L-Dopa) in Living Brain

Total Page:16

File Type:pdf, Size:1020Kb

L-Dopa) in Living Brain Validation of a cornpartmental mode1 of the kinetic behaviour of radiolabelled L-3,4- dihydroxyphenylalanine (L-dopa) in living brain Paul Deep McConnell Brain Imaging Center Department of Neurology and Neurosurgery McGill University, Montreal Submitted: August, 1998 A Thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements of the degree of M.Sc. in Neuroscience 8 Paul Deep, 1998 National Library BibliotMque nationale 1+m of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellington ûltawaON KIAM OltawaON KlAONs Canada Canada Our &I hkmw rirYlsncr The author has granted a non- L'auteur a accordé une Licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownershp of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des exbaits substantiels may be printed or otheMrise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. To my beautiful and loving parents, George and Georgette iii TABLE OF CONTENTS ACKNOWLEDGEMENTS v CONTRIBUTION OF AUTHORS vi INTRODUCTION vii ABSTRACT viii RÉsuMÉ ix Chapter 1 - REVIEW OF THE LITERATURE 1. Introduction 2. Dopamine in mammalian brain 2.1. The detection of dopamine in nervous tissue 2.2. The striatum: a component of the basal ganglia 2.3. The nigrostriatal doparninergic pathway 3. The metabolic pathway of dopamine in the striatum 3.1. Rate constants measured in vitro 3.2. Enzymes that regulate the synthesis of striata1 dopamine 32.1. Tyrosine hydroxylase 3.2.2. Dopa decarboxylase 3 -2.3. Catechol-O-methyltransferase 3.3. Blood-brain uptake of L-dopa and dopamine 3.4. Vesicular storage of striatal dopamine 3.5. Metabolisrn of striatal dopamine 4. Parkinson's disease 4.1. A brief history 4.2. Neurochemical basis 4.3. MPTP: a mode1 of Parkinson's disease 4.4. Neuronal circuitry of the basal ganglia 4.5. Pharmacological treatments 4.5.1. Exogenous L-dopa 4.5.2. Adjunct therapeutic agents 5. Radiolabelled analogs of L-dopa 5.1 . Introduction 5.2. 3~-and I4C-labelled L-dopa: beta emitters 5 -3. "C- and '8F-labe11ed L-dopa: positron emitters 5.4. Qualitative validation of radiolabelled L-dopa analogs 5 -4.1. Metabolism 5.4.2. Vesicular storage 6. Visualization of cerebral dopaminergic innervation in vivo 6.1. Quantitative autoradiography 29 6.2. Static autoradiograms with radiolabelled L-dopa 30 6.3. Dynarnic autoradiograms with radiolabelled L-dopa 6.3.1 . Positron emission tomography 3 1 6.3.2. Accumulation of radioactivity in the conscious brain 32 7. Kinetic modelling of radiolabelled L-dopa autoradiographic data 7.1. Introduction 33 7.2. The plasma slope-intercept plot: a linear mode1 34 7.3. The cornpartmental mode1 35 7.4. Physiological constraints 37 8. The presence in brain of radiolabelled O-methyl-L-dopa 8.1. Methods of correction 38 8 2. Radiolabelled analogs of L-m-tyrosine 40 8.3. Advantages and disadvantages of L-[18flfluoro-m-tyrosines 4 1 Chapter II - FIRST ARTICLE 43 On the accuracy of an [18F]FDOPAcompartmental model: evidence for vesicular storage of [18F]fluorodoparninein vivo. Chapter III - SECOND ARTICLE The kinetic behaviour of ['~Idopain living rat brain investigated by compartmental modelling of static autoradiograms. Chapter IV - GENERAL DISCUSSION Chapter V - REFERENCES Chapter VI - APPENDIX #1 Derivations of mathematical terms and equations Chapter VI1 - APPENDIX #2 Publisher reprints of original articles First and foremost, 1 wish to express my sincere gratitude to Dr. Paul Curnming, Assistant Professor in the Department of Neurology and Neurosurgery at McGill University, for accepting me as a graduate student, and supervising my reçearch with cornpetence and patience. 1 had the opportunity to benefit from a stimulating scientific environment that Paul generates by his exceptional enthusiasm for neuroscience. 1 would like to thank my co- supervisors. Dr, Albert Gjedde. Director of the PET Center at the Aarhus University Hospital in Aarhus. Denmark, and Dr. Alan Evans, Director of the McConnell Brain Imaging Center at ;McGill University, for their indispensable advice. 1 would also like to thank al1 the research students, post-doctoral fellows, technicians and administrative assistants in my department whose time and expertise led me through many difficult situations. 1 would like to thank in advance the members of the Thesis cornmittee for contributing their time and effort to the evaluation of this lengthy document- Special appreciation is extended to Dr. Luis Oliva of the Lakeshore General Hospital in Pointe Claire, Quebec. for his last-minute corrections and insights into human pathobiology and wine tasting. This work was made possible by the generous financial support of both the Fonds de Recherche en Santé du Québec, and the Montreal Neurological Institute. CONTRIBUTION OF AUTHORS 1 have chosen the option provided in the "Guidelines Concerning Thesis Preparation" which allows inclusion as chapten of the thesis the text of original papers concerning the thesis research project. The experimental parts of the thesis, Chapter II (Deep et al., 1997~) and Chapter iIi (Deep et al.. 1997b), consist of two original articles that have been recently published. In these two studies, the original experimental work consisted of the development of computer algorithms which were subsequently used for data anal ysis and simulation studies. Some of the data so analyzed in Chapter DI was acquired previously by Cumming et al. ( 199%). Otherwise, 1wrote the manuscripts, performed the calculations and statisticai analyses, derived the equations, and drafted the figures, with supervision from Dr. P. Cumming and Dr. A. Gjedde. Together with my thesis supervisor and my CO-authors,1 have contributed to the design of the experiments, to the formulation of the working hypothesis. and to the interpretation of results. vii INTRODUCTION The subject of the present thesis is the validation of a nonlinear (or compartmental) model of the kinetic behaviour of radiolabelled L-3,4-dihydroxyphenylalanine (L-dopa) in living brain. Several such models describing the cerebral uptake and metabolism of radiolabel led L-dopa analogs. including [)H]dopa and ~-6-[~~F]fluorodo~a,have ken developed in recent years. chromatographic identification of radiolabelled metabolites in brain tissue samples established qualitatively the bio1ogica.i accuracy of the rnodels. However. the work presented in this thesis represents their first quantitative validation. The article in Chapter II (Deep et al.. 1997~)is the first comparison of radiolabelled L-dopa metabolite fractions calculated by a compartmental model with corresponding fractions measured analytically by chromatography in rat brain. The results of this study led to the developrnent of a model describing the vesicular uptake of radiolabelled dopamine in vivo. Rate constants describing the distribution of radiolabelled dopamine between cytosolic and vesicular compartments are now estimated; previous models omitted vesicular storage. Modelling of tissue radioactivities measured from a series of static cerebral autoradiograms in rats had been previously performed folIowing injection of radiolabelled deoxyglucose (Sokoloff et al., 1977), but the article in Chapter III (Deep et al., 1997b) outlines the first attempt at modelling radioactivities derived from radiolabelled L-dopa in rat brain by an analogous autoradiographic technique. Furthemore, in comparing autoradiographic results from right cerebral hemispheres with corresponding analytic results obtained previously based on chromatographic fractionation of radiolabelled L-dopa metabolites in the left cerebral hemispheres of the same rats, we seek to establish the first direct empirical validation of cornpartmental modelling of autoradiographic data for quantitative assays of radiolabelled L-dopa uptdce and metabolism in living brain. A comprehensive general review of the pertinent literature is presented in Chapter 1. The overall conclusions from the results of the different studies of this thesis are discussed in Chapter IV, while a complete set of references is listed alphabetically in Chapter V. An appendix containing the derivations of important equations and mathematical terms appearing in the two original articles is provided in Chapter VI. Finally, the thesis concludes with a second appendix that contains publisher reprints of these articles in Chapter VU. ABSTRACT This research details two experiments that together estabiish the legitimacy of a comprutmental model which describes the cerebral uptake and metabolism of radiolabelled L-dopa in vivo. First, tissue radioactivities calculated with the model were compved with corresponding radioactivities measured previously by chrornatographic fractionation of "F- Iabelled metabolites in striata1 tissue extracts from rats given intravenous injections of L-6- ['XF]fluorodopa. Second. kinetic constants estimated by model fitting to measured radioactivities from combined metabolite pools in a
Recommended publications
  • (12) United States Patent (10) Patent No.: US 7,786,126 B2 Mccreary Et Al
    USOO7786126B2 (12) United States Patent (10) Patent No.: US 7,786,126 B2 McCreary et al. (45) Date of Patent: Aug. 31, 2010 (54) COMBINATION PREPARATIONS OTHER PUBLICATIONS COMPRISING SLV3O8 AND A DOPAMINE AGONST Salvati et al. NW-1048 is a novel, reversible and selective MAO-B (75) Inventors: Andrew C. McCreary, Weesp (NL); inhibitor with neuroprotective effects in a model of Parkinson's dis Gustaaf J. M. Van Scharrenburg, ease. Society for Neuroscience Abstract, 2000 vol. 26, No. 1-2, pp. Weesp (NL); Martinus Th. M. Tulp, abstract No. 765.11. Weesp (NL) (Continued) (73) Assignee: Solvay Pharmaceuticals B.V., Weesp Primary Examiner Jennifer M Kim (NL) (74) Attorney, Agent, or Firm—Finnegan, Henderson, (*) Notice: Subject to any disclaimer, the term of this Farabow, Garrett & Dunner, L.L.P. patent is extended or adjusted under 35 U.S.C. 154(b) by 347 days. (57) ABSTRACT (21) Appl. No.: 11/762,206 A composition containing SLV308 or its N-oxide, or at least (22) Filed: Jun. 13, 2007 one pharmacologically acceptable salt thereof: (65) Prior Publication Data SLV308 US 2007/O293505 A1 Dec. 20, 2007 O Related U.S. Application Data 1. (60) Provisional application No. 60/814,051, filed on Jun. 16, 2006. (51) Int. Cl. (S-O-V / " A63/497 (2006.01) SLV308 N-oxide A 6LX 3L/95 (2006.01) A6 IK3I/35 (2006.01) (52) U.S. Cl. ................... 514/254.02:514/567; 514/649 HN -l O (58) Field of Classification Search ............ 5147254.02 514/567, 649 / V CH See application file for complete search history.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Nitecapone Item No. 18656 CAS Registry No.: 116313-94-1 Formal Name: 3-[(3,4-dihydroxy-5-nitrophenyl) methylene]-2,4-pentanedione O Synonym: OR-462 O2N MF: C12H11NO6 FW: 265.2 Purity: ≥98% HO O UV/Vis.: λmax: 225, 301 nm Supplied as: A crystalline solid OH Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Nitecapone is supplied as a crystalline solid. A stock solution may be made by dissolving the nitecapone in the solvent of choice. Nitecapone is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide (DMF), which should be purged with an inert gas. The solubility of nitecapone in ethanol is approximately 5 mg/ml and approximately 30 mg/ml in DMSO and DMF. Nitecapone is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, nitecapone should first be dissolved in DMSO and then diluted with the aqueous buffer of choice. Nitecapone has a solubility of approximately 0.5 mg/ml in a 1:1 solution of DMSO:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. Description Nitecapone is a reversible inhibitor of S-catechol-O-methyltransferase (S-COMT; IC50 = 300 nM in rat liver).1 It is selective for S-COMT over tyrosine hydroxylase, dopamine-β-hydroxylase, DOPA decarboxylase, monoamine oxidase A (MAO-A), and MAO-B (IC50s = >1 µM for all). In vivo, nitecapone inhibits liver, duodenal, and brain S-COMT (ID50s = 5, 5, and 25 mg/kg, respectively).
    [Show full text]
  • Case 2:10-Cv-05078-CCC-MF Document 540 Filed 09/20/13 Page 1 of 59 Pageid: 14610
    Case 2:10-cv-05078-CCC-MF Document 540 Filed 09/20/13 Page 1 of 59 PageID: 14610 NOT FOR PUBLICATION UNITED STATES DISTRICT COURT DISTRICT OF NEW JERSEY TEA NEUROSCIENCE, INC., TEVA PHARMACEUTICALS USA INC.. and TEVA PHARI’IACEUTICALS INDUSTRIES, LTD., Civil Action No. 2:lO-cv-05078 Plaintiffs, V. Opinion WATSON LABORATORIES, INC., MYLAN PHARMACEUTICALS, INC., MYLAN INC., ORCHID CHEMICALS & PHARMACEUTICALS LTD., ORCHID HEALTHCARE (a division of Orchid Chemicals & Pharmaceuticals Ltd.) and ORGENUS PHARMA INC. Defendants. TEVA NEUROSCIENCE, INC., TEVA PHARMACEUTICALS USA, INC., and TEVA PHARMACEUTICALS INDUSTRIES, LTD., Civil Action No. 2:1l-cv-3076 Plaintiffs, v. APOTEX CORP. and APOTEX INC. Defendants. Case 2:10-cv-05078-CCC-MF Document 540 Filed 09/20/13 Page 2 of 59 PageID: 14611 Claire C. Cecchi, U.S.D.J. This matter comes before the Court by complaint of Teva Neuroscience, Inc., Teva Pharmaceuticals USA, Inc. and Teva Pharmaceuticals Industries, Ltd. (collectively, “Teva”) against Mylan’ and certain other defendants,2 This case concerns the validity of United States Patent No. 5,453,446 (“the ‘446 Patent”), which is directed to a method of treating Parkinson’s disease, This Court conducted a non-jury trial in this matter from May 15-31, 2013. This Opinion constitutes the Court’s findings of fact and conclusions of law pursuant to Federal Rule of Civil Procedure 52(a). For the reasons stated herein, a finding in favor of Teva will be entered. BACKGROUND I. The Parties Plaintiff Teva Pharmaceutical Industries Ltd. (“Teva Ltd.”) is an Israeli company with its principal place of business at 5 Basel Street, Petach Ti.Kva, 49131, Israel.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Development of Purification Strategies for SCOMT and MBCOMT Proteins by Affinity Chromatography
    UNIVERSIDADE DA BEIRA INTERIOR Ciências Development of purification strategies for SCOMT and MBCOMT proteins by affinity chromatography Carla Sofia Ferreira Pereira Dissertação para obtenção do Grau de Mestre em Bioquímica (2º ciclo de estudos) Orientador: Prof. Doutor Luís António Paulino Passarinha Coorientadora: Prof. Doutora Ângela Maria Almeida de Sousa Covilhã, Outubro de 2016 Development of purification strategies for SCOMT and MBCOMT proteins and affinity chromatography Folha em branco ii Development of purification strategies for SCOMT and MBCOMT proteins and affinity chromatography Acknowledgments Firstly, I would like to express my sincere gratitude to my advisors Professor Luís Passarinha and Professora Ângela Sousa by excellent monitoring and immense knowledge scientific. I have no words for the confidence placed in me and in my work. Thank you for motivation to never give up my objectives. I must mention that it was for me a real privilege to work beside you. To my dear family, parents and sister, that I love very much, want to thank all the support, unconditional love but also for patience in difficult times and to be present at all times of my life. I would also like to express my gratitude to Margarida Grilo and Fátima Santos, whose expertise, advice and encouragement made my work much more easy. I specially thank my lab colleagues for the unconditional help, friendship and support, and all the fun we had along this journey. I would like to thank the Universidade da Beira Interior and Centro de Investigação em Ciências da Saúde for allowing the development of my research work. Last but not the least, I would like to thank all my friends, particulary, Cláudia Faria and Leonor Varandas for the encouragement all this time and for helping me make me the person I am today, thank all friendship.
    [Show full text]
  • Lyophilization and a Preliminary Thermodynamic Characterization of Recombinant SCOMT His6
    UNIVERSIDADE DA BEIRA INTERIOR Ciências Lyophilization and a preliminary thermodynamic characterization of recombinant SCOMT_His6 Rúben Miguel Oliveira Coval Dissertação para obtenção do Grau de Mestre em Biotecnologia (2º ciclo de estudos) Orientador: Professor Doutor Luís António Paulino Passarinha Co-orientador: Mestre Augusto Quaresma Henriques Pedro Covilhã, outubro de 2015 ii “When we are no longer able to change a situation, we are challenged to change ourselves” Viktor Frankl iii iv Acknowledgments First off all, I would like to express my sincere gratitude to my parents, brother and girlfriend for all their sacrifices, encouragement, support and unconditional love. Furthermore, I would also like to give a special thanks to my supervisors Professor Doctor Luís Passarinha and Master Augusto Pedro for all their availability, guidance, expertise, patience and trust. Their help, efforts, vast knowledge, criticism and suggestions were crucial for the development of this project. It was a privilege to work and learn with them. I would also like to acknowledge the University of Beira Interior, in particular the Health Sciences Research Center, where all the work was developed. I am also grateful to all people involved in the Health Sciences Research Center of the University of Beira Interior, particularly to my colleagues in the Biotechnology and Biomolecular Sciences group whose advice and companionship made my work much more easy and pleasant. I could not fail to name a few people who were crucial in this process. I want to make a special thanks to Margarida Grilo and Guilherme Espírito Santo throughout the laboratory help and especially for all past knowledge that were the basis of all this work, and to Filipe Frias for the companionship and help.
    [Show full text]
  • Catechol-O-Methyltransferase Inhibitor, on the Motor Response to Acute Treatment with Levodopa in Patients with Parkinson's Disease
    18616ournal ofNeurology, Neurosurgery, and Psychiatry 1994;57:186-189 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.57.2.186 on 1 February 1994. Downloaded from Effect of entacapone, a peripherally acting catechol-O-methyltransferase inhibitor, on the motor response to acute treatment with levodopa in patients with Parkinson's disease Marcelo Merello, Andrew J Lees, Roy Webster, Michael Bovingdon, Ariel Gordin Abstract treatment.7-'0 The oral bioavailability of lev- Catechol-O-methyltransferase (COMT) odopa is low due to first pass metabolism inhibitors may be useful in the treatment which is at least partly due to the high activity of Parkinson's disease by improving the of COMT in the gut and liver." 12 The com- bioavailability of levodopa and by pro- bination of a peripheral COMT inhibitor longing its effects. Entacapone (OR-611), with levodopa/DCI therapy might therefore a novel COMT inhibitor, which does not produce a smoother and more prolonged cross the blood brain barrier, was motor response in patients with Parkinson's assessed in 12 patients with Parkinson's disease."3 14 As early as in 1971 Ericsson'5 disease and motor fluctuations in a reported beneficial effects with a COMT randomised, double-blind, cross-over, inhibitor with concomitant reduction in single dose study. The magnitude and levodopa-induced dyskinesias. More recently, duration of the therapeutic response to a a new generation of COMT inhibitors have single dose of 200 mg levodopa/50 mg been developed, which are much more potent carbidopa was evaluated after concomi- and specific."'3 1620 Fluorodopa positron tant placebo, or 200 or 800 mg enta- emission tomography (PET) studies in mon- capone.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • (Boosters)—Escort for Drugs Against Degrading Enzymes and Beyond
    Scientia Pharmaceutica Review Pharmacokinetic Enhancers (Boosters)—Escort for Drugs against Degrading Enzymes and Beyond Jürgen Krauß and Franz Bracher * Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians University, Butenandtstr. 5-13, 81377 Munich, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-89-218077301 Received: 22 August 2018; Accepted: 20 September 2018; Published: 27 September 2018 Abstract: Pharmacokinetic enhancers (boosters) are compounds used in combination with a primary therapeutic agent (drug) and are not used for their direct effects on the disease but because they enhance or restore the activity of the primary agent. Hence, in certain cases, they represent an indispensable escort for enzyme-labile drugs. Pharmacokinetic enhancers can exert their activity on different ways. In the most common case, they inhibit enzymes such as human cytochrome P450 enzymes in the liver or other organs and, thereby, block or reduce undesired metabolism and inactivation of the primary drug. In this review, an overview will be given on the therapeutically most important classes of pharmacokinetic enhancers like β-lactamase inhibitors, inhibitors of CYP (cytochrome P450) enzymes in HIV therapy and hepatitis C, boosters for fluoropyrimidine-type anticancer agents, compounds utilized for enabling therapy of Parkinson’s disease with levodopa, and others. Inhibitors of efflux pumps in both pathogenic bacteria and tumor cells will be addresses shortly. Keywords: pharmacokinetic enhancer; booster; enzyme; inhibitor; β-lactamase; DOPA decarboxylase; antibiotic; resistance; efflux pump; protease; antimetabolite 1. Introduction Pharmacokinetic enhancers, which are also named boosters or boosting agents, are compounds used in combination with a primary therapeutic agent (drug) not for their direct effects on the disease itself but because they enhance or restore the activity, increase the levels, and/or prolong the half-life of the primary agent.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • (Boosters)—Escort for Drugs Against Degrading Enzymes and Beyond
    Review Pharmacokinetic Enhancers (Boosters)—Escort for Drugs against Degrading Enzymes and Beyond Jürgen Krauß and Franz Bracher * Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians University, Butenandtstr. 5-13, 81377 Munich, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-89-218077301 Received: 22 August 2018; Accepted: 20 September 2018; Published: 27 September 2018 Abstract: Pharmacokinetic enhancers (boosters) are compounds used in combination with a primary therapeutic agent (drug) and are not used for their direct effects on the disease but because they enhance or restore the activity of the primary agent. Hence, in certain cases, they represent an indispensable escort for enzyme-labile drugs. Pharmacokinetic enhancers can exert their activity on different ways. In the most common case, they inhibit enzymes such as human cytochrome P450 enzymes in the liver or other organs and, thereby, block or reduce undesired metabolism and inactivation of the primary drug. In this review, an overview will be given on the therapeutically most important classes of pharmacokinetic enhancers like β-lactamase inhibitors, inhibitors of CYP (cytochrome P450) enzymes in HIV therapy and hepatitis C, boosters for fluoropyrimidine-type anticancer agents, compounds utilized for enabling therapy of Parkinson’s disease with levodopa, and others. Inhibitors of efflux pumps in both pathogenic bacteria and tumor cells will be addresses shortly. Keywords: pharmacokinetic enhancer; booster; enzyme; inhibitor; β-lactamase; DOPA decarboxylase; antibiotic; resistance; efflux pump; protease; antimetabolite 1. Introduction Pharmacokinetic enhancers, which are also named boosters or boosting agents, are compounds used in combination with a primary therapeutic agent (drug) not for their direct effects on the disease itself but because they enhance or restore the activity, increase the levels, and/or prolong the half-life of the primary agent.
    [Show full text]
  • Development of a PC12 Cell-Based Assay for in Vitro Screening of Catechol-O- Methyltransferase Inhibitors
    bioRxiv preprint doi: https://doi.org/10.1101/694596; this version posted July 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Development of a PC12 cell-based assay for in vitro screening of catechol-O- methyltransferase inhibitors Gongliang Zhang1 , Ingrid P. Buchler1, Michael DePasquale1, Michael Wormald1,2, Gangling Liao1, Huijun Wei1,2, James C. Barrow1,2, and Gregory V. Carr1,2 1 Lieber Institute for Brain Development, Baltimore, MD 21205 2 Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205 * For correspondence Gregory V. Carr, PhD Investigator, Lieber Institute for Brain Development Assistant Professor of Pharmacology and Molecular Sciences Johns Hopkins University School of Medicine 855 North Wolfe Street, Room 373 Baltimore, MD 21205 443-287-4073 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/694596; this version posted July 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT The male rat adrenal pheochromocytoma cell-originated PC12 cell line can synthesize and release catecholamine neurotransmitters, and it has been widely used as a model system in cell biology and toxicology research. Catechol-O-methyltransferase (COMT) is involved in the inactivation of the catecholamine neurotransmitters, and it is particularly important for theregulation of dopamine. In this study, we explored the feasibility of using PC12 cells as an in vitro drug screening platform to compare the activity of multiple COMT inhibitors.
    [Show full text]