Science ABSTRACT Classifying Classic Ciphers using Machine Learning by Nivedhitha Ramarathnam Krishna We consider the problem of identifying the classic cipher that was used to generate a given ciphertext message.
    [Show full text]
  • Elementary Cryptanalysis Classification of Cryptanalytic Attacks
    12 Elementary Cryptography Elementary Cryptanalysis The most direct attack on a cryptosystem is an exhaustive key search attack. The key size therefore provides a lower bound on the security of a cryptosystem. As an example we compare the key sizes of several of the cryptosystems we have introduced so far. We assume that the alphabet for each is the 26 character alphabet. Substitution ciphers: Simple substitution ciphers: 26! Affine substitution ciphers: ϕ(26) · 26 = 12 · 26 = 312 Translation substitution ciphers: 26 Transposition ciphers: Transposition ciphers (of block length m): m! Enigma : Rotor choices (3 of 5): 60 Rotor positions: 263 = 17576 Plugboard settings: 105578918576 Total combinations: 111339304373506560 The size of the keyspace is a naive measure, but provides an upper bound on the security of a cryptosystem. This measure ignores any structure, like character frequencies, which might remain intact following encryption. Classification of Cryptanalytic Attacks We do not consider enumeration of all keys a valid cryptanalytic attack, since no well- designed cryptosystem is susceptible to such an approach. The types of legitimate attacks which we consider can be classified in three categories. 1. Ciphertext-only Attack. 2. Known Plaintext Attack. 3. Chosen Plainext Attack. Ciphertext-only Attack. The cryptanalyst intercepts one or more messages all encoded with the same encryption algorithm. Goal: Recover the original plaintext or plaintexts, to discover the deciphering key or find an algorithm for deciphering subsequent messages enciphered with the same key. Known Plaintext Attack. The cryptanalyst has access to not only the ciphertext, but also the plaintext for one or more of the messages. Goal: Recover the deciphering key or find an algorithm for deciphering subsequent mes- sages (or the remaining plaintext) enciphered which use the same key.
    [Show full text]
  • A Hybrid Cryptosystem Based on Vigenère Cipher and Columnar Transposition Cipher
    International Journal of Advanced Technology & Engineering Research (IJATER) www.ijater.com A HYBRID CRYPTOSYSTEM BASED ON VIGENÈRE CIPHER AND COLUMNAR TRANSPOSITION CIPHER Quist-Aphetsi Kester, MIEEE, Lecturer Faculty of Informatics, Ghana Technology University College, PMB 100 Accra North, Ghana Phone Contact +233 209822141 Email: [email protected] / [email protected] graphy that use the same cryptographic keys for both en- Abstract cryption of plaintext and decryption of cipher text. The keys may be identical or there may be a simple transformation to Privacy is one of the key issues addressed by information go between the two keys. The keys, in practice, represent a Security. Through cryptographic encryption methods, one shared secret between two or more parties that can be used can prevent a third party from understanding transmitted raw to maintain a private information link [5]. This requirement data over unsecured channel during signal transmission. The that both parties have access to the secret key is one of the cryptographic methods for enhancing the security of digital main drawbacks of symmetric key encryption, in compari- contents have gained high significance in the current era. son to public-key encryption. Typical examples symmetric Breach of security and misuse of confidential information algorithms are Advanced Encryption Standard (AES), Blow- that has been intercepted by unauthorized parties are key fish, Tripple Data Encryption Standard (3DES) and Serpent problems that information security tries to solve. [6]. This paper sets out to contribute to the general body of Asymmetric or Public key encryption on the other hand is an knowledge in the area of classical cryptography by develop- encryption method where a message encrypted with a reci- ing a new hybrid way of encryption of plaintext.
    [Show full text]
  • Cryptography
    Cryptography A Brief History and Introduction MATH/COSC 314 Based on slides by Anne Ho Carolina Coastal University What is cryptography? κρυπτός γράφω “hidden, secret” “writing” ● Cryptology Study of communication securely over insecure channels ● Cryptography Writing (or designing systems to write) messages securely ● Cryptanalysis Study of methods to analyze and break hidden messages Secure Communications ● Alice wants to send Bob a secure message. ● Examples: ○ Snapchat snap ○ Bank account information ○ Medical information ○ Password ○ Dossier for a secret mission (because Bob is a field agent for an intelligence agency and Alice is his boss) Secure Communications Encryption Decryption Key Key Plaintext Ciphertext Plaintext Alice Encrypt Decrypt Bob Eve ● Symmetric Key: Alice and Bob use a (preshared) secret key. ● Public Key: Bob makes an encryption key public that Alice uses to encrypt a message. Only Bob has the decryption key. Possible Attacks Eve (the eavesdropper) is trying to: ● Read Alice’s message. ● Find Alice’s key to read all of Alice’s messages. ● Corrupt Alice’s message, so Bob receives an altered message. ● Pretend to be Alice and communicate with Bob. Why this matters ● Confidentiality Only Bob should be able to read Alice’s message. ● Data integrity Alice’s message shouldn’t be altered in any way. ● Authentication Bob wants to make sure Alice actually sent the message. ● Non-repudiation Alice cannot claim she didn’t send the message. Going back in time… 5th century BC King Xerxes I of Persia Definitely not historically accurate. Based on Frank Miller’s graphic novel, not history. 5th century BC Secret writing and steganography saved Greece from being completely conquered.
    [Show full text]
  • Shift Cipher Substitution Cipher Vigenère Cipher Hill Cipher
    Lecture 2 Classical Cryptosystems Shift cipher Substitution cipher Vigenère cipher Hill cipher 1 Shift Cipher • A Substitution Cipher • The Key Space: – [0 … 25] • Encryption given a key K: – each letter in the plaintext P is replaced with the K’th letter following the corresponding number ( shift right ) • Decryption given K: – shift left • History: K = 3, Caesar’s cipher 2 Shift Cipher • Formally: • Let P=C= K=Z 26 For 0≤K≤25 ek(x) = x+K mod 26 and dk(y) = y-K mod 26 ʚͬ, ͭ ∈ ͔ͦͪ ʛ 3 Shift Cipher: An Example ABCDEFGHIJKLMNOPQRSTUVWXYZ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 • P = CRYPTOGRAPHYISFUN Note that punctuation is often • K = 11 eliminated • C = NCJAVZRCLASJTDQFY • C → 2; 2+11 mod 26 = 13 → N • R → 17; 17+11 mod 26 = 2 → C • … • N → 13; 13+11 mod 26 = 24 → Y 4 Shift Cipher: Cryptanalysis • Can an attacker find K? – YES: exhaustive search, key space is small (<= 26 possible keys). – Once K is found, very easy to decrypt Exercise 1: decrypt the following ciphertext hphtwwxppelextoytrse Exercise 2: decrypt the following ciphertext jbcrclqrwcrvnbjenbwrwn VERY useful MATLAB functions can be found here: http://www2.math.umd.edu/~lcw/MatlabCode/ 5 General Mono-alphabetical Substitution Cipher • The key space: all possible permutations of Σ = {A, B, C, …, Z} • Encryption, given a key (permutation) π: – each letter X in the plaintext P is replaced with π(X) • Decryption, given a key π: – each letter Y in the ciphertext C is replaced with π-1(Y) • Example ABCDEFGHIJKLMNOPQRSTUVWXYZ πBADCZHWYGOQXSVTRNMSKJI PEFU • BECAUSE AZDBJSZ 6 Strength of the General Substitution Cipher • Exhaustive search is now infeasible – key space size is 26! ≈ 4*10 26 • Dominates the art of secret writing throughout the first millennium A.D.
    [Show full text]
  • Playfair Cipher and Shift Cipher Kriptografi – 3Rd Week
    “ Add your company slogan ” Playfair Cipher and Shift Cipher Kriptografi – 3rd Week LOGO Aisyatul Karima, 2012 . Standar kompetensi . Pada akhir semester, mahasiswa menguasai pengetahuan, pengertian, & pemahaman tentang teknik-teknik kriptografi. Selain itu mahasiswa diharapkan mampu mengimplementasikan salah satu teknik kriptografi untuk mengamankan informasi yang akan dikirimkan melalui jaringan. Kompetensi dasar . Mahasiswa menguasai teknik playfair cipher . Mahasiswa menguasai teknik shift cipher Contents 1 Play fair Cipher Method 2 Shift Cipher Method Playfair Cipher Method . Playfair cipher or Playfair square is symetric encryption technique that member of digraph substitution technique. This technique encrypt digraph or pair of alphabet . Based on the reason, this technique hard to encode compare with the simple substitution technique. Playfair Cipher Method . This technique found by Charles Wheatstone on physics he is founder of wheatstone bridge on 1854. Charles Wheatstone . But, popularized by Lord Playfair. Lord Playfair Playfair Cipher Method . The process of playfair cipher : . The key composed by 25 letters that arranged in a square 5x5 by removing the letter J from alphabet. S T A N D E R C H B K F G I L M O P Q U V W X Y Z ????? . contoh kunci yang digunakan . Jumlah kemungkinan kunci dari sistem ini adalah : 25!=15.511.210.043.330.985.984.000.000 Playfair Cipher Method . The keys on square expanded by adding the 6th column and the 6th row. 6th column = 1st column S T A N D S E R C H B E K F G I L K M O P Q U M V W X Y Z V S T A N D 6th row = 1st row Playfair Cipher Method .
    [Show full text]
  • Introduction
    CS 127: Cryptography / Boaz Barak Lecture 1 - Introduction Optional additional reading: Chapters 1 and 2 of Katz-Lindell book.1 Ever since people started to communicate, there were some messages that they wanted kept secret. Thus cryptography has an old though arguably undistin- guished history. For a long time cryptography shared similar features with Alchemy as a domain in which many otherwise smart people would be drawn into making fatal mistakes. d The definitive text on the history of cryptography is David Kahn’s “The Codebreakers”, whose title already hints at the ultimate fate of most cryptosystems.2 (See also “The Code Book” by Simon Singh.) We now recount just a few stories to get a feel for this field. But, before we do so, we should introduce the cast of characters. The basic setting of “encryption” or “secret writing” is the following: one person, whom we will call Alice, wishes to send another person, whom we will call Bob, a secret message. Since Alice and Bob are not in the same room (perhaps because Alice is imprisoned in a castle by her cousin the queen of England), they cannot communicate directly and need to send their message in writing. Alas, there is a third person, whom we will call Eve, that can see their message. Therefore Alice needs to find a way to encode or encrypt the message so that only Bob (and not Eve) will be able to understand it. In 1587, Mary the queen of Scots, and the heir to the throne of England, wanted to arrange the assasination of her cousin, queen Elisabeth I of England, so that she could ascend to the throne and finally escape the house arrest under which she has been for the last 18 years.
    [Show full text]