Gamma-Ray Bursts: the Most Powerful Cosmic Explosions L

Total Page:16

File Type:pdf, Size:1020Kb

Gamma-Ray Bursts: the Most Powerful Cosmic Explosions L Gamma-Ray Bursts: the Most Powerful Cosmic Explosions L. KAPER1, A. CASTRO-TIRADO 2, A. FRUCHTER 3, J. GREINER4, J. HJORTH 5, E. PIAN 6, M. ANDERSEN7, K. BEUERMANN 8, M. BOER9, I. BURUD 3, A. JAUNSEN 5, B. JENSEN 5, J.M. CASTRO CERÓN10, S. ELLISON11, F. FRONTERA12, J. FYNBO13, N. GEHRELS14, J. GOROSABEL2, J. HEISE15, F. HESSMAN16, K. HURLEY17, S. KLOSE16, C. KOUVELIOTOU18, N. MASETTI12, P. MØLLER13, E. PALAZZI12, H. PEDERSEN 5, L. PIRO19, K. REINSCH 8, J. RHOADS 3, E. ROL1, I. SALAMANCA1, N. TANVIR20, P.M. VREESWIJK1, R.A.M.J. WIJERS1, T. WIKLIND 21, A. ZEH16, E.P.J. VAN DEN HEUVEL1 1Astronomical Institute “Anton Pannekoek”, Amsterdam, The Netherlands; 2IAA-CSIC, Granada, Spain; 3STScI, Baltimore, USA; 4MPE Garching, Germany; 5Copenhagen University Observatory, Denmark; 6Trieste, Italy; 7Potsdam, Germany; 8Universitäts Sternwarte, Göttingen, Germany; 9CESR/CNRS, Toulouse, France; 10Real Instituto y Observatorio de la Armada, Cádiz, Spain; 11ESO Paranal, Chile; 12Bologna, Italy; 13ESO Garching, Germany; 14NASA/GSFC, Greenbelt, USA; 15SRON Utrecht, The Netherlands; 16Thüringer Landessternwarte (Tautenburg, Germany); 17UC Berkeley, Space Sciences Laboratory, USA; 18NASA/MSFC, Huntsville, USA; 19Rome, Italy; 20Hertfordshire, United Kingdom; 21Onsala, Sweden 1. Introduction Metzger et al. 1997), active collabora- States of America. The nodes take tions between many observatories turns for being “on duty” for periods of Gamma-ray bursts (GRBs) are brief around the world has resulted in a time- two weeks. Starting September 2002 flashes of cosmic γ-rays, first detected ly and detailed study of several dozen our collaboration will be supported by a in data from the US military Vela satel- GRBs. From the start ESO has played Research and Training Network funded lites in 1967 that were launched to a very important role in the identifica- by the European Commission for a pe- verify the Nuclear Test Ban Treaty tion and analysis of the optical and in- riod of four years. (Klebesadel et al. 1973). Lacking a dis- frared afterglows. Gamma-ray detec- tance scale, the physical nature of tors onboard spacecraft orbiting the 3. GRBs and their afterglows GRBs remained a mystery for thirty Earth or exploring the solar system pro- years. Their cosmological origin was vide the GRB alerts, which are prompt- GRBs are short flashes of γ-rays, suggested by their isotropic sky distri- ly announced on the Gamma-ray burst with a duration ranging from several bution, demonstrated in the early 1990s Circular Network (GCN); these trigger milliseconds to tens of minutes, and in by the BATSE experiment onboard the immediate follow-up observations at most cases an observed peak energy Compton Gamma-Ray Observatory ground-based observatories. By build- around 100 keV. The daily rate of (Fig. 1). ing up a network of astronomers at ob- GRBs, detectable from Earth, is about However, the definite proof of their servatories all around the world, it be- two (Paciesas et al. 1999). The γ-ray distant, extragalactic nature came from comes possible to quickly (within light curves are extremely diverse, the discovery of their rapidly fading af- hours) respond to a GRB alert (from some very smooth, others with numer- terglows at X-ray, optical, and radio one or both hemispheres) and to locate ous spikes. BATSE data showed that wavelengths in 1997, thanks to the and monitor the afterglow. there are two distinct classes of GRBs: alerts of the Italian-Dutch BeppoSAX Here we report on behalf of the a class with a short duration (less satellite. Absorption and emission lines GRACE consortium, the Gamma-Ray than 2 seconds) and relatively hard in the afterglow spectra provided red- burst Afterglow Collaboration at ESO 1. spectra, and a class of long-duration shifts in the range z = 0.1–4.5, corre- The GRACE consortium was awarded bursts with softer spectra. It is impor- sponding to distances of several billion an ESO Large Programme that started tant to note that only afterglows of the light-years out to the edge of the visible in April 2000 and ended in March 2002. latter population have been observed universe. This made it clear that GRBs So far, the GRACE collaboration has so far: it is not known whether short represent the most powerful explosions identified most of the known GRB opti- bursts produce afterglows at all. The in the universe since the Big Bang. cal counterparts and has measured best limit obtained so far is for the There are strong indications that about two thirds of all known GRB red- short/hard HETE-II burst GRB 020531, GRBs are caused by highly relativistic, shifts. Currently, ESO observing time is for which Salamanca et al. (2002) did collimated outflows powered by the col- allocated to GRACE through normal not detect any afterglow candidate lapse of a massive star or by the merg- Target of Opportunity one-semester brighter than V ~ 25, just 20 hours after er of two compact objects. Their enor- programmes. Our collaboration is also the alert. mous brightness make GRBs powerful involved in GRB follow-up programmes In a previous Messenger paper probes of the distant and early uni- awarded observing time on the Hubble (Pedersen et al. 2000) the first scientif- verse, yielding information on the prop- Space Telescope (HST), the Chandra ic break-throughs in this field were re- erties of their host galaxies and the cos- X-ray observatory, and INTEGRAL. ported. The Italian-Dutch BeppoSAX mic star-formation history. GRACE consists of teams of as- satellite played a crucial role in these tronomers (“nodes”) based in Denmark, discoveries by rapidly determining the 2. The GRACE consortium Germany, Italy, Spain, the Netherlands, position of a GRB with arcminute preci- the United Kingdom and the United sion. Arcminute-sized error boxes Since the discovery of the first GRB match the typical field size of modern afterglow on 28 February 1997 (Costa (optical) detectors, so that it became et al. 1997, Van Paradijs et al. 1997, 1http://zon.wins.uva.nl/grb/grace/ feasible to detect the GRB afterglows, 37 Figure 1: This map shows the locations of a total of 2704 GRBs recorded with BATSE on board NASA’s Compton Gamma-Ray Observatory during its nine-year mission. The projection is in galactic coordinates; the plane of the Milky Way Galaxy is along the horizontal line at the middle of the figure. The burst locations are colour-coded based on the fluence, which is the energy flux of the burst integrated over the to- tal duration of the event. Long-duration, bright bursts appear in red, and short-duration, weak bursts appear in purple (credit BATSE team). which fade quickly, on a timescale of Besides HETE-II, satellites in the afterglow identification pipeline is nec- only a few days (the typical time profiles Interplanetary Network (IPN) provide essary. Our consortium has developed are t–α, with α ~ 1–2). burst positions, though at a low rate. such a pipeline using colour-colour dis- The High Energy Transient Explorer II The BeppoSAX mission was terminat- crimination techniques. The efficiency (HETE-II), launched in October 2000, ed on April 30, 2002, exactly 6 years af- of this procedure was demonstrated by was designed to provide very rapid (< 1 ter its launch. the discovery, at ESO, of the optical minute) and very precise positions (er- With Integral (launch October 2002) and near-infrared counterpart of GRB ror boxes down to arcseconds) of both and Swift (2003) the rate of GRB alerts 001011 (Gorosabel et al. 2002a). long- and short-duration bursts. This will definitely increase again. In prepa- Since the advent of rapid (within a mission has been one of the main ration for these missions, robotic tele- few hours to days) GRB locations2, 39 drivers of our ESO Large Programme, scopes are installed at ESO La Silla to alerts resulted in the detection of an but so far only few accurate HETE-II perform prompt follow-up of GRB alerts. positions have become available. Given the expected high data rate, a fast 2http://www.aip.de/People/Greiner/grbgen.html Figure 2: Left: VLT spectrum of GRB 990712 taken 12 hours after the burst. Absorption lines of Mg I and Mg II are detected, as well as sev- eral emission lines from the underlying bright (V ~ 22) host galaxy (from Vreeswijk et al. 2001). The redshift of the galaxy is z = 0.43. Right: A low-resolution FORS spectrum of the currently most-distant GRB 000131 at z = 4.5 (from Andersen et al. 2000). The redshift is determined from the Lyman break. 38 Figure 3: The fading afterglow of GRB 011121 at near-infrared wavelengths (1.2 µm, J band, Greiner et al. 2002). The field size is 40 × 40 arcseconds, North is up and East is to the left. On November 22, 2001, the afterglow is detected by NTT/SOFI at J = 17.5; 2 days later the afterglow has faded to J = 20.9. On February 9, 2002, the afterglow is not detected anymore (J > 24) in this superb VLT/ISAAC image (see- ing 0.4 arcsecond). The light sources near the position of GRB 011121 might represent some bright regions in the host galaxy. X-ray afterglow; 32 optical afterglows will provide accurate burst positions 5. The origin of GRBs: possible have been found (of which more than within a few minutes, many such bright progenitors half were discovered by our collabora- early afterglows become detectable. tion), and 20 radio afterglows (status From a variety of arguments, such as July 1, 2002). For many GRBs no after- 4. Evidence for collimation their total energy and the evidence for glow is found. Adverse observing con- collimation, the general expectation is ditions can explain many of these Assuming isotropic emission, the that a system consisting of a black hole non-detections.
Recommended publications
  • Arxiv:0809.0508V2 [Astro-Ph]
    Accepted in ApJ on Nov 13 2008 Preprint typeset using LATEX style emulateapj v. 08/22/09 THE PROPERTIES OF THE HOST GALAXY AND THE IMMEDIATE ENVIRONMENT OF GRB 980425 / SN 1998BW FROM THE MULTI-WAVELENGTH SPECTRAL ENERGY DISTRIBUTION Micha lJ. Micha lowski1, Jens Hjorth1, Daniele Malesani1, Tadeusz Micha lowski2, Jose´ Mar´ıa Castro Ceron´ 1, Robert F. Reinfrank3,4, Michael A. Garrett5,6,7, Johan P. U. Fynbo1, Darach J. Watson1 and Uffe G. Jørgensen8 Accepted in ApJ on Nov 13 2008 ABSTRACT We present an analysis of the spectral energy distribution (SED) of the galaxy ESO 184-G82, the host of the closest known long gamma-ray burst (GRB) 980425 and its associated supernova (SN) 1998bw. We use our observations obtained at the Australia Telescope Compact Array (the third > 3σ radio detection of a GRB host) as well as archival infrared and ultraviolet (UV) observations to estimate its star formation state. We find that ESO 184-G82 has a UV star formation rate (SFR) and stellar mass consistent with the population of cosmological GRB hosts and of local dwarf galaxies. However, it has a higher specific SFR (per unit stellar mass) than luminous spiral galaxies. The mass of ESO 184-G82 is dominated by an older stellar population in contrast to the majority of GRB hosts. The Wolf-Rayet region ∼ 800 pc from the SN site experienced a starburst episode during which the majority of its stellar population was built up. Unlike that of the entire galaxy, its SED is similar to those of cosmological submillimeter/radio-bright GRB hosts with hot dust content.
    [Show full text]
  • On the Association of Gamma-Ray Bursts with Supernovae Dieter H
    Clemson University TigerPrints Publications Physics and Astronomy Summer 7-24-1998 On the Association of Gamma-Ray Bursts with Supernovae Dieter H. Hartmann Department of Physics and Astronomy, Clemson University, [email protected] R. M. Kippen Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville & NASA/Marshall Space Flight Center & NASA/Marshall Space Flight Center M. S. Briggs Physics Department, University of Alabama in Huntsville & NASA/Marshall Space Flight Center J. M. Kommers Department of Physics and Center for Space Research, Massachusetts nI stitute of Technology C. Kouveliotou Universities Space Research Association & NASA/Marshall Space Flight Center See next page for additional authors Follow this and additional works at: https://tigerprints.clemson.edu/physastro_pubs Recommended Citation Please use publisher's recommended citation. This Article is brought to you for free and open access by the Physics and Astronomy at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Authors Dieter H. Hartmann, R. M. Kippen, M. S. Briggs, J. M. Kommers, C. Kouveliotou, K. Hurley, C. R. Robinson, J. van Paradijs, T. J. Galama, and P. M. Vresswijk This article is available at TigerPrints: https://tigerprints.clemson.edu/physastro_pubs/83 Re-Submitted to ApJL 24-Jul-98 On the Association of Gamma-Ray Bursts with Supernovae R. M. Kippen,1,2,3 M. S. Briggs,4,2 J. M. Kommers,5 C. Kouveliotou,6,2 K. Hurley,7 C. R. Robinson,6,2 J. van Paradijs,5,8 D. H. Hartmann,9 T.
    [Show full text]
  • An Apparently Normal G-Ray Burst with an Unusually Low Luminosity
    letters to nature .............................................................. energy equivalent over the 20–2000 keV band, we find 6 £ 49 50 10 erg , e g,iso , 1.4 £ 10 erg; where the range reflects the An apparently normal g-ray burst observational uncertainty in the spectrum above 200 keV (see with an unusually low luminosity Fig. 2). GRB 031203, an event with spectrum similar to cosmological S. Yu. Sazonov1,2, A. A. Lutovinov1 & R. A. Sunyaev1,2 GRBs, is the least energetic (in terms of e g,iso) long-duration GRB. Clearly, g-ray luminosities and energy releases vary widely, span- 1Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, ning at least four orders of magnitude. Furthermore it is of 117997 Moscow, Russia considerable interest to note that GRB 031203 violates two much 2 Max-Planck-Institut fu¨r Astrophysik, Karl-Schwarzschild-Str. 1, D-85740 discussed relations in GRB astrophysics: (1) the e g,iso–E peak relation Garching bei Mu¨nchen, Germany and (2) the luminosity–spectral lag relation. For GRB 031203, the ............................................................................................................................................................................. 4 first relation predicts E peak < 10 keV, in gross disagreement with Much of the progress in understanding g-ray bursts (GRBs) has the analysis presented here. Long spectral lags are expected from the come from studies of distant events (redshift z < 1). In the second relation5,6 when in fact we see virtually no lag (Fig. 3). brightest GRBs, the g-rays are so highly collimated that the GRB 031203, however, shares some properties with GRB 980425, events can be seen across the Universe. It has long been suspected which is associated with a nearby (z ¼ 0.0085) supernova, SN that the nearest and most common events have been missed 1998bw (refs 14, 15).
    [Show full text]
  • Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: Gw170817 and Grb 170817A
    Draft version October 15, 2017 Typeset using LATEX twocolumn style in AASTeX61 GRAVITATIONAL WAVES AND GAMMA-RAYS FROM A BINARY NEUTRON STAR MERGER: GW170817 AND GRB 170817A B. P. Abbott,1 R. Abbott,1 T. D. Abbott,2 F. Acernese,3, 4 K. Ackley,5, 6 C. Adams,7 T. Adams,8 P. Addesso,9 R. X. Adhikari,1 V. B. Adya,10 C. Affeldt,10 M. Afrough,11 B. Agarwal,12 M. Agathos,13 K. Agatsuma,14 N. Aggarwal,15 O. D. Aguiar,16 L. Aiello,17, 18 A. Ain,19 P. Ajith,20 B. Allen,10, 21, 22 G. Allen,12 A. Allocca,23, 24 M. A. Aloy,25 P. A. Altin,26 A. Amato,27 A. Ananyeva,1 S. B. Anderson,1 W. G. Anderson,21 S. V. Angelova,28 S. Antier,29 S. Appert,1 K. Arai,1 M. C. Araya,1 J. S. Areeda,30 N. Arnaud,29, 31 K. G. Arun,32 S. Ascenzi,33, 34 G. Ashton,10 M. Ast,35 S. M. Aston,7 P. Astone,36 D. V. Atallah,37 P. Aufmuth,22 C. Aulbert,10 K. AultONeal,38 C. Austin,2 A. Avila-Alvarez,30 S. Babak,39 P. Bacon,40 M. K. M. Bader,14 S. Bae,41 P. T. Baker,42 F. Baldaccini,43, 44 G. Ballardin,31 S. W. Ballmer,45 S. Banagiri,46 J. C. Barayoga,1 S. E. Barclay,47 B. C. Barish,1 D. Barker,48 K. Barkett,49 F. Barone,3, 4 B. Barr,47 L. Barsotti,15 M. Barsuglia,40 D. Barta,50 J.
    [Show full text]
  • L105 EXPECTED CHARACTERISTICS of the SUBCLASS of SUPERNOVA GAMMA-RAY BURSTS J. S. BLOOM,1 S. R. Kulkarni, F. HARRISON, T. PRINCE
    The Astrophysical Journal, 506:L105±L108, 1998 October 20 q 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. EXPECTED CHARACTERISTICS OF THE SUBCLASS OF SUPERNOVA GAMMA-RAY BURSTS J. S. Bloom,1 S. R. Kulkarni, F. Harrison, T. Prince, and E. S. Phinney Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 and D. A. Frail National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 Received 1998 July 8; accepted 1998 August 18; published 1998 September 10 ABSTRACT The spatial and temporal coincidence of gamma-ray burst (GRB) 980425 and supernova (SN) 1998bw has prompted speculation that there exists a subclass of GRBs produced by SNe (ªS-GRBsº). A physical model motivated by radio observations lead us to propose the following characteristics of S-GRBs: (1) prompt radio emission and an implied high brightness temperature close to the inverse Compton limit, (2) high expansion velocity (*50,000 km s21) of the optical photosphere as derived from lines widths and energy release larger than usual, (3) no long-lived X-ray afterglow, and (4) a single-pulse GRB pro®le. Radio studies of previous SNe show that only (but not all) Type Ib and Ic SNe potentially satisfy the ®rst condition. We investigate the proposed associations of GRBs and SNe within the context of these proposed criteria and suggest that 1% of GRBs detected by BATSE may be members of this subclass. » Subject headings: gamma rays: bursts Ð supernovae: general Ð supernovae: individual (SN 1998bw) 1. INTRODUCTION common are S-GRBs? How can they be distinguished from C-GRBs? What are their typical energetics? With the spectroscopic observations of the optical afterglow In this paper, accepting the physical model advocated by of gamma-ray burst (GRB) 970508 by Metzger et al.
    [Show full text]
  • Explosive Nucleosynthesis in GRB Jets Accompanied by Hypernovae
    SLAC-PUB-12126 astro-ph/0601111 September 2006 Explosive Nucleosynthesis in GRB Jets Accompanied by Hypernovae Shigehiro Nagataki1,2, Akira Mizuta3, Katsuhiko Sato4,5 ABSTRACT Two-dimensional hydrodynamic simulations are performed to investigate ex- plosive nucleosynthesis in a collapsar using the model of MacFadyen and Woosley (1999). It is shown that 56Ni is not produced in the jet of the collapsar suffi- ciently to explain the observed amount of a hypernova when the duration of the explosion is ∼10 sec, which is considered to be the typical timescale of explosion in the collapsar model. Even though a considerable amount of 56Ni is synthesized if all explosion energy is deposited initially, the opening angles of the jets become too wide to realize highly relativistic outflows and gamma-ray bursts in such a case. From these results, it is concluded that the origin of 56Ni in hypernovae associated with GRBs is not the explosive nucleosynthesis in the jet. We consider that the idea that the origin is the explosive nucleosynthesis in the accretion disk is more promising. We also show that the explosion becomes bi-polar naturally due to the effect of the deformed progenitor. This fact suggests that the 56Ni synthesized in the accretion disk and conveyed as outflows are blown along to the rotation axis, which will explain the line features of SN 1998bw and double peaked line features of SN 2003jd. Some fraction of the gamma-ray lines from 56Ni decays in the jet will appear without losing their energies because the jet becomes optically thin before a considerable amount of 56Ni decays as long as the jet is a relativistic flow, which may be observed as relativistically Lorentz boosted line profiles in future.
    [Show full text]
  • Expected Characteristics of the Subclass of Supernova Gamma-Ray Bursts (S-Grbs)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server Expected characteristics of the subclass of Supernova Gamma-ray Bursts (S-GRBs) J. S. Bloom1, S. R. Kulkarni, F. Harrison, T. Prince, E. S. Phinney California Institute of Technology, MS 105-24, Pasadena, CA 91125 and D. A. Frail National Radio Astronomy Observatory, P. O. Box 0, Socorro, NM 87801 ABSTRACT The spatial and temporal coincidence between the gamma-ray burst (GRB) 980425 and supernova (SN) 1998bw has prompted speculation that there exists a class of GRBs produced by SNe (“S-GRBs”). Robust arguments for the existence of a relativistic shock have been presented on the basis of radio observations. A physical model based on the radio observations lead us to propose the following characteristics of supernovae GRBs (S-GRBs): 1) prompt radio emission and implied brightness temperature near or below the inverse Compton limit, 2) high expansion velocity (∼> 50, 000 km/s) of the optical photosphere as derived from lines widths and energy release larger than usual, 3) no long-lived X-ray afterglow, and 4) a single pulse (SP) GRB profile. Radio studies of previous SNe show that only type Ib and Ic potentially satisfy the first condition. Accordingly we have investigated proposed associations of GRBs and SNe finding no convincing evidence (mainly to paucity of data) to confirm any single connection of a SN with a GRB. If there is a more constraining physical basis for the burst time-history of S-GRBs beyond that of the SP requirement, we suggest the 1% of light curves in the BATSE catalogue similar to that of GRB 980425 may constitute the subclass.
    [Show full text]
  • Possible Class of Nearby Gamma-Ray Burst / Gravitational Wave Sources
    Possible Class of Nearby Gamma-Ray Burst / Gravitational Wave Sources Jay P. Norris NASAIGoddard Space Flight Center Laboratoly for High Energy Astrophysics Abstract. A possible subclass of gamma-ray bursts - those with few, wide pulses, spectral lags of order one to several seconds, and soft spectra - has been identified. Their Log[N]-Logpp] distribution approximates a -312 power-law, suggesting homogeneity and relatively nearby sources. These mostly dim bursts account for - 50% of the BATSE sample of long bursts near that instrument’s trigger threshold, suggesting that this subluminous class constitutes a more common variety than the more familiar burst sources which lie at truly cosmological distances. Theoretical scenarios predicted such a class, motivated by their exemplar GRB 980425 (SN 1998bw) lying at a distance of - 38 Mpc. The observations are explained by invoking off-axis viewing of the GRB jet and/or bulk Lorentz factors of order a few. Long-lag bursts show a tendency to concentrate near the Supergalactic Plane with a quadrupole moment of -0.10 * 0.04, similar to that for SNe type Ib/c within the same volume. The rate of the observed subluminous bursts is of order % that of SNe Ibk. Evidence for a sequential relationship between SNe Ib/c and GRBs is critiqued for two cases, as simultaneity of the SN and GRB events may be important for detection of the expected gravitational wave signal; at most, SN to GRB delays appear to be a few days. SN asymmetries and ultrarelativistic GRB jets suggest the possibility of rapid rotation in the pre-collapse objects, a primary condition required for highly non- axisymmetric SN collapse to produce strong gravitational waves.
    [Show full text]
  • The Bursts GRB 071112C, 111228A, 120714B, and 130831A?
    A&A 622, A138 (2019) Astronomy https://doi.org/10.1051/0004-6361/201832728 & c ESO 2019 Astrophysics Four GRB supernovae at redshifts between 0.4 and 0.8 The bursts GRB 071112C, 111228A, 120714B, and 130831A? S. Klose1, S. Schmidl1, D. A. Kann1,2, A. Nicuesa Guelbenzu1, S. Schulze3,4,5 , J. Greiner6, F. Olivares E.5,7, T. Krühler6, P. Schady6, P. M. J. Afonso8, R. Filgas9, J. P. U. Fynbo10, A. Rau6, A. Rossi11, K. Takats5, M. Tanga6, A. C. Updike12, and K. Varela6 (Affiliations can be found after the references) Received 29 January 2018 / Accepted 19 November 2018 ABSTRACT Twenty years ago, GRB 980425/SN 1998bw revealed that long gamma-ray bursts (GRBs) are physically associated with broad-lined type-Ic supernovae (SNe). Since then more than 1000 long GRBs have been localized to high angular precision, but only in ∼50 cases has the underlying SN component been identified. Using the Gamma-Ray Burst Optical Near-Infrared Detector (GROND) multi-channel imager at ESO/La Silla, during the last ten years we have devoted a substantial amount of observing time to reveal and study SN components in long-GRB afterglows. Here we report on four more GRB SNe (associated with GRBs 071112C, 111228A, 120714B, and 130831A) which were discovered and/or followed-up with GROND and whose redshifts lie between z = 0:4 and 0.8. We study their afterglow light curves, follow the associated SN bumps over several weeks, and characterize their host galaxies. Using SN 1998bw as a template, the derived SN explosion parameters are fully consistent with the corresponding properties of the currently known GRB-SN ensemble, with no evidence for an evolution of their properties as a function of redshift.
    [Show full text]
  • On the Possible Association of SN 1998Bw and GRB 980425
    ASTRONOMY & ASTROPHYSICS SEPTEMBER 1999, PAGE 465 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 138, 465–466 (1999) On the possible association of SN 1998bw and GRB 980425 T.J. Galama1, P.M. Vreeswijk1,J.vanParadijs1,2,C.Kouveliotou3,4, T. Augusteijn5, F. Patat5,J.Heise6, J. in ’t Zand6, P.J. Groot1, R.A.M.J. Wijers7,E.Pian8,E.Palazzi8, F. Frontera8, and N. Masetti8 1 Astronomical Institute “Anton Pannekoek”/CHEAF, Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands 2 Physics Department, UAH, Huntsville, AL 35899, U.S.A. 3 Universities Space Research Association, U.S.A. 4 NASA Marshall Space Flight Center, ES-84, Huntsville, AL 35812, U.S.A. 5 ESO, Casilla 19001, Santiago 19, Chile 6 SRON Laboratory for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands 7 Dept. of Physics and Astronomy, SUNY, Stony Brook, NY 11794-3800, U.S.A. 8 Istituto Tecnologie e Studio Radiazioni Extraterrestri, CNR, Bologna, Italy Received December 29, 1998; accepted May 4, 1999 Abstract. We here discuss the possibility that the pe- barred spiral galaxy ESO 184-G82 at a redshift of 1 culiar supernova SN 1998bw and the Gamma-Ray Burst 2550 km s− , in the DN 1931–529 group of galaxies (see GRB 980425 are associated. If the two are related, the Fig. 2). energy radiated in γ rays is at least four orders of magni- The GRB and the supernova are spatially and tem- tude less than in other GRBs, although its appearance is porally coincident; the time of occurrence of the core col- otherwise unremarkable: this suggests that very different lapse and the GRB coincide to within (+0.7, 2.0) days mechanisms may give rise to GRBs.
    [Show full text]
  • The GRB 060218/SN 2006Aj Event in the Context of Other Gamma-Ray Burst Supernovae,
    A&A 457, 857–864 (2006) Astronomy DOI: 10.1051/0004-6361:20065530 & c ESO 2006 Astrophysics The GRB 060218/SN 2006aj event in the context of other gamma-ray burst supernovae, P. Ferrero1,D.A.Kann1,A.Zeh2,S.Klose1,E.Pian2, E. Palazzi3, N. Masetti3,D.H.Hartmann4, J. Sollerman5,J.Deng6, A. V. Filippenko7, J. Greiner8, M. A. Hughes9, P. Mazzali2,10, W. Li7,E.Rol11,R.J.Smith12, and N. R. Tanvir9,11 1 Thüringer Landessternwarte Tautenburg, 07778 Tautenburg, Germany e-mail: [email protected] 2 Istituto Nazionale di Astrofisica-OATs, 34131 Trieste, Italy 3 INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Sez. di Bologna, 40129 Bologna, Italy 4 Clemson University, Department of Physics and Astronomy, Clemson, SC 29634-0978, USA 5 Dark Cosmology Center, Niels Bohr Institute, Copenhagen University, 2100 Copenhagen, Denmark 6 National Astronomical Observatories, CAS, Chaoyang District, Beijing 100012, PR China 7 Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA 8 Max-Planck-Institut für extraterrestische Physik, 85741 Garching, Germany 9 Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK 10 Max-Planck Institut für Astrophysik, 85748 Garching, Germany 11 Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK 12 Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Birkenhead, CH41 1LD, UK Received 2 May 2006 / Accepted 13 July 2006 ABSTRACT The supernova SN 2006aj associated with GRB 060218 is the second-closest GRB-SN observed to date (z = 0.033). We present Very Large Telescope, Liverpool Telescope, and Katzman Automatic Imaging Telescope multi-color photometry of SN 2006aj.
    [Show full text]
  • Spatially-Resolved Dust Properties of the GRB 980425 Host Galaxy M
    Spatially-resolved dust properties of the GRB 980425 host galaxy M. J. Michalowski, L. K. Hunt, E. Palazzi, S. Savaglio, G. Gentile, J. Rasmussen, M. Baes, S. Basa, S. Bianchi, S. Berta, et al. To cite this version: M. J. Michalowski, L. K. Hunt, E. Palazzi, S. Savaglio, G. Gentile, et al.. Spatially-resolved dust properties of the GRB 980425 host galaxy. Astronomy and Astrophysics - A&A, EDP Sciences, 2014, 562, pp.A70. 10.1051/0004-6361/201322843. cea-01162427 HAL Id: cea-01162427 https://hal-cea.archives-ouvertes.fr/cea-01162427 Submitted on 10 Jun 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 562, A70 (2014) Astronomy DOI: 10.1051/0004-6361/201322843 & c ESO 2014 Astrophysics Spatially-resolved dust properties of the GRB 980425 host galaxy, M. J. Michałowski1,2,,L.K.Hunt3, E. Palazzi4, S. Savaglio5, G. Gentile1,6, J. Rasmussen7,8, M. Baes1,S.Basa9, S. Bianchi3,S.Berta5,D.Burlon10, J. M. Castro Cerón11,S.Covino12, J.-G. Cuby9, V. D’Elia13,14, P. Ferrero15,16, D. Götz17, J. Hjorth7,M.P.Koprowski2, D. Le Borgne18,E.LeFloc’h17, D.
    [Show full text]