Dielectric Black Holes Induced by a Refractive Index Perturbation and the Hawking Effect

Total Page:16

File Type:pdf, Size:1020Kb

Dielectric Black Holes Induced by a Refractive Index Perturbation and the Hawking Effect View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Heriot Watt Pure PHYSICAL REVIEW D 83, 024015 (2011) Dielectric black holes induced by a refractive index perturbation and the Hawking effect F. Belgiorno,1 S. L. Cacciatori,2,3 G. Ortenzi,4 L. Rizzi,2 V. Gorini,2,3 and D. Faccio5 1Dipartimento di Fisica, Universita` di Milano, Via Celoria 16, IT-20133 Milano, Italy 2Department of Physics and Mathematics, Universita` dell’Insubria, Via Valleggio 11, IT-22100 Como, Italy 3INFN sezione di Milano, via Celoria 16, IT-20133 Milano, Italy 4Dipartimento di Matematica e Applicazioni, Universita` di Milano-Bicocca, Via Cozzi 53, IT-20125 Milano, Italy 5School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK (Received 22 March 2010; revised manuscript received 18 November 2010; published 13 January 2011) We consider a 4D model for photon production induced by a refractive index perturbation in a dielectric medium. We show that, in this model, we can infer the presence of a Hawking type effect. This prediction shows up both in the analogue Hawking framework, which is implemented in the pulse frame and relies on the peculiar properties of the effective geometry in which quantum fields propagate, as well as in the laboratory frame, through standard quantum field theory calculations. Effects of optical dispersion are also taken into account, and are shown to provide a limited energy bandwidth for the emission of Hawking radiation. DOI: 10.1103/PhysRevD.83.024015 PACS numbers: 04.62.+v, 04.70.Dy I. INTRODUCTION experiments involving Hawking analogue radiation has been explored [11–23]. Recently Philbin et al. proposed One of the most intriguing predictions of quantum fields an optical analogue in which a soliton with intensity I, in curved spacetime geometries is the production of propagating in an optical fibre, generates through the non- Hawking radiation. In 1974 S. Hawking predicted that linear Kerr effect a refractive index perturbation (RIP), black holes emit particles with a thermal spectrum. ¼ Therefore a black hole will evaporate, shedding energy n n2I, where n2 is the Kerr index [24]. The same under the form of a blackbody emission [1–3]. However, mechanism has also been generalized to a full 4D geometry it turns out that for a typical stellar mass black hole the by Faccio et al. [25] and has led to the first experimental temperature of this radiation is so low ( 10 nK) that it has observation of quanta emitted from an analogue horizon no hope of being directly detected. Notwithstanding, [26]. The RIP modifies the spacetime geometry as seen by Hawking radiation does not actually require a true gravi- copropagating light rays and, similarly to the acoustic tational event horizon but, rather, it is essentially a kine- analogy, if the RIP is locally superluminal, i.e. if it locally matical effect, i.e. it requires some basic ‘‘kinematical’’ travels faster than the phase velocity of light in the ingredients but no specific underlying dynamics (see e.g. medium, an horizon is formed and Hawking radiation is [4–6]). What suffices is the formation of a trapping horizon to be expected. in a curved spacetime metric of any kind, and the analysis Here we take into consideration the Hawking effect in of the behavior of any quantum field therein (see also the dielectric black holes induced by a RIP which propagates discussion in [6]). The quanta of this field will then be with constant velocity v. We first show that, under suitable excited according to the prediction of Hawking. On this conditions, we can remap the original Maxwell equations basis, a number of analogue systems have been proposed, for nonlinear optics into a geometrical description, in anal- for the first time by W. Unruh [7] and later by other ogy to what is done in the case of acoustic perturbations in researchers (see e.g. [8] and references therein), that aim condensed matter. Then we provide a model in which the at reproducing the kinematics of gravitational systems. presence of the Hawking radiation can be deduced even Most of these analogies rely on acoustic perturbations without recourse to the analogous model characterized by a and on the realization of so-called dumb holes: a liquid curved spacetime geometry. Hawking radiation is a new or gas medium is made to flow faster than the velocity of phenomenon for nonlinear optics, never foreseen before, acoustic waves in the same medium so that at the transition which could legitimately meet a sceptical attitude by the point between sub and supersonic flow, a trapping horizon nonlinear optics community, because of a missing descrip- is formed that may be traversed by the acoustic quanta, viz. tion of the phenomenon by means of the standard tools of phonons, only in one direction [8]. Unfortunately the pho- quantum electrodynamics. As a consequence, it is impor- non blackbody spectrum is expected to still have very low tant to provide also a corroboration of the analogue picture temperatures, thus eluding direct detection (see e.g. [9]). A simply by using ‘‘standard’’ tools of quantum field theory parallel line of investigation involves effective geometry (without any reference to the geometrical picture). for light, which has been introduced by Gordon [10] and We then take into consideration the effects of optical extended also to nonlinear electrodynamics; black hole dispersion, which give rise to relevant physical consequen- metrics have been introduced and the possibility to perform ces on the quantum phenomenon of particle creation. 1550-7998=2011=83(2)=024015(17) 024015-1 Ó 2011 American Physical Society F. BELGIORNO et al. PHYSICAL REVIEW D 83, 024015 (2011) We first introduce a 2D reduction of the model in the group velocity horizons, which are shown to be involved presence of dispersion, and see how the dispersion relation with different spectral bandwidths, and with very different is affected by the frequency-dependence of the refractive qualitative behavior regarding their action on photons. index. Then we discuss both phase velocity horizons and Section V is devoted to the conclusions. group velocity horizons, which can both play a relevant Finally, we have added three Appendixes. The first es- role in the physical situation at hand; their qualitative tablishes a correspondence between our black hole metric difference and the possibility to discriminate between and the acoustic one. The second one relates the tempera- them in experiments (numerical and/or laboratory-based) ture to the standard conical singularity of the Euclidean is considered. version of the metric. The third establishes the relevant The structure of the paper is as follows. In Sec. II we analytic properties of the Bogoliubov coefficients. introduce our idealized model of a RIP propagating, in a nonlinear Kerr medium, with a constant velocity v in the x II. STATIC DIELECTRIC BLACK HOLE direction and infinitely extended in the transverse y and z directions. In the eikonal approximation, the model is We consider a model-equation which is derived from Þ embodied in a suitable wave equation for the generic nonlinear electrodynamics (with 2 ¼ 0 and 3 0)in component of the electric field propagating in the nonlinear the eikonal approximation for a perturbation of a full- medium affected by the RIP. We describe this propagation nonlinear electric field propagating in a nonlinear Kerr as taking place in an analogue spacetime metric, written in medium. In order to make the forthcoming analysis as the pulse frame, where the metric is static and displays two simple as possible we replace the electric field with a scalar field È (cf. e.g. Schwinger’s analysis of sonoluminescence horizons xþ and xÀ for propagating photons, analogues to a black hole and a white hole horizons, respectively. By [27]), for which we obtain the wave equation [28] 2 assigning to the black hole horizon a surface gravity in a n ðxl À vtlÞ 2 2 2 2 @t È À @x È À @yÈ À @z È ¼ 0: (1) standard way, we calculate the evaporation temperature Tþ c2 l l of the RIP in the latter frame, which turns out to be proportional to the absolute value of the derivative of the Coordinates in the lab frame are denoted by tl, xl, y, z (the RIP’s profile, evaluated at x . We also show that T is labels of y, z are omitted because they will not be involved þ þ in the boost relating the lab frame with the pulse frame). conformally invariant, as expected for the consistency of Here, nðx À vt Þ is the refractive index, which accounts the model. l l for the propagating RIP in the dielectric. The latter can be In Sec. III, we tackle the model from a different per- obtained by means of an intense laser pulse in a nonlinear spective, namely, within the framework of quantum field dielectric medium (Kerr effect). In our model the RIP does theory. We construct a complete set of positive frequency not depend on the transverse coordinates, namely, it is solutions Èk of the wave equation in the lab frame, in l infinitely extended in the transverse dimensions. This ap- terms of which we quantize the field in the standard way. proximation is necessary in order to carry out the calcu- Then, we compare the Èk with the corresponding plane l lations below, which allow us to draw a tight analogy wave solutions of the wave equation in the absence of the between the Hawking geometrical description and the RIP. This enables us to calculate the Bogoliubov coeffi- quantum field theoretical treatment. Such an infinitely cients, in terms of which we express the expectation value extended RIP is clearly an idealization, which cannot be of the number operator of the outgoing quanta in the in obtained in an actual experiment.
Recommended publications
  • Modeling the Dynamics of Single-Bubble Sonoluminescence
    Modeling the dynamics of single-bubble sonoluminescence Lucas L. Vignoli‡, Ana L. F. de Barros§, Roberto C. A. Thom´ek, A. L. M. A. Nogueira¶, Ricardo C. Paschoal+, and Hil´ario A. Rodrigues∗ Centro Federal de Educa¸c˜ao Tecnol´ogica Celso Suckow da Fonseca – CEFET/RJ Departamento de F´ısica – DEPES Av. Maracan˜a229, 20271-110, Rio de Janeiro, RJ, Brazil Abstract. Sonoluminescence (SL) is the phenomenon in which acoustic energy is (partially) transformed into light. It may occur by means of many or just one bubble of gas inside a liquid medium, giving rise to the terms multi-bubble- and single-bubble sonoluminescence (MBSL and SBSL). In the last years some models have been proposed to explain this phenomenon, but there is still no complete theory for the light emission mechanism (especially in the case of SBSL). In this work, we will not address this more complicated particular issue, but only present a simple model describing the dynamical behaviour of the sonoluminescent bubble, in the SBSL case. Using simple numerical techniques within the software Matlab, we discuss solutions considering various possibilities for some of the parameters involved: liquid compressibility, superficial tension, viscosity, and type of gas. The model may be used as an introductory study of sonoluminescence in physics courses at undergraduate or graduate levels, as well as a quite clarifying example of a physical system exhibiting large nonlinearity. arXiv:1407.5531v1 [physics.ed-ph] 18 Jul 2014 ‡ E-mail: [email protected] § E-mail: [email protected] k E-mail: [email protected] ¶ E-mail: [email protected] + E-mail: [email protected] ∗ E-mail: [email protected] Single bubble sonoluminescence 2 1.
    [Show full text]
  • CLIMATE CHANGE, DOLPHINS, SPACESHIPS and ANTIMI- CROBIAL RESISTANCE - the IMPACT of BUBBLE ACOUSTICS Timothy G
    CLIMATE CHANGE, DOLPHINS, SPACESHIPS AND ANTIMI- CROBIAL RESISTANCE - THE IMPACT OF BUBBLE ACOUSTICS Timothy G. Leighton Institute of Sound and Vibration Research, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK email: [email protected] Bubbles couple to sound fields to an extraordinary extent, generating and scattering sound, and changing the chemical, physical and biological environments around them when excited to pul- sate by an appropriate sound field. This paper accompanies a plenary lecture, opening with the way that the sound emitted by bubbles, when they are injected into the ocean by breaking waves, helps track the >1 billion tonnes of atmospheric carbon that transfers between atmosphere and ocean annually. However, compared to carbon dioxide, atmospheric methane has at least 20 times the ability, per molecule, to generate ‘greenhouse’ warming. Worldwide there is more than twice the amount of carbon trapped in the seabed in the form of methane hydrate than the amount of carbon worldwide in all other known conventional fossil fuels. Acoustics can track the release of bubbles of seabed methane as this hydrate dissociates in response to increasing ocean tempera- tures, an effect cited by some as a possible climate apocalypse. Continuing the methane theme, this paper discusses the sounds of methane/ethane ‘waterfalls’ on Titan, Saturn’s largest moon, before returning to Earth’s oceans to discuss how whales and dolphins might use the interaction between sound
    [Show full text]
  • Beamed UV Sonoluminescence by Aspherical Air Bubble Collapse Near Liquid-Metal Microparticles Bradley Boyd1,2, Sergey A
    www.nature.com/scientificreports OPEN Beamed UV sonoluminescence by aspherical air bubble collapse near liquid-metal microparticles Bradley Boyd1,2, Sergey A. Suslov3, Sid Becker1, Andrew D. Greentree4 & Ivan S. Maksymov5* Irradiation with UV-C band ultraviolet light is one of the most commonly used ways of disinfecting water contaminated by pathogens such as bacteria and viruses. Sonoluminescence, the emission of light from acoustically-induced collapse of air bubbles in water, is an efcient means of generating UV-C light. However, because a spherical bubble collapsing in the bulk of water creates isotropic radiation, the generated UV-C light fuence is insufcient for disinfection. Here we show, based on detailed theoretical modelling and rigorous simulations, that it should be possible to create a UV light beam from aspherical air bubble collapse near a gallium-based liquid-metal microparticle. The beam is perpendicular to the metal surface and is caused by the interaction of sonoluminescence light with UV plasmon modes of the metal. We estimate that such beams can generate fuences exceeding 10 mJ/cm2, which is sufcient to irreversibly inactivate most common pathogens in water with the turbidity of more than 5 Nephelometric Turbidity Units. The ability of UV-C light (200–280 nm) to inactivate bacteria, viruses and protozoa is widely used as an environmentally-friendly, chemical-free and highly efective means of disinfecting and safeguarding water against pathogens responsible for cholera, polio, typhoid, hepatitis and other bacterial, viral and parasitic diseases1. UV-C light inactivates pathogens through absorption of radiation energy by their cellular RNA and DNA prompting the formation of new bonds between adjacent nucleotides.
    [Show full text]
  • Argon Rectification and the Cause of Light Emission in Single-Bubble
    VOLUME 88, NUMBER 7 PHYSICAL REVIEW LETTERS 18FEBRUARY 2002 Argon Rectification and the Cause of Light Emission in Single-Bubble Sonoluminescence Brian D. Storey* Franklin W. Olin College of Engineering, Needham, Massachusetts 02492-1245 Andrew J. Szeri† University of California at Berkeley, Berkeley, California 94720-1740 (Received 25 September 2001; published 31 January 2002) In single-bubble sonoluminescence, repeated brief flashes of light are produced in a gas bubble strongly driven by a periodic acoustic field. A startling hypothesis has been made by Lohse and co-workers [Phys. Rev. Lett. 78, 1359 (1997)] that the non-noble gases in an air bubble undergo chemical reaction into soluble products, leaving only argon. In the present work, this dissociation hypothesis is supported by simulations, although the associated temperatures of about 7000 K seem too low for bremsstrahlung, which has been proposed as the dominant light emission mechanism. This suggests that emission from water vapor and its reaction products, heretofore not included, may play an important role. DOI: 10.1103/PhysRevLett.88.074301 PACS numbers: 78.60.Mq, 47.55.Bx, 47.55.Dz, 47.70.Fw In single-bubble sonoluminescence (SBSL), repeated tion hypothesis states that the polyatomic species in an air brief flashes of light are produced in a gas bubble strongly bubble undergo dissociation in the hot interior during vio- driven by a periodic acoustic field. A startling hypothesis lent collapses. The gases are thought to react with water that the non-noble gases in an air bubble undergo chemical vapor to form soluble products, which are taken up by the reaction into soluble products, leaving only argon [1], has liquid water outside the bubble.
    [Show full text]
  • Sonoluminescence Test for Equation of State in Warm Dense Matter
    HIFAN 1673 SONOLUMINESCENCE TEST FOR EQUATION OF STATE IN WARM DENSE MATTER Siu-Fai Ng1, 2, J. J. Barnard3, P. T. Leung1, S. S. Yu1, 2 1. Physics Department, The Chinese University of Hong Kong, Hong Kong SAR, China 2. Lawrence Berkeley National Laboratory, California, USA 3. Lawrence Livermore National Laboratory, California, USA Accelerator Fusion Research Division Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, California 94720 August 2008 This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. SONOLUMINESCENCE TEST FOR EQUATION OF STATE IN WARM DENSE MATTER Siu-Fai Ng 1, 2, J. J. Barnard 3, P. T. Leung 1, S. S. Yu 1, 2 1. Physics Department, The Chinese University of Hong Kong, Hong Kong SAR, China 2. Lawrence Berkeley National Laboratory, California, USA 3. Lawrence Livermore National Laboratory, California, USA In experiments of Single-bubble Sonoluminescence (SBSL), the bubble is heated to temperatures of a few eV in the collapse phase of the oscillation. Our hydrodynamic simulations show that the density inside the bubble can go up to the order of 1 g/cm 3, and the electron density due to ionization is 10 21 /cm 3. So the plasma coupling constant is found to be around 1 and the gas inside the bubble is in the Warm Dense Matter (WDM) regime. We simulate the light emission of SL with an optical model for thermal radiation which takes the finite opacity of the bubble into consideration.
    [Show full text]
  • SONOLUMINESCENCE in SPACE: the CRITICAL ROLE of BUOYANCY in STABILITY and EMISSION MECHANISMS Charles R
    SONOLUMINESCENCE IN SPACE: THE CRITICAL ROLE OF BUOYANCY IN STABILITY AND EMISSION MECHANISMS Charles R. Thomas ([email protected]) ,R. Glynn Holt ([email protected]) and Ronald A. Roy (ronroy@bu. edu), Boston University, Dept. of Aerospace and Mechanical Engineering, 110 Cummington St, Boston, MA 02215 INTRODUCTION AND MOTIVATION Sonoluminescence is the term used to describe the emission of light from a violently collapsing bubble. Sonoluminescence ("light from sound") is the result of extremely nonlinear pulsations of gas/vapor bubbles in liquids when subject to sufficiently high amplitude acoustic pressures. In a single collapse, a bubble's volume can be compressed more than a thousand-fold in the span of less than a microsecond. Even the simplest consideration of the thermodynamics yields pressures on the order of 10,000 ATM. and temperatures of at least 10,000K. On the face of things, it is not surprising that light should be emitted from such an extreme process. Since 1990 (the year that Gaitan discovered light from a single bubble) there has been a tremendous amount of experimental and theoretical research in stable, single-bubble sonoluminescence (SBSL), yet there remain at least four unexplained phenomena associated with SBSL in lg: • the light emission mechanism itself • the existence ofanisotropies in the emitted light, • the disappearance of the bubble at some critical acoustic pressure, and • the appearance ofquasiperiodic and chaotic oscillations in theflash timing. Gravity, in the context of the buoyant force, is implicated in all four of these. We are developing KC-135 experiments probing the effect of gravity on single bubble sonoluminescence.
    [Show full text]
  • Momentum of the Electromagnetic Quantum Vacuum in Magneto-Chiral
    Linear and angular momentum of the quantum vacuum Bart van Tiggelen and Geert Rikken • Sébastien Kawka (Ph.D ENS Lyon) •James Babington (postdoc ANR) •Manuel Donaire (Postdoc ANR) Casimir energy 1. Isotropic radiation with power spectrum ω3 is Lorentz-invariant (Einstein, 1917); 2. Van der Waals force 1/r6 (London, 1930) 3. Relation to Cosmological constant (Pauli, 1934, Davies, 1984) 4. Casimir Polder Force 1/r7 (1947) 5. Attraction between metallic plates (Casimir, 1948) comments 6. Lifshitz theory for dielectric media (Lifshitz, 1956, Dzyalonishiniskii 1961) 7. Observation of Casimir effect (Sparnaay, 1958, Lamoureux (5%), 1997), Chan etal, (1%), 2001) 8. Unruh effect & Hawking radiation (Hawking 1974, Unruh 1976) 9. Sonoluminescence (Schwinger, 1993, Eberlein, 1996) comments! 10. Quantum friction and sheering the quantum vacuum (Pendry, 1998), comments! 11. Casimir momentum in magneto-electric media (Feigel, 2004). Comments! 12. Casimir momentum of magneto-chiral media (Donaire, BVT, 2015) Bart van Tiggelen GDR Aussois 2018 Photons in Homogeneous media Photons interact with a magnetic field (T) 2 2 휔 풌,휎,푩 2 n 2 = 퐤 + 휎푉퐁 Faraday effect (1846) 푐0 Photons are bent by a magnetic field 퐶 푉 Landau & Lifshitz ECM exercice v = 0 풌෡ + 휎 푩 퐺 푛 푘 Rikken & Van Tiggelen (1997). Photons probe chirality of matter (P) 2 2 휔 풌,휎 2 n 2 = 1 + 휎푔 풌 Rotatory power (1811) 푐0 Photons probe magneto-chirality (PT) 2 Magneto-chiral effect. Pasteur, 1884……. 2 휔 풌,휎,푩 2 Groenewege, Mol. Phys. (1962) n 2 = 퐤 + 푉푔퐁 푐0 Kleindienst & Wagnière, CPL 288 (1998) Rikken
    [Show full text]
  • Investigation of Single Bubble Sonoluminescence by Acoustic Cavitations of D20
    The Corinthian Volume 6 Article 14 2004 Investigation of Single Bubble Sonoluminescence by Acoustic Cavitations of D20 Suzanna Williams Georgia College James Black Georgia College Curtis Harris Georgia College Ralph H. France III Georgia College Follow this and additional works at: https://kb.gcsu.edu/thecorinthian Part of the Physics Commons Recommended Citation Williams, Suzanna; Black, James; Harris, Curtis; and France, Ralph H. III (2004) "Investigation of Single Bubble Sonoluminescence by Acoustic Cavitations of D20," The Corinthian: Vol. 6 , Article 14. Available at: https://kb.gcsu.edu/thecorinthian/vol6/iss1/14 This Article is brought to you for free and open access by the Undergraduate Research at Knowledge Box. It has been accepted for inclusion in The Corinthian by an authorized editor of Knowledge Box. The Corinthian: The Journal of Student Research at GC&SU Investigation of Single Bubble Sonoluminescence by Acoustic Cavitations of D 20 Suzanna Williams Dr. Ralph H. France III James Black Faculty Sponsor Curtis Harris Ralph H. France III Abstract The acoustic cavitation of D 20 is measured using an ocean optics ultraviolet spectrometer. Walls of a container were constructed for the D 20 using 2mm thick by 6 cm long quartz cylindrical cavity. The upper and lower transducers are silver plated piezoelectric quartz crystals. Compressing a Teflon seal between the piezoelectric crystal and quartz tube creates a watertight seal. Argon is bubbled through the solution of D 20 to replace any other existing dissolved gases, as single bubble sonolu­ minescence is known to work best with dissolved noble gases. The con­ tainer is immersed in the D 20 and sealed using a cap.
    [Show full text]
  • Sonoluminescence
    The Chemical Consequences of Cavitation Kenneth S. Suslick School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Av., Urbana, IL 61801 USA Acoustic cavitation is responsible for both sonochemistry and sonoluminescence. Bubble collapse in liquids results in an enormous concentration of energy from the conversion of the kinetic energy of liquid motion into heating of the contents of the bubble. Sonoluminescence has provided a detailed spectroscopic probe of the conditions created during cavitation. the collapse of bubbles in a multi-bubble cavitation field produces hot spots with effective temperatures of ~5000 K, pressures of ~1000 atmospheres, and heating and cooling rates above 1010 K/s. In single bubble cavitation, conditions may be even more extreme.The high local temperatures and pressures, combined with extraordinarily rapid cooling, provide a unique means for driving chemical reactions under extreme conditions. A diverse set of applications of ultrasound to enhance chemical reactivity has been explored, with important applications in mixed phase synthesis, materials chemistry, and biomedical uses. Ultrasound does not drive chemical reactions mean that ultrasound provides a unique mechanism for through a direct coupling of the acoustic field with generating high energy chemistry. Figure 1 presents an chemical species on a molecular level. Instead, interesting comparison of the parameters that control sonochemistry and sonoluminescence are primarily the chemical reactivity (time, pressure, and energy) for chemical consequences of acoustic cavitation: the various forms of chemistry. formation, growth, and implosive collapse of bubbles in liquids irradiated with high-intensity ultrasound. Bubble collapse during cavitation serves as an effective means of concentrating the diffuse energy of sound.
    [Show full text]
  • Explorations in Sonoluminescence Jeremy Peshl Grand Valley State University
    Grand Valley State University ScholarWorks@GVSU Student Summer Scholars Undergraduate Research and Creative Practice 9-2012 Explorations in Sonoluminescence Jeremy Peshl Grand Valley State University Follow this and additional works at: http://scholarworks.gvsu.edu/sss Recommended Citation Peshl, Jeremy, "Explorations in Sonoluminescence" (2012). Student Summer Scholars. 61. http://scholarworks.gvsu.edu/sss/61 This Open Access is brought to you for free and open access by the Undergraduate Research and Creative Practice at ScholarWorks@GVSU. It has been accepted for inclusion in Student Summer Scholars by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. Explorations in Sonoluminescence Jeremy Peshl Grand Valley State University September 2012 Abstract Single Bubble Sonoluminescence (SBSL) is the phenomena by which a bubble is levitated in a liquid medium and forced to oscillate using sound waves, which can make the bubble collapse violently enough to produce light. Various material parameters affect the light produced by these bubbles. This project provided an alternative methodology for the production of SBSL, as well as for data acquisition. Intensity measurements were obtained using a photomultiplier tube and spectral measurements were obtained using a fiber-optic spectrometer. The study focused on the effects of temperature and different liquid compositions on the intensity of the light produced by a SBSL bubble, as well as the spectrum produced by a sonoluminescing bubble. The results may contribute to a better understanding of the effects of material parameters on the light emission. I. Introduction In 1989 Filipe Gaitan, who was then a graduate student under the supervision of Dr.
    [Show full text]
  • Another Possibility of Sonoluminescence Due to the Cherenkov Radiation from the ZPF Field in a Water Bubble
    Vol.3, No.3, 249-254 (2011) Natural Science http://dx.doi.org/10.4236/ns.2011.33031 Another possibility of sonoluminescence due to the cherenkov radiation from the ZPF field in a water bubble Takaaki Musha Advanced Sci.-Tech. Research. Organization, Namiki, Kanazawa-ku, Yokohama, Japan; [email protected] Received 13 January 2011; revised 10 February 2011; accepted 15 February 2011. ABSTRACT obtained in various fluids have shown that; 1) a flash of light emitted from the collapsing bubble with a maxi- Sonoluminescence is the light produced from mum diameter of 100 microns creates a temperature of the collapse of bubbles in water under ultra- 5500˚C with a blackbody spectrum when it rapidly sound. Schwinger proposed a physical mecha- shrinks to less than one micron in radius, 2) light flashes nism for sonoluminescence in terms of photon from the bubbles are extremely short persisted only for production due to changes of quantum elec- 50 picoseconds or shorter with peak intensities of the trodynamic energy contained in a collapsing order of 1~10 mW, which was too brief for the light to dielectric bubble. However there are critics for be produced by some atomic process, 3) bubbles are the Schwinger’s proposal that his estimate of very small when they emit the light with about 1 μm in the Casimir energy involved is inaccurate and diameter depending on the ambient fluid and the gas there are several papers to propose its missing content of the bubble, 4) single-bubble sonolumines- term. In this paper, the author presents another cence pulses have very stable periods and positions and possible component of sonoluminescense which the frequency of light flashes can be more stable than the is due to Cherenkov radiation from tachyon pairs rated frequency stability of the oscillator making the generated in a collapsing bubble.
    [Show full text]
  • SONOLUMINESCENCE in WATER MIXTURES and in LIQUID METALS a Thesis Submitted for the Degree of Doctor of Philosophy in the Univers
    SONOLUMINESCENCE IN WATER MIXTURES AND IN LIQUID METALS A Thesis submitted for the Degree of Doctor of Philosophy in the University of London by FREDERICK RONALD YOUNG, M.A. (CAMBRIDGE). ABSTRACT Sonoluminescence from viscous liquid-water mixtures has been measured using a magnetostrictive transducer with a titanium velocity transformer and a photomultiplier tube. The results suggest a correlation between sonoluminescence and viscosity. The same apparatus has been used to measure the sonoluminescence from water containing dissolved gases. An inverse relationship between the sonoluminescence and thermal conductivity of the gas supports the theory that the light is basically due to an adiabatic compression of the gas during the rapid collapse of the cavitation bubbles. Sonoluminescence from liquid metals has been measured using a lead zirconate titanate transducer with a glass velocity transformer and the same photomultiplier tube. Thermal diffusivity of the metal appears to have an inverse relationship with sonoluminescence again supporting the thermal origin of the light. 3 ACKNOWLEDGEMENTS The author wishes to thank Dr. R.W.B.Stephens for his constant guidance and encouragement, Mr. E.A.Neppiras for his advice, and his colleagues in the Acoustics Group for much help and many stimulating discussions. He wishes to thank Mr. T. Shand and Mr. E. Abbott of the workshop of the Physics Department for constructing the mechanical parts of the apparatus, Mr. O.R.Milibank for making the glassware, and Mr. F.Martin for guiding the author's attempts at making the simpler parts of the apparatus. He is grateful to Mr.P.Coppock, Mr. M.Wallace and Mr.M.O.Jackson for the photographic work, and Miss B.
    [Show full text]