Degradation VISA/MAVS for Ubiquitination and Dependent

Total Page:16

File Type:pdf, Size:1020Kb

Degradation VISA/MAVS for Ubiquitination and Dependent Smurf2 Negatively Modulates RIG-I− dependent Antiviral Response by Targeting VISA/MAVS for Ubiquitination and Degradation This information is current as of October 1, 2021. Yu Pan, Rui Li, Jun-Ling Meng, He-Ting Mao, Yu Zhang and Jun Zhang J Immunol published online 11 April 2014 http://www.jimmunol.org/content/early/2014/04/11/jimmun ol.1302632 Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 1, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published April 11, 2014, doi:10.4049/jimmunol.1302632 The Journal of Immunology Smurf2 Negatively Modulates RIG-I–dependent Antiviral Response by Targeting VISA/MAVS for Ubiquitination and Degradation Yu Pan, Rui Li, Jun-Ling Meng, He-Ting Mao, Yu Zhang, and Jun Zhang VISA (also known as MAVS, Cardif, IPS-1) is the essential adaptor protein for virus-induced activation of IFN regulatory factors 3 and 7 and production of type I IFNs. Understanding the regulatory mechanisms for VISA will provide detailed insights into the positive or negative regulation of innate immune responses. In this study, we identified Smad ubiquitin regulatory factor (Smurf) 2, one of the Smad ubiquitin regulator factor proteins, as an important negative regulator of virus-triggered type I IFN signaling, which targets at the VISA level. Overexpression of Smurf2 inhibits virus-induced IFN-b and IFN-stimulated response element activation. The E3 ligase defective mutant Smurf2/C716A loses the ability to suppress virus-induced type I IFN signaling, suggesting that the negative regulation is dependent on the ubiquitin E3 ligase activity of Smurf2. Further studies demonstrated Downloaded from that Smurf2 interacted with VISA and targeted VISA for K48-linked ubiquitination, which promoted the degradation of VISA. Consistently, knockout or knockdown of Smurf2 expression therefore promoted antiviral signaling, which was correlated with the increase in protein stability of VISA. Our findings suggest that Smurf2 is an important nonredundant negative regulator of virus- triggered type I IFN signaling by targeting VISA for K48-linked ubiquitination and degradation. The Journal of Immunology, 2014, 192: 000–000. http://www.jimmunol.org/ hen invaded by viruses, host pattern recognition Antiviral innate immunity is positively or negatively regulated at receptors such as the TLRs and the retinoic acid–in- multiple levels to ensure appropriate response is initiated (10). W duced gene I (RIG-I)–like receptors (RLRs) sense Ubiquitination is an important posttranscriptional modification in viral nucleic acids and initiate a series of signaling events that lead this process. The cascade involves the stepwise action of three to production of type I IFNs and proinflammatory cytokines (1). enzymes: ubiquitin activating enzyme (E1), ubiquitin-conjugating RIG-I and melanoma differentiation–associated gene 5 (MDA-5), enzyme (E2), and a ubiquitin ligase (E3) (11). E3s provide sub- members of the RIG-I–like receptors, are cytoplasmic RNA sen- strate specificity and are broadly categorized into two families: sors that recognize distinct types of RNA viruses. RIG-I recog- homologous to the E6-accessory protein C terminus (HECT) do- by guest on October 1, 2021 nizes short dsRNA and 59-triphosphate panhandle RNA, whereas main E3 ubiquitin ligases and RING-type E3 ligases (12). Lysine MDA-5 binds to long dsRNA (2–4). Upon binding to viral RNA, 48 (K48)–linked polyubiquitination usually targets proteins for both RIG-I and MDA-5 signal through the common mitochondrial proteasomal degradation, which is essential in constraint of sig- adaptor protein VISA (also known as MAVS, IPS-1, and Cardif) naling to prevent the detrimental effects of excessive responses on (5–8). VISA further activates the noncanonical IkB kinase (IKK) the host. Both HECT and RING domain E3 ubiquitin ligases have family members TANK-binding kinase 1 (TBK1) and IKKε, been reported to function as important negative regulators in an- which phosphorylate and activate IFN regulatory factor (IRF) 3 or/ tiviral immune responses. The RING-type E3 ligase RNF125 can and IRF7 for type I IFN responses. It also activates canonical IKK ubiquitinate and induce degradation of MDA-5, RIG-I, and VISA to molecules for NF-kB activation for production of proinflammatory inhibit RIG-I–like helicase–mediated responses (13). RNF5 reg- cytokines (5–9). ulates antiviral responses by mediating ubiquitination and degra- dation of the adaptor protein MITA (also known as STING, ERIS) (14). The HECT domain containing ubiquitin ligase AIP4 (Itch in Department of Immunology, School of Basic Medical Sciences, Key Laboratory of mice) promotes the ubiquitination and degradation of VISA in Medical Immunology (Ministry of Health), Peking University Health Science Center, Beijing 100191, People’s Republic of China collaboration with poly(rC) binding protein (PCBP) 2 (15). Received for publication September 30, 2013. Accepted for publication March 5, Smad ubiquitin regulatory factor (Smurf) 1 and Smurf2 belong to 2014. HECT type E3 ubiquitin ligases. Smurfs contain an N-terminal C2 This work was supported by National Basic Research Program of China Grants domain for membrane binding, a central region containing two or 2011CB946103 and 2010CB945300, as well as by the Program for New Century three WW domains for protein–protein interaction, and a C-ter- Excellent Talents in University (to J.Z.). minal HECT domain for ubiquitin protein ligation (16). They were Address correspondence and reprint requests to Dr. Jun Zhang, Peking University Health Science Center, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, first implicated in Smad degradation. Smurf1 and Smurf2 can People’s Republic of China. E-mail address: [email protected] bind to TGF-b family receptors via the inhibitory Smads, Smad6 Abbreviations used in this article: HA, hemagglutinin; HECT, homologous to the and Smad7, to induce their ubiquitin-dependent degradation (17). E6-accessory protein C terminus; IKK, IkB kinase; IRF, IFN regulatory factor; ISRE, Recently, diverse substrates were reported for Smurf2, including IFN-stimulated response element; MDA-5, melanoma differentiation–associated gene 5; PCBP, poly(rC) binding protein; poly(I:C), polyinosinic–polycytidylic acid; Runx2, Rap1B, Smurf1, and Id1, suggesting that Smurf2 may RIG-I, retinoic acid–induced gene I; RLR, RIG-I–like receptor; SeV, Sendai virus; be involved in many biological processes (18–20). siRNA, small interfering RNA; Smurf, Smad ubiquitin regulatory factor; TBK1, In this study, we identified Smurf2 as a novel negative regulator TANK-binding kinase 1; WT, wild-type. in RIG-I–mediated antiviral signaling. Overexpression of Smurf2 Copyright Ó 2014 by The American Association of Immunologists, Inc. 0022-1767/14/$16.00 inhibited Sendai virus (SeV) or polyinosinic–polycytidylic acid www.jimmunol.org/cgi/doi/10.4049/jimmunol.1302632 2 NEGATIVE REGULATION OF VIRUS-INDUCED SIGNALING BY Smurf2 [poly(I:C)]–induced IFN-stimulated response element (ISRE) and 59-TGGAAAGGGTAAGACCGTCCT-39,reverse,59-GGTGTCCGTGACTAA- IFN-b activation, whereas knockout or knockdown of Smurf2 CTCCAT-39;mouseIfnb1,forward,59-GGCAGTGTAACTCTTCTGCAT-39, 9 9 exerted the opposite effects and promoted SeV-induced signaling. reverse, 5 -CAGCTCCAAGAAAGGACGAAC-3 . Further studies demonstrated that Smurf2 physically interacted Coimmunoprecipitation and immunoblot analysis with VISA and promoted the K48-linked ubiquitination and For transient transfection and coimmunoprecipitation experiments, degradation of Smurf2. HEK293T cells were transfected for 18 h. Then cells were lysed in lysis buffer containing proteinase inhibitor mixture (Roche) and PMSF. Cell lysates were incubated with 1 mg/ml anti-HA Ab or anti-Flag or control Ig Materials and Methods (IgG) and protein A-Sepharose (GE Healthcare) and resolved by SDS- Cells and reagents PAGE. The blot was then probed with anti-Flag or anti-HA Ab. IRDye HEK293T, HeLa, and MEF cells were cultured with high-glucose DMEM 700–conjugated anti-IgG or HRP-conjugated anti-IgG was used as a sec- (Life Technologies) medium plus 10% heat-inactivated FBS (Life Tech- ondary Ab, and proteins were identified using the Odyssey imaging system nologies) and supplemented with antibiotics (100 U/ml peniclillin, 100 mg/ml or detected by ECL assay. For endogenous coimmunoprecipitation, HeLa streptomycin; Life Technologies). Immortalized Smurf2-deficient and cells were left infected or uninfected by SeV, then the cells were lysed and wild-type (WT) MEF cells were provided by Dr. Hong Zhang (University immunoprecipitated by IgG control or anti-Smurf2 Ab, and then the blots of Massachusetts Medical School). Cells were grown at 37˚C in a humid- were detected by anti-VISA Ab. ified atmosphere with 5%
Recommended publications
  • Activation of the STAT3 Signaling Pathway by the RNA-Dependent RNA Polymerase Protein of Arenavirus
    viruses Article Activation of the STAT3 Signaling Pathway by the RNA-Dependent RNA Polymerase Protein of Arenavirus Qingxing Wang 1,2 , Qilin Xin 3 , Weijuan Shang 1, Weiwei Wan 1,2, Gengfu Xiao 1,2,* and Lei-Ke Zhang 1,2,* 1 State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, hubei, China; [email protected] (Q.W.); [email protected] (W.S.); [email protected] (W.W.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 UMR754, Viral Infections and Comparative Pathology, 50 Avenue Tony Garnier, CEDEX 07, 69366 Lyon, France; [email protected] * Correspondence: [email protected] (G.X.); [email protected] (L.-K.Z.) Abstract: Arenaviruses cause chronic and asymptomatic infections in their natural host, rodents, and several arenaviruses cause severe hemorrhagic fever that has a high mortality in infected humans, seriously threatening public health. There are currently no FDA-licensed drugs available against arenaviruses; therefore, it is important to develop novel antiviral strategies to combat them, which would be facilitated by a detailed understanding of the interactions between the viruses and their hosts. To this end, we performed a transcriptomic analysis on cells infected with arenavirus lymphocytic choriomeningitis virus (LCMV), a neglected human pathogen with clinical significance, and found that the signal transducer and activator of transcription 3 (STAT3) signaling pathway was activated. A further investigation indicated that STAT3 could be activated by the RNA-dependent RNA polymerase L protein (Lp) of LCMV. Our functional analysis found that STAT3 cannot affect Citation: Wang, Q.; Xin, Q.; Shang, LCMV multiplication in A549 cells.
    [Show full text]
  • PLEKHO1 Knockdown Inhibits RCC Cell Viability in Vitro and in Vivo, Potentially by the Hippo and MAPK/JNK Pathways
    INTERNATIONAL JOURNAL OF ONCOLOGY 55: 81-92, 2019 PLEKHO1 knockdown inhibits RCC cell viability in vitro and in vivo, potentially by the Hippo and MAPK/JNK pathways ZI YU1,2*, QIANG LI3*, GEJUN ZHANG2, CHENGCHENG LV1, QINGZHUO DONG2, CHENG FU1, CHUIZE KONG2 and YU ZENG1 1Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042; 2Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001; 3Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China Received November 17, 2018; Accepted May 17, 2019 DOI: 10.3892/ijo.2019.4819 Abstract. Renal cell carcinoma (RCC) is the most common involved in the serine/threonine-protein kinase hippo and JNK type of kidney cancer. By analysing The Cancer Genome signalling pathways. Together, the results of the present study Atlas (TCGA) database, 16 genes were identified to be suggest that PLEKHO1 may contribute to the development consistently highly expressed in RCC tissues compared with of RCC, and therefore, further study is needed to explore its the matched para-tumour tissues. Using a high-throughput cell potential as a therapeutic target. viability screening method, it was found that downregulation of only two genes significantly inhibited the viability of Introduction 786-O cells. Among the two genes, pleckstrin homology domain containing O1 (PLEKHO1) has never been studied in In 2018, kidney cancer is estimated to be diagnosed in RCC, to the best of our knowledge, and its expression level nearly 403,200 people worldwide and to lead to almost was shown to be associated with the prognosis of patients with 175,000 cancer-related deaths according to the latest data RCC in TCGA dataset.
    [Show full text]
  • Podocyte Specific Knockdown of Klf15 in Podocin-Cre Klf15flox/Flox Mice Was Confirmed
    SUPPLEMENTARY FIGURE LEGENDS Supplementary Figure 1: Podocyte specific knockdown of Klf15 in Podocin-Cre Klf15flox/flox mice was confirmed. (A) Primary glomerular epithelial cells (PGECs) were isolated from 12-week old Podocin-Cre Klf15flox/flox and Podocin-Cre Klf15+/+ mice and cultured at 37°C for 1 week. Real-time PCR was performed for Nephrin, Podocin, Synaptopodin, and Wt1 mRNA expression (n=6, ***p<0.001, Mann-Whitney test). (B) Real- time PCR was performed for Klf15 mRNA expression (n=6, *p<0.05, Mann-Whitney test). (C) Protein was also extracted and western blot analysis for Klf15 was performed. The representative blot of three independent experiments is shown in the top panel. The bottom panel shows the quantification of Klf15 by densitometry (n=3, *p<0.05, Mann-Whitney test). (D) Immunofluorescence staining for Klf15 and Wt1 was performed in 12-week old Podocin-Cre Klf15flox/flox and Podocin-Cre Klf15+/+ mice. Representative images from four mice in each group are shown in the left panel (X 20). Arrows show colocalization of Klf15 and Wt1. Arrowheads show a lack of colocalization. Asterisk demonstrates nonspecific Wt1 staining. “R” represents autofluorescence from RBCs. In the right panel, a total of 30 glomeruli were selected in each mouse and quantification of Klf15 staining in the podocytes was determined by the ratio of Klf15+ and Wt1+ cells to Wt1+ cells (n=6 mice, **p<0.01, unpaired t test). Supplementary Figure 2: LPS treated Podocin-Cre Klf15flox/flox mice exhibit a lack of recovery in proteinaceous casts and tubular dilatation after DEX administration.
    [Show full text]
  • Interferon Regulatory Factor 3-CL, an Isoform of IRF3, Antagonizes Activity of IRF3
    Cellular & Molecular Immunology (2011) 8, 67–74 ß 2011 CSI and USTC. All rights reserved 1672-7681/11 $32.00 www.nature.com/cmi RESEARCH ARTICLE Interferon regulatory factor 3-CL, an isoform of IRF3, antagonizes activity of IRF3 Chunhua Li1,2,3, Lixin Ma2 and Xinwen Chen1 Interferon regulatory factor 3 (IRF3), one member of the IRF family, plays a central role in induction of type I interferon (IFN) and regulation of apoptosis. Controlled activity of IRF3 is essential for its functions. During reverse transcription (RT)-PCR to clone the full-length open reading frame (ORF) of IRF3, we cloned a full-length ORF encoding an isoform of IRF3, termed as IRF3-CL, and has a unique carboxyl-terminus of 125 amino acids. IRF3-CL is ubiquitously expressed in distinct cell lines. Overexpression of IRF3-CL inhibits Sendai virus (SeV)-triggered induction of IFN-b and SeV-induced and inhibitor of NF-kB kinase-e (IKKe)-mediated nuclear translocation of IRF3. When IKKe is overexpressed, IRF3-CL is associated with IRF3. These results suggest that IRF3-CL, the alternative splicing isoform of IRF-3, may function as a negative regulator of IRF3. Cellular & Molecular Immunology (2011) 8, 67–74; doi:10.1038/cmi.2010.55; published online 6 December 2010 Keywords: interferon regulatory factor 3; negative regulation; splicing variant INTRODUCTION A single gene is capable of generating multiple transcripts from a The interferon regulatory factor (IRF) family of transcriptional factors common mRNA precursor through alternative splicing, which may plays versatile roles in many biological processes, including innate and produce distinct protein isoforms with diverse and even antagonistic adaptive immune responses, cell growth control, apoptosis and functions.
    [Show full text]
  • Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment.
    [Show full text]
  • Activation of Smad Transcriptional Activity by Protein Inhibitor of Activated STAT3 (PIAS3)
    Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3) Jianyin Long*†‡, Guannan Wang*†‡, Isao Matsuura*†‡, Dongming He*†‡, and Fang Liu*†‡§ *Center for Advanced Biotechnology and Medicine, †Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, and ‡Cancer Institute of New Jersey, 679 Hoes Lane, Piscataway, NJ 08854 Communicated by Allan H. Conney, Rutgers, The State University of New Jersey, Piscataway, NJ, November 17, 2003 (received for review August 22, 2003) Smad proteins play pivotal roles in mediating the transforming of many transcription factors through distinct mechanisms. growth factor ␤ (TGF-␤) transcriptional responses. We show in this PIAS1 and PIAS3 bind and inhibit STAT1 and STAT3 DNA- report that PIAS3, a member of the protein inhibitor of activated binding activities, respectively (19, 20). PIASx␣ and PIASx␤ STAT (PIAS) family, activates TGF-␤͞Smad transcriptional re- were identified through interactions with the androgen receptor sponses. PIAS3 interacts with Smad proteins, most strongly with and the homeodomain protein Msx2, respectively (21, 22). Smad3. PIAS3 and Smad3 interact with each other at the endog- PIASx␣ and PIASx␤ inhibit IL12-mediated and STAT4- enous protein level in mammalian cells and also in vitro, and the dependent gene activation (23). PIAS1, PIAS3, PIASx␣, and association occurs through the C-terminal domain of Smad3. We PIASx␤ also regulate transcriptional activation by various ste- further show that PIAS3 can interact with the general coactivators roid receptors (21, 24–26). PIASy has been shown to antagonize p300͞CBP, the first evidence that a PIAS protein can associate with the activities of STAT1 (27), androgen receptor (28), p53 (29), p300͞CBP.
    [Show full text]
  • IRF8 Regulates Gram-Negative Bacteria–Mediated NLRP3 Inflammasome Activation and Cell Death
    IRF8 Regulates Gram-Negative Bacteria− Mediated NLRP3 Inflammasome Activation and Cell Death This information is current as Rajendra Karki, Ein Lee, Bhesh R. Sharma, Balaji Banoth of September 25, 2021. and Thirumala-Devi Kanneganti J Immunol published online 23 March 2020 http://www.jimmunol.org/content/early/2020/03/20/jimmun ol.1901508 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2020/03/20/jimmunol.190150 Material 8.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published March 23, 2020, doi:10.4049/jimmunol.1901508 The Journal of Immunology IRF8 Regulates Gram-Negative Bacteria–Mediated NLRP3 Inflammasome Activation and Cell Death Rajendra Karki,*,1 Ein Lee,*,†,1 Bhesh R. Sharma,*,1 Balaji Banoth,* and Thirumala-Devi Kanneganti* Inflammasomes are intracellular signaling complexes that are assembled in response to a variety of pathogenic or physiologic stimuli to initiate inflammatory responses.
    [Show full text]
  • RNF11 at the Crossroads of Protein Ubiquitination
    biomolecules Review RNF11 at the Crossroads of Protein Ubiquitination Anna Mattioni, Luisa Castagnoli and Elena Santonico * Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy; [email protected] (A.M.); [email protected] (L.C.) * Correspondence: [email protected] Received: 29 September 2020; Accepted: 8 November 2020; Published: 11 November 2020 Abstract: RNF11 (Ring Finger Protein 11) is a 154 amino-acid long protein that contains a RING-H2 domain, whose sequence has remained substantially unchanged throughout vertebrate evolution. RNF11 has drawn attention as a modulator of protein degradation by HECT E3 ligases. Indeed, the large number of substrates that are regulated by HECT ligases, such as ITCH, SMURF1/2, WWP1/2, and NEDD4, and their role in turning off the signaling by ubiquitin-mediated degradation, candidates RNF11 as the master regulator of a plethora of signaling pathways. Starting from the analysis of the primary sequence motifs and from the list of RNF11 protein partners, we summarize the evidence implicating RNF11 as an important player in modulating ubiquitin-regulated processes that are involved in transforming growth factor beta (TGF-β), nuclear factor-κB (NF-κB), and Epidermal Growth Factor (EGF) signaling pathways. This connection appears to be particularly significant, since RNF11 is overexpressed in several tumors, even though its role as tumor growth inhibitor or promoter is still controversial. The review highlights the different facets and peculiarities of this unconventional small RING-E3 ligase and its implication in tumorigenesis, invasion, neuroinflammation, and cancer metastasis. Keywords: Ring Finger Protein 11; HECT ligases; ubiquitination 1.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • E3 Ubiquitin Ligases: Key Regulators of Tgfβ Signaling in Cancer Progression
    International Journal of Molecular Sciences Review E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression Abhishek Sinha , Prasanna Vasudevan Iyengar and Peter ten Dijke * Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; [email protected] (A.S.); [email protected] (P.V.I.) * Correspondence: [email protected]; Tel.: +31-71-526-9271 Abstract: Transforming growth factor β (TGFβ) is a secreted growth and differentiation factor that influences vital cellular processes like proliferation, adhesion, motility, and apoptosis. Regulation of the TGFβ signaling pathway is of key importance to maintain tissue homeostasis. Perturbation of this signaling pathway has been implicated in a plethora of diseases, including cancer. The effect of TGFβ is dependent on cellular context, and TGFβ can perform both anti- and pro-oncogenic roles. TGFβ acts by binding to specific cell surface TGFβ type I and type II transmembrane receptors that are endowed with serine/threonine kinase activity. Upon ligand-induced receptor phosphorylation, SMAD proteins and other intracellular effectors become activated and mediate biological responses. The levels, localization, and function of TGFβ signaling mediators, regulators, and effectors are highly dynamic and regulated by a myriad of post-translational modifications. One such crucial modification is ubiquitination. The ubiquitin modification is also a mechanism by which crosstalk with other signaling pathways is achieved. Crucial effector components of the ubiquitination cascade include the very diverse family of E3 ubiquitin ligases. This review summarizes the diverse roles of E3 ligases that act on TGFβ receptor and intracellular signaling components.
    [Show full text]
  • Identification of Candidate Genes and Pathways Associated with Obesity
    animals Article Identification of Candidate Genes and Pathways Associated with Obesity-Related Traits in Canines via Gene-Set Enrichment and Pathway-Based GWAS Analysis Sunirmal Sheet y, Srikanth Krishnamoorthy y , Jihye Cha, Soyoung Choi and Bong-Hwan Choi * Animal Genome & Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea; [email protected] (S.S.); [email protected] (S.K.); [email protected] (J.C.); [email protected] (S.C.) * Correspondence: [email protected]; Tel.: +82-10-8143-5164 These authors contributed equally. y Received: 10 October 2020; Accepted: 6 November 2020; Published: 9 November 2020 Simple Summary: Obesity is a serious health issue and is increasing at an alarming rate in several dog breeds, but there is limited information on the genetic mechanism underlying it. Moreover, there have been very few reports on genetic markers associated with canine obesity. These studies were limited to the use of a single breed in the association study. In this study, we have performed a GWAS and supplemented it with gene-set enrichment and pathway-based analyses to identify causative loci and genes associated with canine obesity in 18 different dog breeds. From the GWAS, the significant markers associated with obesity-related traits including body weight (CACNA1B, C22orf39, U6, MYH14, PTPN2, SEH1L) and blood sugar (PRSS55, GRIK2), were identified. Furthermore, the gene-set enrichment and pathway-based analysis (GESA) highlighted five enriched pathways (Wnt signaling pathway, adherens junction, pathways in cancer, axon guidance, and insulin secretion) and seven GO terms (fat cell differentiation, calcium ion binding, cytoplasm, nucleus, phospholipid transport, central nervous system development, and cell surface) which were found to be shared among all the traits.
    [Show full text]
  • Tgfβ-Regulated Gene Expression by Smads and Sp1/KLF-Like Transcription Factors in Cancer VOLKER ELLENRIEDER
    ANTICANCER RESEARCH 28 : 1531-1540 (2008) Review TGFβ-regulated Gene Expression by Smads and Sp1/KLF-like Transcription Factors in Cancer VOLKER ELLENRIEDER Signal Transduction Laboratory, Internal Medicine, Department of Gastroenterology and Endocrinology, University of Marburg, Marburg, Germany Abstract. Transforming growth factor beta (TGF β) controls complex induces the canonical Smad signaling molecules which vital cellular functions through its ability to regulate gene then translocate into the nucleus to regulate transcription (2). The expression. TGFβ binding to its transmembrane receptor cellular response to TGF β can be extremely variable depending kinases initiates distinct intracellular signalling cascades on the cell type and the activation status of a cell at a given time. including the Smad signalling and transcription factors and also For instance, TGF β induces growth arrest and apoptosis in Smad-independent pathways. In normal epithelial cells, TGF β healthy epithelial cells, whereas it can also promote tumor stimulation induces a cytostatic program which includes the progression through stimulation of cell proliferation and the transcriptional repression of the c-Myc oncogene and the later induction of an epithelial-to-mesenchymal transition of tumor induction of the cell cycle inhibitors p15 INK4b and p21 Cip1 . cells (1, 3). In the last decade it has become clear that both the During carcinogenesis, however, many tumor cells lose their tumor suppressing and the tumor promoting functions of TGF β ability to respond to TGF β with growth inhibition, and instead, are primarily regulated on the level of gene expression through activate genes involved in cell proliferation, invasion and Smad-dependent and -independent mechanisms (1, 2, 4).
    [Show full text]