Wingless Virgin Queens Assume Helper Roles in Acromyrmex Leaf-Cutting Ants

Total Page:16

File Type:pdf, Size:1020Kb

Wingless Virgin Queens Assume Helper Roles in Acromyrmex Leaf-Cutting Ants Magazine R671 animal associations. The technology is plasticity for adopting specific suitable for long-term deployment on Wingless virgin behaviours depending on their age relatively small animals, and overcomes queens assume and the needs of the colony [6], key constraints of other data-collection but their reproductive potential is methods. Importantly, with its high helper roles in always permanently reduced. The sampling rates and excellent tag-to- behavioural repertoires of queens tag detection range, Encounternet can Acromyrmex tend to be limited to mating, colony generate time-resolved association data leaf-cutting ants founding and egg-laying, and needed to link network topologies to this never changes in response biological processes — a key challenge to queen condition. This should in social network analyses [2,3]. Volker Nehring1,2,*, imply that gynes — unmated virgin Jacobus J. Boomsma1, queens —should be cannibalized Supplemental Information and Patrizia d’Ettorre1,3 or otherwise disposed of when Supplemental information including experi- they somehow fail to disperse on mental procedures and two figures can be Division of labour is the hallmark a mating flight, similar to infertile found with this article online at of advanced societies, because diploid males [7,8]. Uselessness for http://dx.doi.org/10.1016/j.cub.2012.06.037. specialization carries major both colony-founding and altruistic efficiency benefits in spite of behaviour means that failed queens Competing Interests Encounternet was conceived and developed costs owing to reduced individual have zero fitness and might thus at the University of Washington, Seattle, USA, flexibility [1]. The trade-off between be even expected to die voluntarily, and BO, JBu and JBo are currently working efficiency and flexibility is expressed as recycling of their tissues and on the technology’s commercial exploitation. throughout the social insects, where prevention of further consumption facultative social species have small of scarce resources will offer them Acknowledgments colonies and reversible caste roles at least some indirect fitness when We thank C. Lambert, T. Mennesson and and advanced eusocial species their resources will benefit properly J.-E. Lombardet for facilitating field logistics, have permanently fixed queen and endowed siblings. C. Anagnostou for field assistance, W. Loo worker castes. This usually implies We observed field colonies of for help with R-code, R.C. Fleischer for that queens irreversibly specialize the leaf-cutting ants Acromyrmex molecular sexing, the BBSRC for funding on reproductive tasks [2]. Here, we echinatior and A. octospinosus that (grant BB/G023913/1 to CR), and the report an exception to this rule by contained several non-inseminated Province Sud and SEM Mwe Ara for generous showing that virgin queens (gynes) wingless gynes besides the mother support in New Caledonia. of the advanced eusocial leaf-cutting queen (Supplemental Information ant Acromyrmex echinatior switch published with this article online). References 1. Krause, J., and Ruxton, G.D. (2002). Living in to carrying out worker tasks such as As these queens had been allowed Groups (Oxford: Oxford Univ. Press). brood care and colony defence when to live, we hypothesized that they 2. Whitehead, H. (2008). Analyzing Animal they fail to mate and disperse. These might still be worth their keep if Societies (Chicago: Chicago Univ. Press). 3. Croft, D.P., James, R., and Krause, J. (2008). behaviours allow them to obtain they would assume helper roles that Exploring Animal Social Networks (Princeton: indirect fitness benefits (through were of value for their colony. To test Princeton Univ. Press). 4. Rutz, C., and Hays, G.C. (2009). New frontiers assisting the reproduction of their this hypothesis, we experimentally in biologging science. Biol. Lett. 5, 289–292. mother) after their direct fitness removed the wings of normal 5. Hunt, G.R. (1996). Manufacture and use of options (their own reproduction) gynes and quantified worker-like hook-tools by New Caledonian crows. Nature 379, 249–251. have become moot. We hypothesize behaviours. As controls, we used 6. Hunt, G.R., and Gray, R.D. (2003). that this flexibility could (re-)evolve both completely un-manipulated Diversification and cumulative evolution in New Caledonian crow tool manufacture. Proc. secondarily because these ants only gynes, and gynes with one middle R. Soc. B 270, 867–874. feed on fungal mycelium and thus leg removed. This mutilation was not 7. Rutz, C., Bluff, L.A., Weir, A.A.S., and Kacelnik, could not benefit from cannibalising expected to affect normal behaviour A. (2007). Video cameras on wild birds. Science 318, 765. redundant gynes, and because as queens missing a leg are 8. Laland, K.N. (2008). Animal cultures. Curr. Biol. queens have retained behavioural occasionally observed as functional 18, R366–R370. 9. Holzhaider, J.C., Sibley, M.D., Taylor, A.H., repertoires for foraging, nursing, colony mothers. Singh, P.J., Gray, R.D., and Hunt, G.R. (2011). and defense, which they naturally Acromyrmex gynes with their The social structure of New Caledonian crows. express during colony founding. wings experimentally removed were Anim. Behav. 81, 83–92. 10. Whitehead, H., and Lusseau, D. (2012). Animal Permanence of caste is the most more likely to conduct worker tasks: social networks as substrate for cultural fundamental difference between unlike the control gynes, they took behavioural diversity. J. Theor. Biol. 294, 19–28. eusocial and cooperative breeding care of brood that we introduced 1Department of Zoology, University of Oxford, [2]. Helpers of the latter category into experimental nests (Figure 1A,B) South Parks Road, Oxford OX1 3PS, UK. may become breeders later in and they attacked non-nestmates 2Present address: School of Biology, University life and thus retain full flexibility (Figure 1C). A second nestmate of St Andrews, St Andrews KY16 9TH, UK. towards the eventual pursuit of recognition experiment, in which 3Department of Physics, University of Bath, direct fitness. Illustrative examples tethered gynes were presented with 4 Bath BA2 7AY, UK. School of Biological are cooperatively breeding birds, nestmate or non-nestmate odour, Sciences, University of Auckland, PB 92019, Auckland 1142, NZ. 5Department of Electrical paper wasps and some Ponerinae showed that both the control and Engineering, University of Washington, Seattle, ants [3–5]. Workers of eusocial wingless gynes were equally able to WA 98195-3770, USA. ants and honeybees, by contrast, discriminate between nestmate and *E-mail: [email protected] at best retain some phenotypic non-nestmate cues (Figure 1D). Current Biology Vol 22 No 17 R672 is not an oversight by generations of natural historians, but that there are likely to be two selection forces that make working/defending gynes particularly probable in fungus- growing ants such as Acromyrmex. First, Acromyrmex queens are semiclaustral, which means that they forage during colony founding, unlike the claustral queens of most ants that seal their founding burrow to live on body reserves until their first workers hatch [9]. Acromyrmex gynes have thus retained a working and defending repertoire that becomes temporarily expressed in response to dispersal and insemination, so could easily be co-opted. Second, attine ants consume almost exclusively fungal tissue, and are thus likely to have lost the ability to digest animal tissue. Acromyrmex fungus-gardens have also never been observed to contain parts of dead insects as substrate in any appreciable amount [10]. This means that workers cannot recoup investments that went into raising reproductives, so they may as well let wingless gynes serve the colony while living on the fat and carbohydrate reserves that Figure 1. Virgin queens (gynes) as helpers in Acromyrmex leaf-cutting ants. were deposited to prepare them Wingless Acromyrmex gynes carry out worker behaviour in contrast to winged control gynes for founding a new colony. This (leg-mutilated and un-manipulated). (A and B) They transported brood items back to their would imply that wingless gynes fungus garden (three colonies tested) and (C) attacked non-nestmate intruders, while control expressing worker behaviour are gynes rarely engaged in these behaviours (boxplots show interquartile ranges and medians; not expected to be fed, because whiskers cover all data points; four colonies tested in the field and laboratory, see also Figure their existence only makes sense S1). Gynes hardly ever attacked nestmates (p < 0.001, interaction gyne type x intruder p < 0.001). (D) Tethered wingless gynes and control gynes were all able to discriminate non-nest- when their siblings profit at no mates from nestmates: all three types of gynes were more prone to opening their mandibles cost. However, our current set-up (showing threat) when confronted with non-nestmate than with nestmate odour or solvent (p < did not allow us to investigate this 0.05, three colonies). Wingless gynes were generally more likely to open their mandibles than possibility. other gynes (p < 0.05), consistent with expression of more aggressive behaviour; the ability to We hypothesize that the same discriminate between nestmate and non-nestmate odours was, however, similar for all gynes logic may apply in other attine ants (interaction odour x gyne type p > 0.05). Sample sizes are indicated above the bars and boxes (*** p < 0.001, * p < 0.05, n.s. p > 0.05). and that soldier/nurse gynes might occur also in
Recommended publications
  • The Mesosomal Anatomy of Myrmecia Nigrocincta Workers and Evolutionary Transformations in Formicidae (Hymeno- Ptera)
    7719 (1): – 1 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. The mesosomal anatomy of Myrmecia nigrocincta workers and evolutionary transformations in Formicidae (Hymeno- ptera) Si-Pei Liu, Adrian Richter, Alexander Stoessel & Rolf Georg Beutel* Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; Si-Pei Liu [[email protected]]; Adrian Richter [[email protected]]; Alexander Stößel [[email protected]]; Rolf Georg Beutel [[email protected]] — * Corresponding author Accepted on December 07, 2018. Published online at www.senckenberg.de/arthropod-systematics on May 17, 2019. Published in print on June 03, 2019. Editors in charge: Andy Sombke & Klaus-Dieter Klass. Abstract. The mesosomal skeletomuscular system of workers of Myrmecia nigrocincta was examined. A broad spectrum of methods was used, including micro-computed tomography combined with computer-based 3D reconstruction. An optimized combination of advanced techniques not only accelerates the acquisition of high quality anatomical data, but also facilitates a very detailed documentation and vi- sualization. This includes fne surface details, complex confgurations of sclerites, and also internal soft parts, for instance muscles with their precise insertion sites. Myrmeciinae have arguably retained a number of plesiomorphic mesosomal features, even though recent mo- lecular phylogenies do not place them close to the root of ants. Our mapping analyses based on previous morphological studies and recent phylogenies revealed few mesosomal apomorphies linking formicid subgroups. Only fve apomorphies were retrieved for the family, and interestingly three of them are missing in Myrmeciinae. Nevertheless, it is apparent that profound mesosomal transformations took place in the early evolution of ants, especially in the fightless workers.
    [Show full text]
  • The Genome of the Leaf-Cutting Ant Acromyrmex Echinatior Suggests Key Adaptations to Advanced Social Life and Fungus Farming
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Research The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming Sanne Nygaard,1,9,11 Guojie Zhang,2,9 Morten Schiøtt,1,9 Cai Li,2,9 Yannick Wurm,3,4 Haofu Hu,2 Jiajian Zhou,2 Lu Ji,2 Feng Qiu,2 Morten Rasmussen,5 Hailin Pan,2 Frank Hauser,6 Anders Krogh,5,7,8 Cornelis J.P. Grimmelikhuijzen,6 Jun Wang,2,7,10,11 and Jacobus J. Boomsma1,10 1Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; 2BGI-Shenzhen, Shenzhen 518083, China; 3Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; 4Vital-IT Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; 5Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350 Copenhagen, Denmark; 6Centre for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; 7Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark; 8Biotech Research and Innovation Center, University of Copenhagen, Copenhagen DK-2200, Denmark We present a high-quality (>100 3depth) Illumina genome sequence of the leaf-cutting ant Acromyrmex echinatior, a model species for symbiosis and reproductive conflict studies. We compare this genome with three previously sequenced genomes of ants from different subfamilies and focus our analyses on aspects of the genome likely to be associated with known evolutionary changes. The first is the specialized fungal diet of A.
    [Show full text]
  • Dense Active Matter Model of Motion Patterns in Confluent Cell Monolayers Henkes, Silke; Kostanjevec, Kaja; Collinson, J
    University of Dundee Dense active matter model of motion patterns in confluent cell monolayers Henkes, Silke; Kostanjevec, Kaja; Collinson, J. Martin; Sknepnek, Rastko; Bertin, Eric Published in: Nature Communications DOI: 10.1038/s41467-020-15164-5 Publication date: 2020 Licence: CC BY Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Henkes, S., Kostanjevec, K., Collinson, J. M., Sknepnek, R., & Bertin, E. (2020). Dense active matter model of motion patterns in confluent cell monolayers. Nature Communications, 11, [1405]. https://doi.org/10.1038/s41467-020-15164-5 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 29. Sep. 2021 ARTICLE https://doi.org/10.1038/s41467-020-15164-5 OPEN Dense active matter model of motion patterns in confluent cell monolayers ✉ ✉ ✉ Silke Henkes 1,2 , Kaja Kostanjevec3, J.
    [Show full text]
  • The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • Plasticity of Cell Migration Resulting from Mechanochemical Coupling Yuansheng Cao†, Elisabeth Ghabache†, Wouter-Jan Rappel*
    RESEARCH ARTICLE Plasticity of cell migration resulting from mechanochemical coupling Yuansheng Cao†, Elisabeth Ghabache†, Wouter-Jan Rappel* Department of Physics, University of California, San Diego, La Jolla, United States Abstract Eukaryotic cells can migrate using different modes, ranging from amoeboid-like, during which actin filled protrusions come and go, to keratocyte-like, characterized by a stable morphology and persistent motion. How cells can switch between these modes is not well understood but waves of signaling events are thought to play an important role in these transitions. Here we present a simple two-component biochemical reaction-diffusion model based on relaxation oscillators and couple this to a model for the mechanics of cell deformations. Different migration modes, including amoeboid-like and keratocyte-like, naturally emerge through transitions determined by interactions between biochemical traveling waves, cell mechanics and morphology. The model predictions are explicitly verified by systematically reducing the protrusive force of the actin network in experiments using Dictyostelium discoideum cells. Our results indicate the importance of coupling signaling events to cell mechanics and morphology and may be applicable in a wide variety of cell motility systems. DOI: https://doi.org/10.7554/eLife.48478.001 Introduction Eukaryotic cell migration is a fundamental biological process that is essential in development and wound healing and plays a critical role in pathological diseases, including inflammation and
    [Show full text]
  • Inter-Kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration Through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway
    http://www.diva-portal.org This is the published version of a paper published in PLoS Pathogens. Citation for the original published paper (version of record): Simon, S., Schell, U., Heuer, N., Hager, D., Albers, M F. et al. (2015) Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway. PLoS Pathogens, 11(12): e1005307 http://dx.doi.org/10.1371/journal.ppat.1005307 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-114332 RESEARCH ARTICLE Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42- ARHGEF9-Dependent Pathway Sylvia Simon1,2, Ursula Schell1, Natalie Heuer3, Dominik Hager4, Michael F. Albers5, Jan Matthias3, Felix Fahrnbauer4, Dirk Trauner4, Ludwig Eichinger3, Christian Hedberg5,6, Hubert Hilbi1,2* 1 Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany, 2 Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland, 3 Institute of Biochemistry I, University of Cologne, Cologne, Germany, 4 Department of Chemistry, Ludwig-Maximilians University, Munich, Germany, 5 Department of Chemistry and Umeå Center for Microbial Research, Umeå University, Umeå, Sweden, 6 Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany * [email protected] OPEN ACCESS Citation: Simon S, Schell U, Heuer N, Hager D, Abstract Albers MF, Matthias J, et al. (2015) Inter-kingdom Signaling by the Legionella Quorum Sensing Small molecule signaling promotes the communication between bacteria as well as Molecule LAI-1 Modulates Cell Migration through an between bacteria and eukaryotes.
    [Show full text]
  • Hymenoptera: Formicidae) in Brazilian Forest Plantations
    Forests 2014, 5, 439-454; doi:10.3390/f5030439 OPEN ACCESS forests ISSN 1999-4907 www.mdpi.com/journal/forests Review An Overview of Integrated Management of Leaf-Cutting Ants (Hymenoptera: Formicidae) in Brazilian Forest Plantations Ronald Zanetti 1, José Cola Zanuncio 2,*, Juliana Cristina Santos 1, Willian Lucas Paiva da Silva 1, Genésio Tamara Ribeiro 3 and Pedro Guilherme Lemes 2 1 Laboratório de Entomologia Florestal, Universidade Federal de Lavras, 37200-000, Lavras, Minas Gerais, Brazil; E-Mails: [email protected] (R.Z.); [email protected] (J.C.S.); [email protected] (W.L.P.S.) 2 Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; E-Mail: [email protected] 3 Departamento de Ciências Florestais, Universidade Federal de Sergipe, 49100-000, São Cristóvão, Sergipe State, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-31-389-925-34; Fax: +55-31-389-929-24. Received: 18 December 2013; in revised form: 19 February 2014 / Accepted: 19 February 2014 / Published: 20 March 2014 Abstract: Brazilian forest producers have developed integrated management programs to increase the effectiveness of the control of leaf-cutting ants of the genera Atta and Acromyrmex. These measures reduced the costs and quantity of insecticides used in the plantations. Such integrated management programs are based on monitoring the ant nests, as well as the need and timing of the control methods. Chemical control employing baits is the most commonly used method, however, biological, mechanical and cultural control methods, besides plant resistance, can reduce the quantity of chemicals applied in the plantations.
    [Show full text]
  • Acromyrmex Ameliae Sp. N. (Hymenoptera: Formicidae): a New Social Parasite of Leaf-Cutting Ants in Brazil
    © 2007 The Authors Insect Science (2007) 14, 251-257 Acromyrmex ameliae new species 251 Journal compilation © Institute of Zoology, Chinese Academy of Sciences Acromyrmex ameliae sp. n. (Hymenoptera: Formicidae): A new social parasite of leaf-cutting ants in Brazil DANIVAL JOSÉ DE SOUZA1,3, ILKA MARIA FERNANDES SOARES2 and TEREZINHA MARIA CASTRO DELLA LUCIA2 1Institut de Recherche sur la Biologie de l’Insecte, Université François Rabelais, Tours, France, 2Departamento de Biologia Animal and 3Laboratório de Ecologia de Comunidades, Departamento de Biologia Geral, Universidade Federal de Viçosa, MG, 36570-000, Brazil Abstract The fungus-growing ants (Tribe Attini) are a New World group of > 200 species, all obligate symbionts with a fungus they use for food. Four attine taxa are known to be social parasites of other attines. Acromyrmex (Pseudoatta) argentina argentina and Acromyrmex (Pseudoatta) argentina platensis (parasites of Acromyrmex lundi), and Acromyrmex sp. (a parasite of Acromyrmex rugosus) produce no worker caste. In contrast, the recently discovered Acromyrmex insinuator (a parasite of Acromyrmex echinatior) does produce workers. Here, we describe a new species, Acromyrmex ameliae, a social parasite of Acromyrmex subterraneus subterraneus and Acromyrmex subterraneus brunneus in Minas Gerais, Brasil. Like A. insinuator, it produces workers and appears to be closely related to its hosts. Similar social parasites may be fairly common in the fungus-growing ants, but overlooked due to the close resemblance between parasite and host workers. Key words Acromyrmex, leaf-cutting ants, social evolution, social parasitism DOI 10.1111/j.1744-7917.2007.00151.x Introduction species can coexist as social parasites in attine colonies, consuming the fungus garden (Brandão, 1990; Adams The fungus-growing ants (Tribe Attini) are a New World et al., 2000).
    [Show full text]
  • The Adaptive Significance of Inquiline Parasite Workers
    Received 5December 2002 Accepted 29January 2003 Publishedonline 30April 2003 Theadaptive significance of inquilineparasite workers Seirian Sumner * ,David R.Nash and Jacobus J.Boomsma Departmentof Population Ecology, Zoological Institute, University ofCopenhagen, Universitetsparken 15, DK-2100Copenhagen, Denmark Social parasites exploit thesocially managed resourcesof their host’s society.Inquiline social parasites are dependenton their hostthroughout their life cycle,and so many ofthe traits inherited from their free-living ancestorare removedby natural selection.One trait that is commonly lostis theworker caste, thefunctions of which are adequately fulfilled by hostworkers. The fewinquiline parasites that have retaineda worker casteare thought tobe at atransitional stage in theevolution of social parasitism, and their worker castesare consideredvestigial andnon-adaptive. However, this idea has notbeen tested. Furthermore, whetherinquiline workershave anadaptive role outsidethe usual worker repertoire of foraging, broodcare andcolony maintenance has notbeen examined. In this paper, wepresentdata that suggestthat workersof the inquiline ant Acromyrmexinsinuator play avital role in ensuringthe parasite’ s fitness.We show that thepresence of these parasite workershas apositive effecton the production of parasite sexualsand a negative effecton the production of host sexuals. This suggeststhat inquiline workersplay avital role in suppressinghost queen reproduction, thus promoting therearing ofparasite sexuals.To ourknowledge, these are thefirst
    [Show full text]
  • As a Generative Model of Collective Cell Migration Mechanisms Arnab Barua1,2,6, Josue M
    www.nature.com/scientificreports OPEN A least microenvironmental uncertainty principle (LEUP) as a generative model of collective cell migration mechanisms Arnab Barua1,2,6, Josue M. Nava‑Sedeño2,4,6, Michael Meyer‑Hermann1,3 & Haralampos Hatzikirou1,2,5* Collective migration is commonly observed in groups of migrating cells, in the form of swarms or aggregates. Mechanistic models have proven very useful in understanding collective cell migration. Such models, either explicitly consider the forces involved in the interaction and movement of individuals or phenomenologically defne rules which mimic the observed behavior of cells. However, mechanisms leading to collective migration are varied and specifc to the type of cells involved. Additionally, the precise and complete dynamics of many important chemomechanical factors infuencing cell movement, from signalling pathways to substrate sensing, are typically either too complex or largely unknown. The question is how to make quantitative/qualitative predictions of collective behavior without exact mechanistic knowledge. Here we propose the least microenvironmental uncertainty principle (LEUP) that may serve as a generative model of collective migration without precise incorporation of full mechanistic details. Using statistical physics tools, we show that the famous Vicsek model is a special case of LEUP. Finally, to test the biological applicability of our theory, we apply LEUP to construct a model of the collective behavior of spherical Serratia marcescens bacteria, where the underlying migration mechanisms remain elusive. Collective movement of dense populations is observed in several biological systems at diferent scales, from mas- sive migration of mammals 1 to cells during embryogenesis 2. In these systems, individuals which are able to propel themselves independently and interact with other nearby, start moving in a coordinated fashion once enough similar individuals are brought together.
    [Show full text]
  • Candida Albicans Quorum Sensing Molecules Stimulate Mouse Macrophage Migration Jessica C
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Kenneth Nickerson Papers Papers in the Biological Sciences 2015 Candida albicans Quorum Sensing Molecules Stimulate Mouse Macrophage Migration Jessica C. Hargarten University of Nebraska - Lincoln Tyler C. Moore University of Nebraska - Lincoln Thomas M. Petro University of Nebraska Medical Center, [email protected] Kenneth W. Nickerson University of Nebraska - Lincoln, [email protected] Audrey L. Atkin University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscinickerson Part of the Environmental Microbiology and Microbial Ecology Commons, Other Life Sciences Commons, and the Pathogenic Microbiology Commons Hargarten, Jessica C.; Moore, Tyler C.; Petro, Thomas M.; Nickerson, Kenneth W.; and Atkin, Audrey L., "Candida albicans Quorum Sensing Molecules Stimulate Mouse Macrophage Migration" (2015). Kenneth Nickerson Papers. 1. https://digitalcommons.unl.edu/bioscinickerson/1 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Nickerson Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Candida albicans Quorum Sensing Molecules Stimulate Mouse Macrophage Migration Jessica C. Hargarten,a Tyler C. Moore,a* Thomas M. Petro,b Kenneth W. Nickerson,a Audrey L. Atkina School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USAa; Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska, USAb The polymorphic commensal fungus Candida albicans causes life-threatening disease via bloodstream and intra-abdominal infections in immunocompromised and transplant patients. Although host immune evasion is a common strategy used by suc- cessful human fungal pathogens, C.
    [Show full text]
  • “Building Behaviour and the Control of Nest Climate in Acromyrmex Leaf Cutting Ants”
    “Building behaviour and the control of nest climate in Acromyrmex leaf-cutting ants” Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Leonardo Martin Bollazzi Sosa Aus Las Piedras, Uruguay. Würzburg, März 2008 2 Eingereicht am: 19 März 2008 Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. M. J. Müller Gutachter: Prof. Dr. Flavio Roces Gutachter: Prof. Dr. Judith Korb Tag des Promotionskolloquiums: 28 Mai 2008 Doktorurkunde ausgehändigt am: …………………………………………………… 3 Contents Summary..................................................................................................................................6 Zusammenfassung ...............................................................................................................9 1. Introduction and general aim...................................................................................12 1.1. Specific aims and experimental approach.........................................................14 2. Thermal preference for fungus culturing and brood location by workers of the thatching grass-cutting ant Acromyrmex heyeri.................................................16 2.1. Introduction............................................................................................................16 2.2. Methods..................................................................................................................18 2.3. Results....................................................................................................................19
    [Show full text]