Lesions of the Perirhinal Cortex but Not of the Frontal, Medial Prefrontal, Visual, Or Insular Cortex Block Fear-Potentiated
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sustained Activities and Retrieval in a Computational Model of Perirhinal
Sustained activities and retrieval in a computational model of perirhinal cortex Julien Vitay and Fred H. Hamker∗ Abstract Perirhinal cortex is involved in object recognition and novelty detection, but also in multimodal in- tegration, reward association and visual working memory. We propose a computational model that focuses on the role of perirhinal cortex in working memory, particularly with respect to sustained activities and memory retrieval. This model describes how different partial informations are inte- grated into assemblies of neurons that represent the identity of an object. Through dopaminergic modulation, the resulting clusters can retrieve the global information with recurrent interactions between neurons. Dopamine leads to sustained activities after stimulus disappearance that form the basis of the involvement of perirhinal cortex in visual working memory processes. The infor- mation carried by a cluster can also be retrieved by a partial thalamic or prefrontal stimulation. Thus, we suggest that areas involved in planning and memory coordination encode a pointer to access the detailed information encoded in associative cortex such as perirhinal cortex. ∗Allgemeine Psychologie, Psychologisches Institut II, Westf. Wilhelms-Universit¨at M¨unster, Germany 1 Introduction Perirhinal cortex (PRh), composed of cortical areas 35 and 36, is located in the ventromedial part of the temporal lobe. It receives its major inputs from areas TE and TEO of inferotemporal cortex, as well as from entorhinal cortex (ERh), parahippocampal cortex, insular cortex and orbitofrontal cortex (Suzuki & Amaral, 1994). As part of the medial temporal lobe system (with hippocampus and ERh), its primary role is considered to be object-recognition memory, as shown by impairements in delayed matching-to-sample (DMS) or delayed nonmatching-to-sample (DNMS) tasks following PRh cooling or removal (Horel, Pytko-Joiner, Voytko, & Salsbury, 1987; Zola-Morgan, Squire, Amaral, & Suzuki, 1989; Meunier, Bachevalier, Mishkin, & Murray, 1993; Buffalo, Reber, & Squire, 1998). -
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans Ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai To cite this version: Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai. Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.93. 10.3389/fnana.2018.00093. hal-01929541 HAL Id: hal-01929541 https://hal.archives-ouvertes.fr/hal-01929541 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 19 November 2018 doi: 10.3389/fnana.2018.00093 Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans J. ten Donkelaar 1*†, Nathalie Tzourio-Mazoyer 2† and Jürgen K. Mai 3† 1 Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands, 2 IMN Institut des Maladies Neurodégénératives UMR 5293, Université de Bordeaux, Bordeaux, France, 3 Institute for Anatomy, Heinrich Heine University, Düsseldorf, Germany The gyri and sulci of the human brain were defined by pioneers such as Louis-Pierre Gratiolet and Alexander Ecker, and extensified by, among others, Dejerine (1895) and von Economo and Koskinas (1925). -
The Structural Model: a Theory Linking Connections, Plasticity, Pathology, Development and Evolution of the Cerebral Cortex
Brain Structure and Function https://doi.org/10.1007/s00429-019-01841-9 REVIEW The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex Miguel Ángel García‑Cabezas1 · Basilis Zikopoulos2,3 · Helen Barbas1,3 Received: 11 October 2018 / Accepted: 29 January 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The classical theory of cortical systematic variation has been independently described in reptiles, monotremes, marsupials and placental mammals, including primates, suggesting a common bauplan in the evolution of the cortex. The Structural Model is based on the systematic variation of the cortex and is a platform for advancing testable hypotheses about cortical organization and function across species, including humans. The Structural Model captures the overall laminar structure of areas by dividing the cortical architectonic continuum into discrete categories (cortical types), which can be used to test hypotheses about cortical organization. By type, the phylogenetically ancient limbic cortices—which form a ring at the base of the cerebral hemisphere—are agranular if they lack layer IV, or dysgranular if they have an incipient granular layer IV. Beyond the dysgranular areas, eulaminate type cortices have six layers. The number and laminar elaboration of eulaminate areas differ depending on species or cortical system within a species. The construct of cortical type retains the topology of the systematic variation of the cortex and forms the basis for a predictive Structural Model, which has successfully linked cortical variation to the laminar pattern and strength of cortical connections, the continuum of plasticity and stability of areas, the regularities in the distribution of classical and novel markers, and the preferential vulnerability of limbic areas to neurodegenerative and psychiatric diseases. -
The Hippocampus, Prefrontal Cortex, and Perirhinal Cortex Are Critical to Incidental Order Memory
The hippocampus, prefrontal cortex, and perirhinal cortex are critical to incidental order memory Abbreviated Title: INCIDENTAL ORDER MEMORY Leila M. Allen1,2,3, Rachel A. Lesyshyn1,2, Steven J. O’Dell2, Timothy A. Allen1,3, Norbert J. Fortin1,2 1Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697 2Department of Neurobiology and Behavior, University of California, Irvine, CA 92697 3Cogntive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199 Number of figures: 3 Number of tables: 0 Number of text pages: 25 Total Word Count: 8,777 Corresponding Author: Norbert J. Fortin, Ph.D. Center for the Neurobiology of Learning and Memory Department of Neurobiology and Behavior University of California, Irvine 106 Bonney Research Laboratory Irvine, CA 92697-3800 tel: 949-824-9740 email: [email protected] Conflicts of Interest: The authors declare no competing financial interests. Acknowledgments: We would like to thank Clare Quirk and Collin Fuhrman for assistance with behavioral and histological procedures. This research was supported, in part, by the National Science Foundation (awards IOS-1150292 and BCS-1439267 to N.J.F.), NIMH (award MH115697 to N.J.F.), the Whitehall Foundation (award 2010-05-84 to N.J.F.) and the University of California, Irvine. INCIDENTAL ORDER MEMORY 1 ABSTRACT 2 Considerable research in rodents and humans indicates the hippocampus and prefrontal cortex are 3 essential for remembering temporal relationships among stimuli, and accumulating evidence 4 suggests the perirhinal cortex may also be involved. However, experimental parameters differ 5 substantially across studies, which limits our ability to fully understand the fundamental 6 contributions of these structures. -
The Hippocampus, Prefrontal Cortex, and Perirhinal Cortex Are Critical to Incidental Order Memory
Florida International University FIU Digital Commons Department of Psychology College of Arts, Sciences & Education 2-3-2020 The hippocampus, prefrontal cortex, and perirhinal cortex are critical to incidental order memory Leila M. Allen University of California, Irvine Rachel A. Lesyshyn University of California, Irvine Steven J. O'Dell University of California, Irvine Timothy A. Allen University of California, Irvine Norbert J. Fortin University of California, Irvine Follow this and additional works at: https://digitalcommons.fiu.edu/psychology_fac Recommended Citation Allen, Leila M.; Lesyshyn, Rachel A.; O'Dell, Steven J.; Allen, Timothy A.; and Fortin, Norbert J., "The hippocampus, prefrontal cortex, and perirhinal cortex are critical to incidental order memory" (2020). Department of Psychology. 22. https://digitalcommons.fiu.edu/psychology_fac/22 This work is brought to you for free and open access by the College of Arts, Sciences & Education at FIU Digital Commons. It has been accepted for inclusion in Department of Psychology by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Behav Brain Manuscript Author Res. Author Manuscript Author manuscript; available in PMC 2021 February 03. Published in final edited form as: Behav Brain Res. 2020 February 03; 379: 112215. doi:10.1016/j.bbr.2019.112215. The hippocampus, prefrontal cortex, and perirhinal cortex are critical to incidental order memory Leila M. -
Default Mode Network in Childhood Autism Posteromedial Cortex Heterogeneity and Relationship with Social Deficits
ARCHIVAL REPORT Default Mode Network in Childhood Autism: Posteromedial Cortex Heterogeneity and Relationship with Social Deficits Charles J. Lynch, Lucina Q. Uddin, Kaustubh Supekar, Amirah Khouzam, Jennifer Phillips, and Vinod Menon Background: The default mode network (DMN), a brain system anchored in the posteromedial cortex, has been identified as underconnected in adults with autism spectrum disorder (ASD). However, to date there have been no attempts to characterize this network and its involvement in mediating social deficits in children with ASD. Furthermore, the functionally heterogeneous profile of the posteromedial cortex raises questions regarding how altered connectivity manifests in specific functional modules within this brain region in children with ASD. Methods: Resting-state functional magnetic resonance imaging and an anatomically informed approach were used to investigate the functional connectivity of the DMN in 20 children with ASD and 19 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate regression analyses were used to test whether altered patterns of connectivity are predictive of social impairment severity. Results: Compared with TD children, children with ASD demonstrated hyperconnectivity of the posterior cingulate and retrosplenial cortices with predominately medial and anterolateral temporal cortex. In contrast, the precuneus in ASD children demonstrated hypoconnectivity with visual cortex, basal ganglia, and locally within the posteromedial cortex. Aberrant posterior cingulate cortex hyperconnectivity was linked with severity of social impairments in ASD, whereas precuneus hypoconnectivity was unrelated to social deficits. Consistent with previous work in healthy adults, a functionally heterogeneous profile of connectivity within the posteromedial cortex in both TD and ASD children was observed. Conclusions: This work links hyperconnectivity of DMN-related circuits to the core social deficits in young children with ASD and highlights fundamental aspects of posteromedial cortex heterogeneity. -
Cortical Connections Position Primate Area 25 As a Keystone for Interoception, Emotion, and Memory
The Journal of Neuroscience, February 14, 2018 • 38(7):1677–1698 • 1677 Systems/Circuits Cortical Connections Position Primate Area 25 as a Keystone for Interoception, Emotion, and Memory X Mary Kate P. Joyce1,2 and XHelen Barbas1,2 1Graduate Program in Neuroscience, Boston University and School of Medicine, Boston, Massachusetts 02215, and 2Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215 The structural and functional integrity of subgenual cingulate area 25 (A25) is crucial for emotional expression and equilibrium. A25 has a key role in affective networks, and its disruption has been linked to mood disorders, but its cortical connections have yet to be systematically or fully studied. Using neural tracers in rhesus monkeys, we found that A25 was densely connected with other ventrome- dial and posterior orbitofrontal areas associated with emotions and homeostasis. A moderate pathway linked A25 with frontopolar area 10, an area associated with complex cognition, which may regulate emotions and dampen negative affect. Beyond the frontal lobe, A25 was connected with auditory association areas and memory-related medial temporal cortices, and with the interoceptive-related anterior insula. A25 mostly targeted the superficial cortical layers of other areas, where broadly dispersed terminations comingled with modula- tory inhibitory or disinhibitory microsystems, suggesting a dominant excitatory effect. The architecture and connections suggest that A25 is the consummate feedback system in the PFC. Conversely, in the entorhinal cortex, A25 pathways terminated in the middle-deep layers amid a strong local inhibitory microenvironment, suggesting gating of hippocampal output to other cortices and memory storage. The graded cortical architecture and associated laminar patterns of connections suggest how areas, layers, and functionally distinct classes of inhibitory neurons can be recruited dynamically to meet task demands. -
Ontology and Nomenclature
TECHNICAL WHITE PAPER: ONTOLOGY AND NOMENCLATURE OVERVIEW Currently no “standard” anatomical ontology is available for the description of human brain development. The main goal behind the generation of this ontology was to guide specific brain tissue sampling for transcriptome analysis (RNA sequencing) and gene expression microarray using laser microdissection (LMD), and to provide nomenclatures for reference atlases of human brain development. This ontology also aimed to cover both developing and adult human brain structures and to be mostly comparable to the nomenclatures for non- human primates. To reach these goals some structure groupings are different from what is traditionally put forth in the literature. In addition, some acronyms and structure abbreviations also differ from commonly used terms in order to provide unique identifiers across the integrated ontologies and nomenclatures. This ontology follows general developmental stages of the brain and contains both transient (e.g., subplate zone and ganglionic eminence in the forebrain) and established brain structures. The following are some important features of this ontology. First, four main branches, i.e., gray matter, white matter, ventricles and surface structures, were generated under the three major brain regions (forebrain, midbrain and hindbrain). Second, different cortical regions were named as different “cortices” or “areas” rather than “lobes” and “gyri”, due to the difference in cortical appearance between developing (smooth) and mature (gyral) human brains. Third, an additional “transient structures” branch was generated under the “gray matter” branch of the three major brain regions to guide the sampling of some important transient brain lamina and regions. Fourth, the “surface structures” branch mainly contains important brain surface landmarks such as cortical sulci and gyri as well as roots of cranial nerves. -
Differences in Functional Connectivity Along the Anterior-Posterior Axis of Human Hippocampal Subfields
bioRxiv preprint doi: https://doi.org/10.1101/410720; this version posted February 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Differences in functional connectivity along the anterior-posterior axis of human hippocampal subfields Marshall A. Dalton, Cornelia McCormick, Eleanor A. Maguire* Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, UK *Corresponding author: Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, UK T: +44-20-34484362; F: +44-20-78131445; E: [email protected] (E.A. Maguire) Highlights High resolution resting state functional MRI scans were collected We investigated functional connectivity (FC) of human hippocampal subfields We specifically examined FC along the anterior-posterior axis of subfields FC between subfields extended beyond the canonical tri-synaptic circuit Different portions of subfields showed different patterns of FC with neocortex 1 bioRxiv preprint doi: https://doi.org/10.1101/410720; this version posted February 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract There is a paucity of information about how human hippocampal subfields are functionally connected to each other and to neighbouring extra-hippocampal cortices. -
Neuronal Properties and Synaptic Connectivity in Rodent Presubiculum Jean Simonnet
Neuronal properties and synaptic connectivity in rodent presubiculum Jean Simonnet To cite this version: Jean Simonnet. Neuronal properties and synaptic connectivity in rodent presubiculum. Neurons and Cognition [q-bio.NC]. Université Pierre et Marie Curie - Paris VI, 2014. English. NNT : 2014PA066435. tel-02295014 HAL Id: tel-02295014 https://tel.archives-ouvertes.fr/tel-02295014 Submitted on 24 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité Neurosciences École doctorale Cerveau – Cognition – Comportement Présentée par : Jean Simonnet Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Neuronal properties and synaptic connectivity in rodent presubiculum Soutenue le 23.09.2014 devant le jury composé de : Dr Jean-Christophe Poncer Président Dr Dominique Debanne Rapporteur Dr Maria Cecilia Angulo Rapportrice Pr Hannah Monyer Examinatrice Dr Bruno Cauli Examinateur Dr Desdemona Fricker Directrice de thèse Université Pierre & Marie Curie - Paris 6 Tél. Secrétariat : 01 42 34 68 35 Bureau d’accueil, inscription des doctorants Fax : 01 42 34 68 40 et base de données Tél. pour les étudiants de A à EL : 01 42 34 68 41 Esc. -
Differential Connectivity of Perirhinal and Parahippocampal Cortices Within Human Hippocampal Subregions Revealed by High-Resolution Functional Imaging
6550 • The Journal of Neuroscience, May 9, 2012 • 32(19):6550–6560 Behavioral/Systems/Cognitive Differential Connectivity of Perirhinal and Parahippocampal Cortices within Human Hippocampal Subregions Revealed by High-Resolution Functional Imaging Laura A. Libby,1 Arne D. Ekstrom,1,3 J. Daniel Ragland,2 and Charan Ranganath1,3 Departments of 1Psychology and 2Psychiatry and Behavioral Sciences and 3Center for Neuroscience, University of California, Davis, Davis, CA 95616 Numerous studies support the importance of the perirhinal cortex (PRC) and parahippocampal cortex (PHC) in episodic memory. Theories of PRC and PHC function in humans have been informed by neuroanatomical studies of these regions obtained in animal tract-tracing studies, but knowledge of the connectivity of PHC and PRC in humans is limited. To address this issue, we used resting-state functional magnetic resonance imaging to compare the intrinsic functional connectivity profiles associated with the PRC and PHC both across the neocortex and within the subfields of the hippocampus. In Experiment 1, we acquired standard-resolution whole-brain resting-state fMRI data in 15 participants, and in Experiment 2, we acquired high-resolution resting-state fMRI data targeting the hippocampus in an independent sample of 15 participants. Experiment 1 revealed that PRC showed preferential connectivity with the anterior hippocampus, whereas PHC showed preferential connectivity with posterior hippocampus. Experiment 2 indicated that this anterior–posterior functional connectivity dissociation was more evident for subfields CA1 and subiculum than for a combined CA2/ CA3/dentate gyrus region. Finally, whole-brain analyses from Experiment 1 revealed preferential PRC connectivity with an anterior temporal and frontal cortical network, and preferential PHC connectivity with a posterior medial temporal, parietal, and occipital network. -
Connections of Inferior Temporal Areas TE and TEO with Medial Temporal-Lobe Structures in Infant and Adult Monkeys
The Journal of Neuroscience, April 1991, 17(4): 1095-I 116 Connections of Inferior Temporal Areas TE and TEO with Medial Temporal-Lobe Structures in Infant and Adult Monkeys M. J. Webster, L. G. Ungerleider, and J. Bachevalier Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892 As part of a long-term study designed to examine the on- tion. Both elimination and refinement of projections thus ap- togeny of visual memory in monkeys and its underlying neu- pear to characterize the maturation of axonal pathways be- ral circuitry, we have examined the connections between tween the inferior temporal cortex and medial temporal-lobe inferior temporal cortex and medial temporal-lobe structures structures in monkeys. in infant and adult monkeys. Inferior temporal cortical areas TEO and TE were injected with WGA conjugated to HRP and In the course of neural development, numerous mechanisms tritiated amino acids, respectively, or vice versa, in 1 -week- are at play to achieve the final configuration of the mature brain. old and 3-4-yr-old Macaca mulatta, and the distributions of These mechanismsinclude cell death, the growth of dendritic labeled cells and terminals were examined in both limbic spines,and the remodeling of connections. Such remodeling can structures and temporal-lobe cortical areas. In adult mon- take 2 forms. In the first instance, projections become more keys, inferior temporal-limbic connections included projec- restricted. That is, they initially terminate in the appropriate tions from area TEO to the dorsal portion of the lateral nu- area of the brain, but their target fields are considerably more cleus of the amygdala and from area TE to the lateral and widespreadin infancy than they will be later in adulthood.