Hawai`I's Sea Creatures P. 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
[Oceanography and Marine Biology - an Annual Review] R. N
OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 7044_C000.fm Page ii Tuesday, April 25, 2006 1:51 PM OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 Editors R.N. Gibson Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] R.J.A. Atkinson University Marine Biology Station Millport University of London Isle of Cumbrae, Scotland [email protected] J.D.M. Gordon Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] Founded by Harold Barnes Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by R.N. Gibson, R.J.A. Atkinson and J.D.M. Gordon CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-7044-2 (Hardcover) International Standard Book Number-13: 978-0-8493-7044-1 (Hardcover) International Standard Serial Number: 0078-3218 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the valid- ity of all materials or for the consequences of their use. -
Tropical Range Extension for the Temperate, Endemic South-Eastern Australian Nudibranch Goniobranchus Splendidus (Angas, 1864)
diversity Article Tropical Range Extension for the Temperate, Endemic South-Eastern Australian Nudibranch Goniobranchus splendidus (Angas, 1864) Nerida G. Wilson 1,2,*, Anne E. Winters 3 and Karen L. Cheney 3 1 Western Australian Museum, 49 Kew Street, Welshpool WA 6106, Australia 2 School of Animal Biology, University of Western Australia, Crawley 6009 WA, Australia 3 School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia; [email protected] (A.E.W.); [email protected] (K.L.C.) * Correspondence: [email protected]; Tel.: +61-08-9212-3844 Academic Editor: Michael Wink Received: 25 April 2016; Accepted: 15 July 2016; Published: 22 July 2016 Abstract: In contrast to many tropical animals expanding southwards on the Australian coast concomitant with climate change, here we report a temperate endemic newly found in the tropics. Chromodorid nudibranchs are bright, colourful animals that rarely go unnoticed by divers and underwater photographers. The discovery of a new population, with divergent colouration is therefore significant. DNA sequencing confirms that despite departures from the known phenotypic variation, the specimen represents northern Goniobranchus splendidus and not an unknown close relative. Goniobranchus tinctorius represents the sister taxa to G. splendidus. With regard to secondary defences, the oxygenated terpenes found previously in this specimen are partially unique but also overlap with other G. splendidus from southern Queensland (QLD) and New South Wales (NSW). The tropical specimen from Mackay contains extracapsular yolk like other G. splendidus. This previously unknown tropical population may contribute selectively advantageous genes to cold-water species threatened by climate change. -
Phylum MOLLUSCA Chitons, Bivalves, Sea Snails, Sea Slugs, Octopus, Squid, Tusk Shell
Phylum MOLLUSCA Chitons, bivalves, sea snails, sea slugs, octopus, squid, tusk shell Bruce Marshall, Steve O’Shea with additional input for squid from Neil Bagley, Peter McMillan, Reyn Naylor, Darren Stevens, Di Tracey Phylum Aplacophora In New Zealand, these are worm-like molluscs found in sandy mud. There is no shell. The tiny MOLLUSCA solenogasters have bristle-like spicules over Chitons, bivalves, sea snails, sea almost the whole body, a groove on the underside of the body, and no gills. The more worm-like slugs, octopus, squid, tusk shells caudofoveates have a groove and fewer spicules but have gills. There are 10 species, 8 undescribed. The mollusca is the second most speciose animal Bivalvia phylum in the sea after Arthropoda. The phylum Clams, mussels, oysters, scallops, etc. The shell is name is taken from the Latin (molluscus, soft), in two halves (valves) connected by a ligament and referring to the soft bodies of these creatures, but hinge and anterior and posterior adductor muscles. most species have some kind of protective shell Gills are well-developed and there is no radula. and hence are called shellfish. Some, like sea There are 680 species, 231 undescribed. slugs, have no shell at all. Most molluscs also have a strap-like ribbon of minute teeth — the Scaphopoda radula — inside the mouth, but this characteristic Tusk shells. The body and head are reduced but Molluscan feature is lacking in clams (bivalves) and there is a foot that is used for burrowing in soft some deep-sea finned octopuses. A significant part sediments. The shell is open at both ends, with of the body is muscular, like the adductor muscles the narrow tip just above the sediment surface for and foot of clams and scallops, the head-foot of respiration. -
(Platyhelminthes, Turbellaria, Polycladida) from Karachi Coast
International Journal of Research Studies in Zoology (IJRSZ) Volume 2, Issue 2, 2016, PP 23-28 ISSN 2454-941X http://dx.doi.org/10.20431/2454-941X.0202005 www.arcjournals.org Short Notes on Marine Polycladids (Platyhelminthes, Turbellaria, Polycladida) from Karachi Coast Quddusi B. Kazmi Marine Reference Collection and Resource Centre, University of Karachi, Pakistan Abstract: Ten new records of marine polycladid worms are subject of the present notes from Pakistan. Each species is photographed and discussed briefly. 1. INTRODUCTION The Polycladida represents a highly diverse clade of free-living marine turbellarian flatworms. They are known from the littoral to the sub littoral zone. Although not related to molluscs, they are often mistaken for sea slugs because of their brilliant colour patterns. There is little known about the biodiversity of polycladid flatworms from the Indian Ocean. In Pakistan, studies on polycladids have remained neglected, first report was by Kazmi (1996), then Fatima and Barkati (1999) as Stylochoplanapallida reported Emprosthopharynxpallida (Quatrefage,1845) and latelyKazmi and Naushaba (2013) listed 4 unidentified species or only identified to genus level, of these , their unspecified genus Pseudocerosis now identified as belonging to Pseudocerossusanae Newman and Anderson ,1997 ,an undetermined pseudocertid is now named as Tytthosoceroslizardensis Newman and Cannon,1996 and another undetermined genus is given as Cestoplanarubrocinta (Grube, 1840) ,more species are added here;all are briefly described here -
THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject. -
CREATURE CORREX Next Printing for Jane 03-12-2014
HAWAII'S SEA CREATURE CORRECTIONS for 7th printing p. 34: BICOLOR GORGONIAN Acabaria Melithaea bicolor (Nutting, 1908) 2nd line from bottom: Known only from Hawaii Central and Western Pacific. Previously Acabaria bicolor. p. 37: DUSKY ANEMONE Anthopleura nigrescens: 2nd line from bottom: The species is reported only from Hawaii and India but is possibly more widespread. Indo-Pacific and Eastern Pacific. p. 56: LOBE CORAL 23 lines from bottom: Jonesius Cherusius triunguiculatus p. 62: BEWICK CORAL Leptastrea bewickensis Veron, Pichon, and Wijsman-Best, 1977 (add "t" at end of "Wijsman-Bes") p. 73: bottom paragraph: Free-living (turbellarian) flatworms remain a poorly known group with about 3,000 4,500 described species worldwide. Only 40-50-60 are documented from Hawai`i; more remain to be discovered and named. Twelve Thirteen species are illustrated here, all belonging to the order Polycladida. See http://www.hawaiisfishes.com/inverts/polyclad_flatworms/ for a more complete listing. p. 74: TRANSLUCENT WHITE PURSE SHELL FLATWORM Pericelis sp. hymanae (Poulter, 1974) Please replace entire text except for three last sentences: · These white flatworms are locally common under stones in shallow areas with moderate wave action, such as Black Point, O`ahu, or Kapalua Bay, Maui. Many have a narrow, brown, midbody stripe anteriorily. They appear to be associated with the Brown Purse Shell, Isognomon perna, (p. 186) and are named for American zoologist Libbie H. Hyman (1888-1969), a specialist in free-living flatworms and the author of a widely-used multivolume text on invertebrates. To almost 2 in. Known only from Hawai`i. Photo: Napili Bay, Maui. -
Table of Contents
ALL INDIA CO-ORDINATED PROJECT ON TAXONOMY OF MOLLUSCA ANNUAL REPORT (December 2016 – May 2018) GUJARAT STATE BOMBAY NATURAL HISTORY SOCIETY Dr. Deepak Apte Director Dr. Dishant Parasharya Dr. Bhavik Patel Scientist – B Scientist – B All India Coordinated Project on Taxonomy – Mollusca , Gujarat State Acknowledgements We are thankful to the Department of Forest and Environment, Government of Gujarat, Mr. G. K. Sinha, IFS HoFF and PCCF (Wildlife) for his guidance and cooperation in the work. We are thankful to then CCF Marine National Park and Sanctuary, Mr. Shyamal Tikader IFS, Mr. S. K. Mehta IFS and their team for the generous support, We take this opportunity to thank the entire team of Marine National Park and Sanctuary. We are thankful to all the colleagues of BNHS who directly or indirectly helped us in our work. We specially thank our field assistant, Rajesh Parmar who helped us in the field work. All India Coordinated Project on Taxonomy – Mollusca , Gujarat State 1. Introduction Gujarat has a long coastline of about 1650 km, which is mainly due to the presence of two gulfs viz. the Gulf of Khambhat (GoKh) and Gulf of Kachchh (GoK). The coastline has diverse habitats such as rocky, sandy, mangroves, coral reefs etc. The southern shore of the GoK in the western India, notified as Marine National Park and Sanctuary (MNP & S), harbours most of these major habitats. The reef areas of the GoK are rich in flora and fauna; Narara, Dwarka, Poshitra, Shivrajpur, Paga, Boria, Chank and Okha are some of these pristine areas of the GoK and its surrounding environs. -
Marine-Flatworms-Of-The-Tropical-Indo-Pacific-Look
Marine Flatworms of the Tropical Indo-Pacific Photographic guide on marine polyclads with 580+ species Andrey Ryanskiy PICTORIAL INDEX TO POLYCLAD FAMILIES AND GENERA PSEUDOCEROTIDAE: ACANTHOZOON - 9 THYSANOZOON - 14 BULACEROS - 16 MAIAZOON - 17 NYMPHOZOON - 17 PHRIKOCEROS - 18 PSEUDOBICEROS - 21 PSEUDOCEROS - 38 EURYLEPTIDAE: CYCLOPORUS - 86 EURYLEPTA - 92 EURYLEPTID - 101 STYLOSTOMUM - 101 DIPOSTHIDAE: PROSTHIOSTOMIDAE: MARITIGRELLA - 102 PROSTHECERAEUS - 105 PERICELIS - 106 ENCHIRIDIUM - 107 CESTOPLANIDAE: BONINIIDAE: LURYMARE - 107 PROSTHIOSTOMUM - 112 CESTOPLANA - 112 BONINIA - 113 PLANOCERIDAE: CALLIOPLANIDAE: PARAPLANOCERA - 115 PLANOCERA - 120 CALLIOPLANA - 121 HOPLOPLANIDAE - 122 STYLOCHIDAE: GNESIOCEROTIDAE: LIMNOSTYLOCHIDAE - 122 ILYELLA - 123 STYLOCHID - 123 ECHINOPLANA - 126 NOTOPLANIDAE: UNIDENTIFIED ACOTYLEANS3 GNESIOCEROS - 126 NOTOPLANA - 127 LEPTOPLANIDAE - 128 - 129 FLATWORMS: BASIC KNOWLEDGE Why are they flat? Polyclads are considered the most primitive bilaterally symmetrical animals (left side mirrors the right). They evolved from hydra-like animals about 550 million years ago. Flatworms have no body cavity other than the gut. Respiratory and blood vessel systems are completely missing and diffusion is used for transport of oxygen inside the body. This constrains flatworms to be flat as possible for maintaining metabolism, since no cell can be too far from the outside, making a flattened body shape necessary. How do they eat? Flatworms/Polyclads have a mouth with pharynx inside: a muscular tube through which the flatworm can suck food. Pharynx may be tubular or ruffled with numerous folds (more details on External Morphology Basics pages) Flatworms are carnivorous, feeding on small invertebrates, suctioning entirely their prey or digesting a part of it. Many species of the Pseudocerotidae family prefer ascidians, sponges, and bryozoans. For feeding, the pharynx protrudes and can be expanded into the individual zooids of colonial ascidians. -
Submission Re Proposed Cooloola World Heritage Area Boundary
Nearshore Marine Biodiversity of the Sunshine Coast, South-East Queensland: Inventory of molluscs, corals and fishes July 2010 Photo courtesy Ian Banks Baseline Survey Report to the Noosa Integrated Catchment Association, September 2010 Lyndon DeVantier, David Williamson and Richard Willan Executive Summary Nearshore reef-associated fauna were surveyed at 14 sites at seven locations on the Sunshine Coast in July 2010. The sites were located offshore from Noosa in the north to Caloundra in the south. The species composition and abundance of corals and fishes and ecological condition of the sites were recorded using standard methods of rapid ecological assessment. A comprehensive list of molluscs was compiled from personal observations, the published literature, verifiable unpublished reports, and photographs. Photographic records of other conspicuous macro-fauna, including turtles, sponges, echinoderms and crustaceans, were also made anecdotally. The results of the survey are briefly summarized below. 1. Totals of 105 species of reef-building corals, 222 species of fish and 835 species of molluscs were compiled. Thirty-nine genera of soft corals, sea fans, anemones and corallimorpharians were also recorded. An additional 17 reef- building coral species have been reported from the Sunshine Coast in previous publications and one additional species was identified from a photo collection. 2. Of the 835 mollusc species listed, 710 species could be assigned specific names. Some of those not assigned specific status are new to science, not yet formally described. 3. Almost 10 % (81 species) of the molluscan fauna are considered endemic to the broader bioregion, their known distribution ranges restricted to the temperate/tropical overlap section of the eastern Australian coast (Central Eastern Shelf Transition). -
Genetic Structure of the Grey Side-Gilled Sea Slug (Pleurobranchaea Maculata) in Coastal Waters of New Zealand
RESEARCH ARTICLE Genetic structure of the grey side-gilled sea slug (Pleurobranchaea maculata) in coastal waters of New Zealand Yeşerin Yõldõrõm1¤*, Marti J. Anderson1,2, Bengt Hansson3, Selina Patel4, Craig D. Millar4, Paul B. Rainey1,5,6 1 New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand, 2 Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand, 3 Department of Biology, a1111111111 Lund University, Lund, Sweden, 4 School of Biological Sciences, University of Auckland, Auckland, New a1111111111 Zealand, 5 Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, PloÈn, a1111111111 Germany, 6 Ecole SupeÂrieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI ParisTech), a1111111111 CNRS UMR 8231, PSL Research University, Paris, France a1111111111 ¤ Current address: Center for Ecology and Evolution in Microbial Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden * [email protected] OPEN ACCESS Abstract Citation: Yõldõrõm Y, Anderson MJ, Hansson B, Patel S, Millar CD, Rainey PB (2018) Genetic Pleurobranchaea maculata is a rarely studied species of the Heterobranchia found through- structure of the grey side-gilled sea slug out the south and western Pacific±and recently recorded in Argentina±whose population (Pleurobranchaea maculata) in coastal waters of genetic structure is unknown. Interest in the species was sparked in New Zealand following New Zealand. PLoS ONE 13(8): e0202197. https:// doi.org/10.1371/journal.pone.0202197 a series of dog deaths caused by ingestions of slugs containing high levels of the neurotoxin tetrodotoxin. Here we describe the genetic structure and demographic history of P. -
Sea Slugs - Divers' Favorites, Taxonomists' Problems
Sea slugs - divers' favorites, taxonomists' problems Jensen, Kathe Published in: Aquatic Science & Management Publication date: 2013 Document version Publisher's PDF, also known as Version of record Document license: Unspecified Citation for published version (APA): Jensen, K. (2013). Sea slugs - divers' favorites, taxonomists' problems. Aquatic Science & Management, 1(2), 100-110. http://ejournal.unsrat.ac.id/index.php/jasm/article/view/7271 Download date: 25. Sep. 2021 Aquatic Science & Management, Vol. 1, No. 2, 100-110 (Oktober 2013) ISSN 2337-4403 Pascasarjana, Universitas Sam Ratulangi e-ISSN 2337-5000 http://ejournal.unsrat.ac.id/index.php/jasm/index jasm-pn00033 Sea slugs – divers’ favorites, taxonomists’ problems Siput laut – disukai para penyelam, masalah bagi para taksonom Kathe R. Jensen Zoological Museum (Natural History Museum of Denmark), Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark E-mail: [email protected] Abstract: Sea slugs, or opisthobranch molluscs, are small, colorful, slow-moving, non-aggressive marine animals. This makes them highly photogenic and therefore favorites among divers. The highest diversity is found in tropical waters of the Indo-West Pacific region. Many illustrated guidebooks have been published, but a large proportion of species remain unidentified and possibly new to science. Lack of funding as well as expertise is characteristic for taxonomic research. Most taxonomists work in western countries whereas most biodiversity occurs in developing countries. Cladistic analysis and molecular studies have caused fundamental changes in opisthobranch classification as well as “instability” of scientific names. Collaboration between local and foreign scientists, amateurs and professionals, divers and academics can help discovering new species, but the success may be hampered by lack of funding as well as rigid regulations on collecting and exporting specimens for taxonomic research. -
Photographic Identification Guide to Some Common Marine Invertebrates of Bocas Del Toro, Panama
Caribbean Journal of Science, Vol. 41, No. 3, 638-707, 2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Photographic Identification Guide to Some Common Marine Invertebrates of Bocas Del Toro, Panama R. COLLIN1,M.C.DÍAZ2,3,J.NORENBURG3,R.M.ROCHA4,J.A.SÁNCHEZ5,A.SCHULZE6, M. SCHWARTZ3, AND A. VALDÉS7 1Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama. 2Museo Marino de Margarita, Boulevard El Paseo, Boca del Rio, Peninsula de Macanao, Nueva Esparta, Venezuela. 3Smithsonian Institution, National Museum of Natural History, Invertebrate Zoology, Washington, DC 20560-0163, USA. 4Universidade Federal do Paraná, Departamento de Zoologia, CP 19020, 81.531-980, Curitiba, Paraná, Brazil. 5Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1E No 18A – 10, Bogotá, Colombia. 6Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA. 7Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. This identification guide is the result of intensive sampling of shallow-water habitats in Bocas del Toro during 2003 and 2004. The guide is designed to aid in identification of a selection of common macroscopic marine invertebrates in the field and includes 95 species of sponges, 43 corals, 35 gorgonians, 16 nem- erteans, 12 sipunculeans, 19 opisthobranchs, 23 echinoderms, and 32 tunicates. Species are included here on the basis on local abundance and the availability of adequate photographs. Taxonomic coverage of some groups such as tunicates and sponges is greater than 70% of species reported from the area, while coverage for some other groups is significantly less and many microscopic phyla are not included.