Solving the Nonstationary Richards Equation with Adaptive Hp-FEM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physics Editor Mac Crack Appl
1 / 2 Physics Editor Mac Crack Appl This is a list of software packages that implement the finite element method for solving partial differential equations. Software, Features, Developer, Version, Released, License, Price, Platform. Agros2D, Multiplatform open source application for the solution of physical ... Yves Renard, Julien Pommier, 5.0, 2015-07, LGPL, Free, Unix, Mac OS X, .... For those who prefer to run Origin as an application on your Mac desktop without a reboot of the Mac OS, we suggest the following virtualization software:.. While having the same core (Unigine Engine), there are 3 SDK editions for ... Turnkey interactive 3D app development; Consulting; Software development; 3D .... Top Design Engineering Software: The 50 Best Design Tools and Apps for ... design with the intelligence of 3D direct modeling,” for Windows, Linux, and Mac users. ... COMSOL is a platform for physics-based modeling and simulation that serves as ... and tools for electrical, mechanical, fluid flow, and chemical applications .... Experience the world's most realistic and professional digital art & painting software for Mac and Windows, featuring ... Your original serial number will be required. ... Easy-access panels let you instantly adjust how paint is applied to the brush and how the paint ... 4 physical cores/8 logical cores or higher (recommended).. A dynamic soft-body physics vehicle simulator capable of doing just about anything. ... Popular user-defined tags for this product: Simulation .... Easy-to-Use, Powerful Tools for 3D Animation, GPU Rendering, VFX and Motion Design. ... Trapcode Suite 16 With New Physics, Magic Bullet Suite 14 With New Color Workflows Now ... Maxon Cinema 4D Immediately Available for M1-Powered Macs image .. -
Massively Parallel Quadratic Programming Solvers with Applications in Mechanics
Massively Parallel Quadratic Programming Solvers with Applications in Mechanics Ing. V´aclav Hapla Doctoral Thesis Department of Applied Mathematics Faculty of Electrical Engineering and Computer Science VSBˇ – Technical University of Ostrava Ostrava 2016 Abstract This thesis focuses on practical solution of large-scale contact problems of structure mechanics by means of a derived quadratic programming (QP) formulation. An approach proposed by professor Dost´al, combining a FETI-type non-overlapping domain decomposition method, the SMALBE algorithm based on augmented Lagrangians, and the MPRGP algorithm belonging to active set methods, has been adopted. This approach enjoys theoretically supported numerical scalability and a favourable potential for parallel scalability. The thesis consists of two parts: Background and Implementation. Background is devoted to rather theoretical aspects of QP and FETI, although tightly con- nected to practical implementation. Original topics include QP transforms, implicit orthonor- malization of equality constraints, and a minor modification of SMALBE shortening its termi- nation phase considerably. Second part, Implementation, deals with the massively parallel implementation of the afore- mentioned approach within PERMON, a new set of software libraries established by the author. The most important part, PERMON Solver Core, is formed mainly by the general-purpose QP solver PermonQP, and its extension PermonFLLOP providing support for domain decomposi- tion. These libraries make use of and extend PETSc, an open source software framework for numerical computing. Performance of PERMON is demonstrated on several numerical experi- ments. Keywords quadratic programming, QP, domain decomposition methods, FETI, augmented Lagrangian, SMALBE, MPRGP, contact problems, structure mechanics, PERMON, PermonQP, Permon- FLLOP, PETSc Abstrakt Tato dizertaˇcn´ıpr´ace se zamˇeˇruje na praktick´eˇreˇsen´ırozs´ahl´ych kontaktn´ıch ´uloh struktur´aln´ı mechaniky pˇres odvozenou ´ulohu kvadratick´eho programov´an´ı(QP). -
List of Finite Element Software Packages Wikipedia, the Free Encyclopedia List of Finite Element Software Packages from Wikipedia, the Free Encyclopedia
12/15/2015 List of finite element software packages Wikipedia, the free encyclopedia List of finite element software packages From Wikipedia, the free encyclopedia This is a list of software packages that implement the finite element method for solving partial differential equations or aid in the pre and postprocessing of finite element models. Free/Open source https://en.wikipedia.org/wiki/List_of_finite_element_software_packages 1/8 12/15/2015 List of finite element software packages Wikipedia, the free encyclopedia Operating Name Description License System Multiplatform open source application for the solution of Linux, Agros2D GNU GPL physical problems Windows based on the Hermes library It is an Open Source FEA project. The solver uses a partially compatible ABAQUS Linux, CalculiX file format. The GNU GPL Windows pre/postprocessor generates input data for many FEA and CFD applications is an Open Source software package for Civil and Structural Engineering finite Linux, Code Aster element analysis and GNU GPL FreeBSD numeric simulation in structural mechanics which is written in Python and Fortran is an Open Source software package C/C++ hp Mac OS X, Concepts GNU GPL FEM/DGFEM/BEM Windows library for elliptic equations Comprehensive set of tools for finite QPL up to element codes, release 7.2, Linux, Unix, deal.II scaling from laptops LGPL after Mac OS X, to clusters with that Windows 10,000+ cores. Written in C++. GPL Distributed and Version 2 Unified Numerics Linux, Unix, DUNE with Run Environment, written Mac OS X Time -
Hermes Documentation Release 2.0
Hermes Documentation Release 2.0 hp-FEM group February 18, 2013 2 CONTENTS 1 Introduction 1 2 Hermes Overview 3 2.1 About Hermes............................................3 2.2 Mathematical Background......................................3 2.3 Citing Hermes............................................7 3 Installation 11 3.1 Linux................................................. 11 3.2 Windows............................................... 12 3.3 Mac OS................................................ 17 3.4 Installation of Matrix Solvers.................................... 18 3.5 Installation of ExodusII and NetCDF libraries............................ 22 4 Getting Started 25 4.1 First steps............................................... 25 4.2 Hermes typical example structure.................................. 25 4.3 Introduction to advanced C++ object-oriented features....................... 32 4.4 Hermes C++ object model - deriving your own specialized classes................. 32 5 Extended documentation 39 5.1 Hermes Documentation overview.................................. 39 5.2 Hermes Tutorial........................................... 40 5.3 Examples Documentation...................................... 40 6 Collaboration 41 6.1 Collaboration via Github....................................... 41 1 2 CHAPTER ONE INTRODUCTION Thank you for your interest in Hermes! Hermes is a C++ library for rapid development of adaptive hp-FEM and hp-DG solvers, with emphasis on nonlin- ear, time-dependent, multi-physics problems. This document is organized as follows: • Section 1 provides general information about Hermes and the computational methods it uses, and how to install Hermes on various hardware platforms. • Section 2 is the Getting Started Guide - to get you started in no time. • Section 3 is the extended documentation section, you will find developers documentation in Doxygen, as well as step-by-step user documentation in tutorials and advanced examples. • Section 4 explains how to use Git and Github, and how you can contribute to the project if interested. -
Agros2d Agros2d - Hermes Agros2d Deal.II Agros2d - Deal.II Engineering Examples P
P. Karban, F. Mach, L. Korous, P. Kus, I. Dolezel: Code Agros and Possibilities of its Use , for Modeling and Design Code Agros and Possibilities of its Use for Modeling and Design Current Features and Outlook to the Future P. Karban, F. Mach, L. Korous, P. Kus, I. Dolezel Department of Theory of Electrical Engineering Regional Innovation Centre for Electrical Engineering Faculty of Electrical Engineering, University of West Bohemia Czech Republic July 2, 2015, College Station 1/28 Contents University of West Bohemia Basic characteristic of the application Agros2D Agros2D - Hermes Agros2D deal.II Agros2D - deal.II Engineering Examples P. Karban, F. Mach, L. Korous, P. Kus, I. Dolezel: Code Agros and Possibilities of its Use , for Modeling and Design Contents 1 University of West Bohemia 2 Basic characteristic of the application 3 Agros Product Suite { stable version (Hermes library) 4 Agros Product Suite { development version (deal.II library) 5 Engineering Examples Coupled problems { Thermoelastic actuator 2/28 Contents University of West Bohemia Basic characteristic of the application Agros2D Agros2D - Hermes Agros2D deal.II Agros2D - deal.II Engineering Examples P. Karban, F. Mach, L. Korous, P. Kus, I. Dolezel: Code Agros and Possibilities of its Use , for Modeling and Design University of West Bohemia 1 University of West Bohemia 2 Basic characteristic of the application 3 Agros Product Suite { stable version (Hermes library) 4 Agros Product Suite { development version (deal.II library) 5 Engineering Examples Coupled problems { Thermoelastic actuator 3/28 Contents University of West Bohemia Basic characteristic of the application Agros2D Agros2D - Hermes Agros2D deal.II Agros2D - deal.II Engineering Examples P. -
Finite Elements ০ Advance Higher-Order Finite Elements Method ০ Multi-Mesh Assembling ০ Automatic Hp-Adaptivity ০ Arbitrary Level Hanging Nodes
Open way for computing Agros2D Product Suite Agros2D is a multiplatform application for the solution of physical fields and coupled problems developed by the group at the University of West Bohemia in Pilsen in Czech Republic. The code is based on a fully adaptive higher-order finite element method containing the most advanced numerical algorithms for the numerical pro- cessing of systems of second-order partial differential equations. It is characterized by several unique features such as work with hanging nodes of any level, multimesh technology (each physical field can be cal- culated on a different mesh generally varying in time) or a possibility of combining triangular, quadrilateral and curved elements. The application is licensed under the GNU GPLv2. ০ Multiplatform C++ application (GNU Linux, Windows) ০ Open Source software distributed under GNU GPLv2 ০ Development since 2009 ০ Collaborations with other universities and industrial partners Supported Physical Fields Physical field Steady State Harmonic Transient Analysis Analysis Electrostatics x Electric Currents x x Magnetic Fields x x x Radio Frequency Field x x Heat Transfer x x Structural Mechanics x Fluid Flow x x Porous Media and Subsurface x x Flow Acoustics x x General Coefficient Form PDEs x x x Coupling possibilities of physical fields Applications Computation Electromagnetics ০ Electromechanical transducers, actuators and sensors ০ Electrical drives and machines, transformers ০ Electrostatic micro actuators and sensors ০ Non-destructive eddy currents testing ০ Induction -
„Computational Physics Ii“
Heiki Kasemägi (Tartu Ülikool), 2013 E-kursuse „COMPUTATIONAL PHYSICS II“ materjalid Aine maht 3 EAP Heiki Kasemägi (Tartu Ülikool), 2013 Computational Physics II Practical Work Comsol Multiphysics Introduction Heiki Kasemagi¨ October 17, 2013 Contents Introduction 2 Computer Simulations . .2 COMSOL Multiphysics ..................................2 Passing the Practical Work . .3 References . .3 Example: the Busbar 4 COMSOL Multiphysics Desktop . .4 Eelctrical Heating in a Busbar . .4 Model Wizard ........................................6 Global Definitions ......................................7 Creating the Geometry ...................................9 Importing the Geometry from the File . 23 Material . 25 Physics . 27 Mesh............................................. 30 Simulation . 32 Results . 32 Generating the Images . 35 1 Introduction Computer Simulations The computer simulation has become a daily research method in the science and engineering. It has particularly important rôle in the development or optimization of the new products, design solutions of compunds etc. Nowadays, a wide range of simulation method are available starting from basic programming languages upto several high-level packages containing the most advanced simulation methods. Although each of them has the unique properties, the one questions or concern ties them all together: whether the results can be trusted? In order to consider the facts, which makes the software trustworthy, it is useful to keep in mind the following objective: goal is a model that accurately