An In-Depth Comparison of 14 Spelling Correction Tools on a Common Benchmark
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GNU Emacs GNU Emacs
GNU Emacs GNU Emacs Reference Card Reference Card Computing and Information Technology Computing and Information Technology Replacing Text Replacing Text Replace foo with bar M-x replace-string Replace foo with bar M-x replace-string foo bar foo bar Query replacement M-x query replace Query replacement M-x query replace then replace <Space> then replace <Space> then skip to next <Backspace> then skip to next <Backspace> then replace and exit <Period> then replace and exit <Period> then replace all ! then replace all ! then go back ^ then go back ^ then exit query <Esc> then exit query <Esc> Setting a Mark Setting a Mark Set mark here C-<Space> or C-@ Set mark here C-<Space> or C-@ Exchange point and mark C-x C-x Exchange point and mark C-x C-x Mark paragraph M-h Mark paragraph M-h Mark entire file C-x h Mark entire file C-x h Sorting Text Sorting Text Normal sort M-x sort-lines Normal sort M-x sort-lines Reverse sort <Esc>-1 M-x sort lines Reverse sort <Esc>-1 M-x sort lines Inserting Text Inserting Text Scan file fn M-x view-file fn Scan file fn M-x view-file fn Write buffer to file fn M-x write-file fn Write buffer to file fn M-x write-file fn Insert file fn into buffer M-x insert-file fn Insert file fn into buffer M-x insert-file fn Write region to file fn M-x write-region fn Write region to file fn M-x write-region fn Write region to end of file fn M-x append-to-file fn Write region to end of file fn M-x append-to-file fn Write region to beginning of Write region to beginning to specified buffer M-x prepend-to-buffer specified buffer -
Automatic Correction of Real-Word Errors in Spanish Clinical Texts
sensors Article Automatic Correction of Real-Word Errors in Spanish Clinical Texts Daniel Bravo-Candel 1,Jésica López-Hernández 1, José Antonio García-Díaz 1 , Fernando Molina-Molina 2 and Francisco García-Sánchez 1,* 1 Department of Informatics and Systems, Faculty of Computer Science, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain; [email protected] (D.B.-C.); [email protected] (J.L.-H.); [email protected] (J.A.G.-D.) 2 VÓCALI Sistemas Inteligentes S.L., 30100 Murcia, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-86888-8107 Abstract: Real-word errors are characterized by being actual terms in the dictionary. By providing context, real-word errors are detected. Traditional methods to detect and correct such errors are mostly based on counting the frequency of short word sequences in a corpus. Then, the probability of a word being a real-word error is computed. On the other hand, state-of-the-art approaches make use of deep learning models to learn context by extracting semantic features from text. In this work, a deep learning model were implemented for correcting real-word errors in clinical text. Specifically, a Seq2seq Neural Machine Translation Model mapped erroneous sentences to correct them. For that, different types of error were generated in correct sentences by using rules. Different Seq2seq models were trained and evaluated on two corpora: the Wikicorpus and a collection of three clinical datasets. The medicine corpus was much smaller than the Wikicorpus due to privacy issues when dealing Citation: Bravo-Candel, D.; López-Hernández, J.; García-Díaz, with patient information. -
NLP Commercialisation in the Last 25 Years
Natural Language Engineering (2019), 25, pp. 419–426 doi:10.1017/S1351324919000135 Anniversary INDUSTRY WATCH NLP commercialisation in the last 25 years Robert Dale∗ Language Technology Group ∗Corresponding author. Email: [email protected] Abstract The Journal of Natural Language Engineering is now in its 25th year. The editorial preface to the first issue emphasised that the focus of the journal was to be on the practical application of natural language processing (NLP) technologies: the time was ripe for a serious publication that helped encourage research ideas to find their way into real products. The commercialisation of NLP technologies had already started by that point, but things have advanced tremendously over the last quarter-century. So, to celebrate the journal’s anniversary, we look at how commercial NLP products have developed over the last 25 years. 1. Some context For many researchers, work in natural language processing (NLP) has a dual appeal. On the one hand, the computational modelling of language understanding or language production has often been seen as means of exploring theoretical questions in both linguistics and psycholinguistics; the general argument being that, if you can build a computational model of some phenomenon, then you have likely moved some way towards an understanding of that phenomenon. On the other hand, the scope for practical applications of NLP technologies has always been enticing: the idea that we could build truly useful computational artifacts that work with human language goes right back to the origins of the field in the early machine translation experiments of the 1950s. However, it was in the early 1990s that commercial applications of NLP really started to flourish, pushed forward in particular by targeted research in both the USA, much of it funded by the Defense Advanced Research Projects Agency (DARPA) via programs like the Message Understanding Conferences (MUC), and Europe, via a number of large-scale forward-looking EU-funded research programs. -
Emacspeak — the Complete Audio Desktop User Manual
Emacspeak | The Complete Audio Desktop User Manual T. V. Raman Last Updated: 19 November 2016 Copyright c 1994{2016 T. V. Raman. All Rights Reserved. Permission is granted to make and distribute verbatim copies of this manual without charge provided the copyright notice and this permission notice are preserved on all copies. Short Contents Emacspeak :::::::::::::::::::::::::::::::::::::::::::::: 1 1 Copyright ::::::::::::::::::::::::::::::::::::::::::: 2 2 Announcing Emacspeak Manual 2nd Edition As An Open Source Project ::::::::::::::::::::::::::::::::::::::::::::: 3 3 Background :::::::::::::::::::::::::::::::::::::::::: 4 4 Introduction ::::::::::::::::::::::::::::::::::::::::: 6 5 Installation Instructions :::::::::::::::::::::::::::::::: 7 6 Basic Usage. ::::::::::::::::::::::::::::::::::::::::: 9 7 The Emacspeak Audio Desktop. :::::::::::::::::::::::: 19 8 Voice Lock :::::::::::::::::::::::::::::::::::::::::: 22 9 Using Online Help With Emacspeak. :::::::::::::::::::: 24 10 Emacs Packages. ::::::::::::::::::::::::::::::::::::: 26 11 Running Terminal Based Applications. ::::::::::::::::::: 45 12 Emacspeak Commands And Options::::::::::::::::::::: 49 13 Emacspeak Keyboard Commands. :::::::::::::::::::::: 361 14 TTS Servers ::::::::::::::::::::::::::::::::::::::: 362 15 Acknowledgments.::::::::::::::::::::::::::::::::::: 366 16 Concept Index :::::::::::::::::::::::::::::::::::::: 367 17 Key Index ::::::::::::::::::::::::::::::::::::::::: 368 Table of Contents Emacspeak :::::::::::::::::::::::::::::::::::::::::: 1 1 Copyright ::::::::::::::::::::::::::::::::::::::: -
Welsh Language Technology Action Plan Progress Report 2020 Welsh Language Technology Action Plan: Progress Report 2020
Welsh language technology action plan Progress report 2020 Welsh language technology action plan: Progress report 2020 Audience All those interested in ensuring that the Welsh language thrives digitally. Overview This report reviews progress with work packages of the Welsh Government’s Welsh language technology action plan between its October 2018 publication and the end of 2020. The Welsh language technology action plan derives from the Welsh Government’s strategy Cymraeg 2050: A million Welsh speakers (2017). Its aim is to plan technological developments to ensure that the Welsh language can be used in a wide variety of contexts, be that by using voice, keyboard or other means of human-computer interaction. Action required For information. Further information Enquiries about this document should be directed to: Welsh Language Division Welsh Government Cathays Park Cardiff CF10 3NQ e-mail: [email protected] @cymraeg Facebook/Cymraeg Additional copies This document can be accessed from gov.wales Related documents Prosperity for All: the national strategy (2017); Education in Wales: Our national mission, Action plan 2017–21 (2017); Cymraeg 2050: A million Welsh speakers (2017); Cymraeg 2050: A million Welsh speakers, Work programme 2017–21 (2017); Welsh language technology action plan (2018); Welsh-language Technology and Digital Media Action Plan (2013); Technology, Websites and Software: Welsh Language Considerations (Welsh Language Commissioner, 2016) Mae’r ddogfen yma hefyd ar gael yn Gymraeg. This document is also available in Welsh. -
Compound Word Formation.Pdf
Snyder, William (in press) Compound word formation. In Jeffrey Lidz, William Snyder, and Joseph Pater (eds.) The Oxford Handbook of Developmental Linguistics . Oxford: Oxford University Press. CHAPTER 6 Compound Word Formation William Snyder Languages differ in the mechanisms they provide for combining existing words into new, “compound” words. This chapter will focus on two major types of compound: synthetic -ER compounds, like English dishwasher (for either a human or a machine that washes dishes), where “-ER” stands for the crosslinguistic counterparts to agentive and instrumental -er in English; and endocentric bare-stem compounds, like English flower book , which could refer to a book about flowers, a book used to store pressed flowers, or many other types of book, as long there is a salient connection to flowers. With both types of compounding we find systematic cross- linguistic variation, and a literature that addresses some of the resulting questions for child language acquisition. In addition to these two varieties of compounding, a few others will be mentioned that look like promising areas for coordinated research on cross-linguistic variation and language acquisition. 6.1 Compounding—A Selective Review 6.1.1 Terminology The first step will be defining some key terms. An unfortunate aspect of the linguistic literature on morphology is a remarkable lack of consistency in what the “basic” terms are taken to mean. Strictly speaking one should begin with the very term “word,” but as Spencer (1991: 453) puts it, “One of the key unresolved questions in morphology is, ‘What is a word?’.” Setting this grander question to one side, a word will be called a “compound” if it is composed of two or more other words, and has approximately the same privileges of occurrence within a sentence as do other word-level members of its syntactic category (N, V, A, or P). -
Intellibot: a Domain-Specific Chatbot for the Insurance Industry
IntelliBot: A Domain-specific Chatbot for the Insurance Industry MOHAMMAD NURUZZAMAN A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy UNSW Canberra at Australia Defence Force Academy (ADFA) School of Business 20 October 2020 ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institute, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed Date To my beloved parents Acknowledgement Writing a thesis is a great process to review not only my academic work but also the journey I took as a PhD student. I have spent four lovely years at UNSW Canberra in the Australian Defence Force Academy (ADFA). Throughout my journey in graduate school, I have been fortunate to come across so many brilliant researchers and genuine friends. It is the people who I met shaped who I am today. This thesis would not have been possible without them. My gratitude goes out to all of them. -
Learning to Read by Spelling Towards Unsupervised Text Recognition
Learning to Read by Spelling Towards Unsupervised Text Recognition Ankush Gupta Andrea Vedaldi Andrew Zisserman Visual Geometry Group Visual Geometry Group Visual Geometry Group University of Oxford University of Oxford University of Oxford [email protected] [email protected] [email protected] tttttttttttttttttttttttttttttttttttttttttttrssssss ttttttt ny nytt nr nrttttttt ny ntt nrttttttt zzzz iterations iterations bcorote to whol th ticunthss tidio tiostolonzzzz trougfht to ferr oy disectins it has dicomered Training brought to view by dissection it was discovered Figure 1: Text recognition from unaligned data. We present a method for recognising text in images without using any labelled data. This is achieved by learning to align the statistics of the predicted text strings, against the statistics of valid text strings sampled from a corpus. The figure above visualises the transcriptions as various characters are learnt through the training iterations. The model firstlearns the concept of {space}, and hence, learns to segment the string into words; followed by common words like {to, it}, and only later learns to correctly map the less frequent characters like {v, w}. The last transcription also corresponds to the ground-truth (punctuations are not modelled). The colour bar on the right indicates the accuracy (darker means higher accuracy). ABSTRACT 1 INTRODUCTION This work presents a method for visual text recognition without read (ri:d) verb • Look at and comprehend the meaning of using any paired supervisory data. We formulate the text recogni- (written or printed matter) by interpreting the characters or tion task as one of aligning the conditional distribution of strings symbols of which it is composed. -
Detecting Personal Life Events from Social Media
Open Research Online The Open University’s repository of research publications and other research outputs Detecting Personal Life Events from Social Media Thesis How to cite: Dickinson, Thomas Kier (2019). Detecting Personal Life Events from Social Media. PhD thesis The Open University. For guidance on citations see FAQs. c 2018 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.00010aa9 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Detecting Personal Life Events from Social Media a thesis presented by Thomas K. Dickinson to The Department of Science, Technology, Engineering and Mathematics in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the subject of Computer Science The Open University Milton Keynes, England May 2019 Thesis advisor: Professor Harith Alani & Dr Paul Mulholland Thomas K. Dickinson Detecting Personal Life Events from Social Media Abstract Social media has become a dominating force over the past 15 years, with the rise of sites such as Facebook, Instagram, and Twitter. Some of us have been with these sites since the start, posting all about our personal lives and building up a digital identify of ourselves. But within this myriad of posts, what actually matters to us, and what do our digital identities tell people about ourselves? One way that we can start to filter through this data, is to build classifiers that can identify posts about our personal life events, allowing us to start to self reflect on what we share online. -
Emacspeak User's Guide
Emacspeak User's Guide Jennifer Jobst Revision History Revision 1.3 July 24,2002 Revised by: SDS Updated the maintainer of this document to Sharon Snider, corrected links, and converted to HTML Revision 1.2 December 3, 2001 Revised by: JEJ Changed license to GFDL Revision 1.1 November 12, 2001 Revised by: JEJ Revision 1.0 DRAFT October 19, 2001 Revised by: JEJ This document helps Emacspeak users become familiar with Emacs as an audio desktop and provides tutorials on many common tasks and the Emacs applications available to perform those tasks. Emacspeak User's Guide Table of Contents 1. Legal Notice.....................................................................................................................................................1 2. Introduction.....................................................................................................................................................2 2.1. What is Emacspeak?.........................................................................................................................2 2.2. About this tutorial.............................................................................................................................2 3. Before you begin..............................................................................................................................................3 3.1. Getting started with Emacs and Emacspeak.....................................................................................3 3.2. Emacs Command Conventions.........................................................................................................3 -
Spelling Correction: from Two-Level Morphology to Open Source
Spelling Correction: from two-level morphology to open source Iñaki Alegria, Klara Ceberio, Nerea Ezeiza, Aitor Soroa, Gregorio Hernandez Ixa group. University of the Basque Country / Eleka S.L. 649 P.K. 20080 Donostia. Basque Country. [email protected] Abstract Basque is a highly inflected and agglutinative language (Alegria et al., 1996). Two-level morphology has been applied successfully to this kind of languages and there are two-level based descriptions for very different languages. After doing the morphological description for a language, it is easy to develop a spelling checker/corrector for this language. However, what happens if we want to use the speller in the "free world" (OpenOffice, Mozilla, emacs, LaTeX, ...)? Ispell and similar tools (aspell, hunspell, myspell) are the usual mechanisms for these purposes, but they do not fit the two-level model. In the absence of two-level morphology based mechanisms, an automatic conversion from two-level description to hunspell is described in this paper. previous work and reuse the morphological information. 1. Introduction Two-level morphology (Koskenniemi, 1983; Beesley & Karttunen, 2003) has been applied successfully to the 2. Free software for spelling correction morphological description of highly inflected languages. Unfortunately there are not open source tools for spelling There are two-level based descriptions for very different correction with these features: languages (English, German, Swedish, French, Spanish, • It is standardized in the most of the applications Danish, Norwegian, Finnish, Basque, Russian, Turkish, (OpenOffice, Mozilla, emacs, LaTeX, ...). Arab, Aymara, Swahili, etc.). • It is based on the two-level morphology. After doing the morphological description, it is easy to The spell family of spell checkers (ispell, aspell, myspell) develop a spelling checker/corrector for the language fits the first condition but not the second. -
Hunspell – the Free Spelling Checker
Hunspell – The free spelling checker About Hunspell Hunspell is a spell checker and morphological analyzer library and program designed for languages with rich morphology and complex word compounding or character encoding. Hunspell interfaces: Ispell-like terminal interface using Curses library, Ispell pipe interface, OpenOffice.org UNO module. Main features of Hunspell spell checker and morphological analyzer: - Unicode support (affix rules work only with the first 65535 Unicode characters) - Morphological analysis (in custom item and arrangement style) and stemming - Max. 65535 affix classes and twofold affix stripping (for agglutinative languages, like Azeri, Basque, Estonian, Finnish, Hungarian, Turkish, etc.) - Support complex compoundings (for example, Hungarian and German) - Support language specific features (for example, special casing of Azeri and Turkish dotted i, or German sharp s) - Handle conditional affixes, circumfixes, fogemorphemes, forbidden words, pseudoroots and homonyms. - Free software (LGPL, GPL, MPL tri-license) Usage The src/tools dictionary contains ten executables after compiling (or some of them are in the src/win_api): affixcompress: dictionary generation from large (millions of words) vocabularies analyze: example of spell checking, stemming and morphological analysis chmorph: example of automatic morphological generation and conversion example: example of spell checking and suggestion hunspell: main program for spell checking and others (see manual) hunzip: decompressor of hzip format hzip: compressor of