CIS 680 XML Pointer Language (Xpointer) Xpointer, the XML

Total Page:16

File Type:pdf, Size:1020Kb

CIS 680 XML Pointer Language (Xpointer) Xpointer, the XML CIS 680 XML Pointer Language (XPointer) XPointer, the XML Pointer Language, defines an addressing scheme for individual parts of an XML document. These addresses can be used by any application that needs to identify parts of or locations in an XML document. For instance, an XML editor could use an XPointer to identify the current position of the insertion point or the range of the selection. An XInclude processor can use an XPointer to determine what part of a document to include. And the URI in an XLink can include an XPointer fragment identifier that locates one particular element in the targeted document. XPointers use the same XPath syntax that you're familiar with from XSL transformations to identify the parts of the document they point to, along with a few additional pieces. For the moment, therefore, an XPointer can be used as an index into a complete document, the whole of which is loaded and then positioned at the location identified by the XPointer, and even this much is more than most browsers can handle. In the long-term, extensions to XML, XLink, HTTP, and other protocols may allow more sophisticated uses of XPointers. For instance, XInclude will let you quote a remote document by using an XPointer to tell browsers where to copy the quote in the original document, rather than retyping the text of the quote. You could include cross-references inside a document that automatically update themselves as the document is revised. These uses, however, will have to wait for the development of several next-generation technologies. For now, you must be content with precisely identifying the part of a document you want to jump to when following an XLink. Points Selecting a particular element or node is almost always good enough for pointing into well-formed XML documents. However, on occasion you may need to point into XML data in which large chunks of non-XML text is embedded via CDATA sections, comments, processing instructions, or some other means. In these cases, you may need to refer to particular ranges of text in the document that don't map onto any particular markup element. Or, you may need to point into non-XML substructure in the text content of particular elements; for example the month in a BORN element that looks like this: <BORN>11 Feb 1858</BORN> An XPath expression can identify an element node, an attribute node, a text node, a comment node, or a processing instruction node. However, it can't indicate the first two characters of the BORN element (the date) or the substring of text between the first space and the last space in the BORN element (the month). XPointer generalizes XPath to allow identifiers like this. An XPointer can address points in the document and ranges between points. These may not correspond to any one node. For instance, the place between the X and the P in the word XPointer at the beginning of this paragraph is a point. The place between the t and the h in the word this at the end of the first sentence of this paragraph is another point. The text fragment "Pointer generalizes XPath to allow pointers like t" between those two points is a range. Every point is either between two nodes or between two characters in the parsed character data of a document. To make sense of this, you have to remember that parsed character data is part of a text node. For instance, consider this very simple but well-formed XML document: <GREETING> Hello </GREETING> There are exactly 3 nodes and 14 distinct points in this document. The nodes are the root node, which contains the GREETING element node, which contains a text node. In order the points are: • 1. The point before the root node • 2. The point before the GREETING element node • 3. The point before the text node containing the text "Hello" (as well as any white space) • 4. The point before the line break between <GREETING> and Hello • 5. The point before the first H in Hello • 6. The point between the H and the e in Hello • 7. The point between the e and the l in Hello • 8. The point between the l and the l in Hello • 9. The point between the l and the o in Hello • 10. The point after the o in Hello • 11. The point after the line break between Hello and </GREETING> • 12. The point after the text node node containing the text "Hello" • 13. The point after the GREETING element • 14. The point after the root node Points allow XPointers to indicate arbitrary positions in the parsed character data of a document. They do not, however, enable pointing at a position in the middle of a tag . In essence, what points add is the ability to break up the text content into smaller nodes, one for each character. A point is selected by using the string-range() function to select a range, then using the start- point () or end-point () function to extract the first or last point from the range. For example, this XPointer selects the point immediately before the D in Domeniquette Celeste Baudean© sNAME element: xpointer(start-point(string-range (id('p1')/NAME,"Domeniquette"))) This XPointer selects the point after the last e in Domeniquette : xpointer(end-point(string-range(id('p1')/NAME,"Domeniquette"))) You can also take the start-point() or end-point() of an element, text, comment, processing instruction, or root node to get the first or last point in that node. Ranges Some applications need to specify a range across a document rather than a particular point in the document. For instance, the selection a user makes with a mouse is not necessarily going to match up with any one element or node. It may start in the middle of one paragraph, extend across a heading and a picture, and then into the middle of another paragraph two pages down. Any contiguous area of a document can be described with a range. A range begins at one point and continues until another point. The start and end points are each identified by a location path. If the CIS 680 XPointer page 2 starting path points to a node set rather than a point, then range-to() will return multiple ranges, one starting from the first point of ecah node in the set. To specify a range, you append /range-to(end-point) to a location path specifying the start point of the range. The parentheses contain a location path specifying the end point of the range. For example, suppose you want to select everything between the first <PERSON> start tag and the last </PERSON> end tag in the family tree document. This XPointer accomplishes that: xpointer(/child::FAMILYTREE/child::PERSON[position()= 1]/range-to(/child::FAMILYTREE/child::PERSON[position()=last()])) Range functions XPointer includes several functions specifically for working with ranges. Most of these operate on location sets. A location set is just a node set that can also contain points and ranges, as well as nodes. The range(location-set) function returns a location set containing one range for each location in the argument. The range is the minimum range necessary to cover the entire location. In essence, this function converts locations to ranges. The range-inside(location-set) function returns a location set containing the interiors of each of the locations in the input. That is, if one of the locations is an element, then the location returned is the content of the element (but not including the start and end tags). However, if the input location is a range or point, then the interior of the location is just the same as the range or point. The start-point(location-set) function returns a location set that contains the first point of each location in the input location set. For example, start-point(//PERSON[1]) returns the point immediately after the first <PERSON> start tag in the document. start-point(//PERSON) returns the set of points immediately after each <PERSON> start tag. The end-point(location-set) function acts the same as start-point() except that it returns the points immediately after each location in its input. String ranges XPointer provides some very basic string-matching capabilities through the string-range() function. This function takes as an argument a location set to search and a substring to search for. It returns a location set containing one range for each nonoverlapping matching substring. You can also provide optional index and length arguments indicating how many characters after the match the range should start and how many characters after the start the range should continue. The basic syntax is: string-range(location-set, substring, index, length) The first argument is an XPath expression that returns a location set specifying which part of the document to search for a matching string. The second substring argument is the actual string to search for. By default, the range returned starts before the first matched character and encompasses all the matched characters. However, the index argument can give a positive number to start after the beginning of the match. For instance, setting it to 2 indicates that the range starts with the second character after the first matched character. The length argument can specify how many characters to include in the range. CIS 680 XPointer page 3 A string range points to an occurrence of a specified string, or a substring of a given string in the text (not markup) of the document. For example, this XPointer finds all occurrences of the string Harold: xpointer(string-range(/,"Harold")) You can change the first argument to specify what nodes you want to look in.
Recommended publications
  • Toward the Discovery and Extraction of Money Laundering Evidence from Arbitrary Data Formats Using Combinatory Reductions
    Toward the Discovery and Extraction of Money Laundering Evidence from Arbitrary Data Formats using Combinatory Reductions Alonza Mumford, Duminda Wijesekera George Mason University [email protected], [email protected] Abstract—The evidence of money laundering schemes exist undetected in the electronic files of banks and insurance firms scattered around the world. Intelligence and law enforcement analysts, impelled by the duty to discover connections to drug cartels and other participants in these criminal activities, require the information to be searchable and extractable from all types of data formats. In this overview paper, we articulate an approach — a capability that uses a data description language called Data Format Description Language (DFDL) extended with higher- order functions as a host language to XML Linking (XLink) and XML Pointer (XPointer) languages in order to link, discover and extract financial data fragments from raw-data stores not co- located with each other —see figure 1. The strength of the ap- Fig. 1. An illustration of an anti-money laundering application that connects proach is grounded in the specification of a declarative compiler to multiple data storage sites. In this case, the native data format at each site for our concrete language using a higher-order rewriting system differs, and a data description language extended with higher-order functions with binders called Combinatory Reduction Systems Extended and linking/pointing abstractions are used to extract data fragments based on (CRSX). By leveraging CRSX, we anticipate formal operational their ontological meaning. semantics of our language and significant optimization of the compiler. Index Terms—Semantic Web, Data models, Functional pro- II.
    [Show full text]
  • O'reilly Xpath and Xpointer.Pdf
    XPath and XPointer John E. Simpson Publisher: O'Reilly First Edition August 2002 ISBN: 0-596-00291-2, 224 pages Referring to specific information inside an XML document is a little like finding a needle in a haystack. XPath and XPointer are two closely related Table of Contents languages that play a key role in XML processing by allowing developers Index to find these needles and manipulate embedded information. By the time Full Description you've finished XPath and XPointer, you'll know how to construct a full Reviews XPointer (one that uses an XPath location path to address document Reader reviews content) and completely understand both the XPath and XPointer features it Errata uses. 1 Table of Content Table of Content ............................................................................................................. 2 Preface............................................................................................................................. 4 Who Should Read This Book?.................................................................................... 4 Who Should Not Read This Book?............................................................................. 4 Organization of the Book............................................................................................ 5 Conventions Used in This Book ................................................................................. 5 Comments and Questions ........................................................................................... 6 Acknowledgments......................................................................................................
    [Show full text]
  • Annotea: an Open RDF Infrastructure for Shared Web Annotations
    Proceedings of the WWW 10th International Conference, Hong Kong, May 2001. Annotea: An Open RDF Infrastructure for Shared Web Annotations Jos´eKahan,1 Marja-Riitta Koivunen,2 Eric Prud’Hommeaux2 and Ralph R. Swick2 1 W3C INRIA Rhone-Alpes 2 W3C MIT Laboratory for Computer Science {kahan, marja, eric, swick}@w3.org Abstract. Annotea is a Web-based shared annotation system based on a general-purpose open RDF infrastructure, where annotations are modeled as a class of metadata.Annotations are viewed as statements made by an author about a Web doc- ument. Annotations are external to the documents and can be stored in one or more annotation servers.One of the goals of this project has been to re-use as much existing W3C technol- ogy as possible. We have reacheditmostlybycombining RDF with XPointer, XLink, and HTTP. We have also implemented an instance of our system using the Amaya editor/browser and ageneric RDF database, accessible through an Apache HTTP server. In this implementation, the merging of annotations with documents takes place within the client. The paper presents the overall design of Annotea and describes some of the issues we have faced and how we have solved them. 1Introduction One of the basic milestones in the road to a Semantic Web [22] is the as- sociation of metadata to content. Metadata allows the Web to describe properties about some given content, even if the medium of this content does not directly provide the necessary means to do so. For example, ametadata schema for digital photos [15] allows the Web to describe, among other properties, the camera model used to take a photo, shut- ter speed, date, and location.
    [Show full text]
  • Advanced XHTML Plug-In for Iserver
    Advanced XHTML Plug-in for iServer Semester work Stefan Malaer <[email protected]> Prof. Dr. Moira C. Norrie Dr. Beat Signer Global Information Systems Group Institute of Information Systems Department of Computer Science 12th October 2005 Copyright © 2005 Global Information Systems Group. Abstract The iServer architecture is an extensible cross-media information platform enabling links between arbitrary typed objects. It provides some fundamental link concepts and is based on a plug-in mechanism to support various media types. The goal of this semester work was to develop a XHTML plug-in for iServer which enables links from XHTML documents to other XHTML documents as well as parts of them. The resulting iServext is a Firefox extension for iServer which provides visualization and authoring functionality for XHTML links. Furthermore, we investigated research in the area of link augmentation and provide an overview of recent technologies. iii iv Contents 1 Introduction 1 2 Augmented Linking 3 2.1 Need for augmented linking ........................... 3 2.1.1 Current link model ............................ 3 2.1.2 Approaches for link augmentation ................... 5 2.2 Related work .................................... 6 2.2.1 Chimera .................................. 6 2.2.2 Hyper-G/Hyperwave ........................... 6 2.2.3 Distributed Link Service ......................... 6 2.2.4 DHM/WWW and Extend Work ..................... 6 2.2.5 HyperScout ................................. 7 2.2.6 Link Visualization with DHTML ..................... 7 2.2.7 Amaya project ............................... 8 2.3 Link integration and authoring ......................... 9 2.4 Link visualization .................................. 11 2.4.1 Today’s link visualization ......................... 11 2.4.2 Possible presentations of link information .............. 11 2.4.3 Examples of link visualization .....................
    [Show full text]
  • Dynamic and Interactive R Graphics for the Web: the Gridsvg Package
    JSS Journal of Statistical Software MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/ Dynamic and Interactive R Graphics for the Web: The gridSVG Package Paul Murrell Simon Potter The Unversity of Auckland The Unversity of Auckland Abstract This article describes the gridSVG package, which provides functions to convert grid- based R graphics to an SVG format. The package also provides a function to associate hyperlinks with components of a plot, a function to animate components of a plot, a function to associate any SVG attribute with a component of a plot, and a function to add JavaScript code to a plot. The last two of these provides a basis for adding interactivity to the SVG version of the plot. Together these tools provide a way to generate dynamic and interactive R graphics for use in web pages. Keywords: world-wide web, graphics, R, SVG. 1. Introduction Interactive and dynamic plots within web pages are becomingly increasingly popular, as part of a general trend towards making data sets more open and accessible on the web, for example, GapMinder (Rosling 2008) and ManyEyes (Viegas, Wattenberg, van Ham, Kriss, and McKeon 2007). The R language and environment for statistical computing and graphics (R Development Core Team 2011) has many facilities for producing plots, and it can produce graphics formats that are suitable for including in web pages, but the core graphics facilities in R are largely focused on static plots. This article describes an R extension package, gridSVG, that is designed to embellish and transform a standard, static R plot and turn it into a dynamic and interactive plot that can be embedded in a web page.
    [Show full text]
  • Bibliography of Erik Wilde
    dretbiblio dretbiblio Erik Wilde's Bibliography References [1] AFIPS Fall Joint Computer Conference, San Francisco, California, December 1968. [2] Seventeenth IEEE Conference on Computer Communication Networks, Washington, D.C., 1978. [3] ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, Los Angeles, Cal- ifornia, March 1982. ACM Press. [4] First Conference on Computer-Supported Cooperative Work, 1986. [5] 1987 ACM Conference on Hypertext, Chapel Hill, North Carolina, November 1987. ACM Press. [6] 18th IEEE International Symposium on Fault-Tolerant Computing, Tokyo, Japan, 1988. IEEE Computer Society Press. [7] Conference on Computer-Supported Cooperative Work, Portland, Oregon, 1988. ACM Press. [8] Conference on Office Information Systems, Palo Alto, California, March 1988. [9] 1989 ACM Conference on Hypertext, Pittsburgh, Pennsylvania, November 1989. ACM Press. [10] UNIX | The Legend Evolves. Summer 1990 UKUUG Conference, Buntingford, UK, 1990. UKUUG. [11] Fourth ACM Symposium on User Interface Software and Technology, Hilton Head, South Carolina, November 1991. [12] GLOBECOM'91 Conference, Phoenix, Arizona, 1991. IEEE Computer Society Press. [13] IEEE INFOCOM '91 Conference on Computer Communications, Bal Harbour, Florida, 1991. IEEE Computer Society Press. [14] IEEE International Conference on Communications, Denver, Colorado, June 1991. [15] International Workshop on CSCW, Berlin, Germany, April 1991. [16] Third ACM Conference on Hypertext, San Antonio, Texas, December 1991. ACM Press. [17] 11th Symposium on Reliable Distributed Systems, Houston, Texas, 1992. IEEE Computer Society Press. [18] 3rd Joint European Networking Conference, Innsbruck, Austria, May 1992. [19] Fourth ACM Conference on Hypertext, Milano, Italy, November 1992. ACM Press. [20] GLOBECOM'92 Conference, Orlando, Florida, December 1992. IEEE Computer Society Press. http://github.com/dret/biblio (August 29, 2018) 1 dretbiblio [21] IEEE INFOCOM '92 Conference on Computer Communications, Florence, Italy, 1992.
    [Show full text]
  • Interactive Topographic Web Mapping Using Scalable Vector Graphics
    University of Nebraska at Omaha DigitalCommons@UNO Student Work 12-1-2003 Interactive topographic web mapping using scalable vector graphics Peter Pavlicko University of Nebraska at Omaha Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork Recommended Citation Pavlicko, Peter, "Interactive topographic web mapping using scalable vector graphics" (2003). Student Work. 589. https://digitalcommons.unomaha.edu/studentwork/589 This Thesis is brought to you for free and open access by DigitalCommons@UNO. It has been accepted for inclusion in Student Work by an authorized administrator of DigitalCommons@UNO. For more information, please contact [email protected]. INTERACTIVE TOPOGRAPHIC WEB MAPPING USING SCALABLE VECTOR GRAPHICS A Thesis Presented to the Department of Geography-Geology and the Faculty of the Graduate College University of Nebraska in Partial Fulfillment of the Requirements for the Degree Master of Arts University of Nebraska at Omaha by Peter Pavlicko December, 2003 UMI Number: EP73227 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation WWisMng UMI EP73227 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 THESIS ACCEPTANCE Acceptance for the faculty of the Graduate College, University of Nebraska, in Partial fulfillment of the requirements for the degree Master of Arts University of Nebraska Omaha Committee ----------- Uf.A [JL___ Chairperson.
    [Show full text]
  • Extended Link Visualization with DHTML: the Web As an Open Hypermedia System
    Extended Link Visualization with DHTML: The Web as an Open Hypermedia System Glenn Oberholzer and Erik Wilde Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology, Z¨urich TIK Report 125 January 2002 Abstract The World Wide Web is by far the most successful hypermedia system, its name often being used synonymously for the Internet. However, it is based on a rather restricted hy- permedia model with limited linking functionality. Even though underlying systems may provide a richer data model, there is still the question of how to present this informa- tion in a Web-based interface in an easily understandable way. Assuming an underlying system similar to Topic Maps, which allows storing, managing, and categorizing meta data and links, we propose a presentation of extended links. We try to provide a usable way for users to handle the additional functionality. The mechanism is based on already available technologies like DHTML. It is one facet of our approach to make the Web more interconnected and to work towards a more richly and openly linked Web. Keywords: Electronic publishing (020), Graphic design (029), Hypermedia (036), Internet (045), World Wide Web (084), XLink, Linkbases, DHTML 1 Introduction Compared to many other hypermedia systems [24,11,16], the linking capabilities of the World Wide Web are rather limited. It only makes use of a few concepts of hypermedia. In recent years, however, new recommendations issued by the W3C like XML [3], XLink [10], and XPointer [9], or ISO/IEC’s Topic Maps [19] have tried to overcome this shortcoming. Due to the popularity of the Web, efforts have to be made to integrate and improve the current system with more sophisticated hypermedia concepts.
    [Show full text]
  • SMIL 2.0 — Interactive Multimedia on the Web Lloyd Rutledge
    SMIL 2.0 — Interactive Multimedia on the Web Lloyd Rutledge Multimedia and Human-Computer Interaction Group CWI, Amsterdam, The Netherlands W3C SYMM working group Lynda Hardman, Jacco van Ossenbruggen: CWI Dick Bulterman, Jack Jansen, Sjoerd Mullender: Oratrix W3C SYMM working group http://www.cwi.nl/~media/SMIL/Tutorial/{SMIL-4hr.html} Includes material from the upcoming book "SMIL 2.0 — Interactive Multimedia on the Web" Copyright © 2002, Lloyd Rutledge Synchronized Multimedia Integration Language (SMIL) Main Points Pronounced smile Multimedia for the Web — for multimedia what HTML is for hypertext Integration format for presentable mono-medium formats Structure SMIL 1.0 — W3C Recommendation on 15th June 1998 SMIL 2.0 "meta-language" W3C Recommendation on 7th August 2001 SMIL 2.0 family formats SMIL Profile and SMIL Basic released with SMIL 2.0 SMIL 2.0 family format XHTML+SMIL comes after SMIL 2.0 Main Themes Powerful timing and synchronization Adaptive to users and systems Models a flexible but consistent presentation and user interface SMIL Isn't Flash — Flash is mono-medium animation on steriods MPEG-{4 / 7 / 21} — MPEG looks at content and coding, and player architecture and a whole lot more, but is more media centric than web centric D-HTML — D-HTML uses scripted definitions of local behaviors, without a notion of the presentation's context SMIL 2.0 Profiles What is a Profile? A language for which a browser can be built A combination of modules from the SMIL 2.0 "meta-language" Possibly non-SMIL constructs with SMIL constructs
    [Show full text]
  • XML Projects in Japan and Fujitsu's Approach to Xlink/Xpointer
    UDC 621.395.74:651.55:681.32 XML Projects in Japan and Fujitsu’s Approach to XLink/XPointer VToshimitsu Suzuki VMasatomo Goto (Manuscript received June 2, 2000) The Extensible Markup Language (XML)1) is a markup language developed in response to a recommendation by the World Wide Web Consortium (W3C).2) It is a meta lan- guage used to make an information structure. XML’s original specification is the Stan- dard Generalized Markup Language (SGML).3) Now, XML is used not only as a format language but also as a framework in various areas beyond the SGML field. This paper describes the XML technology trends, the current state of XML technology, and some case studies in Japan and at Fujitsu. This paper also describes HyBrick,4) which is an XML/SGML browser that was demonstrated at SGML’97, and the XLink5)/XPointer6) technology. 1. Introduction verified through these experiments. The specification of XML has been in use by Up to now, XML has been related to infor- the W3C since 1996. XML version 1.0 was released mation technology (IT), and because of the IT as a W3C recommendation in February 1998. revolution it is becoming a secure part of the foun- XML is a meta language for marking up informa- dation of new IT systems. Last year, a lineup of tion. XML’s original specification is the Standard XML parsers and other XML basic software ap- Generalized Markup Language (SGML), which is peared, establishing a development environment used to mark up documents for archiving and re- for application software.
    [Show full text]
  • What Are... Xlink and Xpointer?
    What Are... XLink and XPointer? Brian Kelly explains XLink and XPointer. This article appears in the Web, and not the print version of Ariadne. Background The What Is ...? article in the last edition of Ariadne gave an introduction to XML, the Extensible Markup Language [1]. XML has been developed to overcome HTML's lack of extensibility - with XML you will be able to define your own element tags. We have already seen a variety of communities defining element tags for use within their community, such as MathML [2] and MusicML [3]. Besides lacking extensibility, HTML is also limited in its hyperlinking functionality. XLink and XPointer are currently being developed in order to address these limitations. XLink In HTML hyperlinking is normally achieved using the <A> (anchor) element. This provides a simple uni- directional link: normally clicking on a hypertext link will cause the current document to be replaced by a new document. XLink [4] provides much richer hyperlinking functionality which the hypertext community have argued is needed in order to provide a richer web infrastructure. XLink enables multiple destinations to be provided. For example consider the XML portion illustrated below. <p>What is an <a xml:link="extended"> <locator href="glossary.xml" role="Glossary definition"> <locator href="http://www.w3.org/TR/" role="XML Link specification"> <locator href="tutorial.xml" role="Tutorial"> <locator href="quiz.xml" role="Quiz">XLink?</a></p> This could be rendered by a conforming XML browser as shown in Figure 1. XLink also enables a variety of link behaviours to be specified, including embedding the resource in the original document, replacing the original document and creating a new window.
    [Show full text]
  • Web Engineering § Easy to Author for Non-Computer-Experts
    HTML – Design Goals ¨ simple Web Engineering § easy to author for non-computer-experts Prof. Dr. Dr. h.c. mult. Gerhard Krüger, Albrecht Schmidt ¨ application independent § any application should be possible Universität Karlsruhe ¨ platform independent Fakultät für Informatik § focus on content not on presentation Institut für Telematik ¨ defined by means of SGML Wintersemester 2000/2001 § HTML DTD from version HTML 2.0 on Prof. Dr. Dr. h.c. mult . Gerhard Krüger, Albrecht Schmidt: Web Engineering, WS00/01 page 1 Prof. Dr. Dr. h.c. mult . Gerhard Krüger, Albrecht Schmidt: Web Engineering, WS00/01 page 3 Example-Document <html> <head> <meta name="Author" content="Albrecht Schmidt"> <title>Web Engineering - Homepage</title> </head> <body bgcolor="#000000" text="#FFFFFF" link="#999999" Web Engineering vlink="#CCCCCC" alink="#666666"> <h1> Web Engineering - Homepage< br> ... <a href="/lehre/webe/unterlagen.html"><br> Chapter 3: The Web – An Information System <img SRC="/lehre/webe/unterlagen .gif" height=40 width=140 alt="Unterlagen" border=0 align=ABSCENTER></a> .... <h3>Art der Veranstaltung: Vorlesung, 2 SWS</h3> ... &nbsp; ... </body></html> Prof. Dr. Dr. h.c. mult . Gerhard Krüger, Albrecht Schmidt: Web Engineering, WS00/01 page 2 Prof. Dr. Dr. h.c. mult . Gerhard Krüger, Albrecht Schmidt: Web Engineering, WS00/01 page 4 HTML - Development HTML - HEAD ¨ 1990 HTML ¨ HEAD § CERN - first implementation § TITLE ¨ 1991 HTML+ § LINK § Implementation in the Arena Browser ¨ link to other documents, e.g. Style Sheet ¨ 1994 HTML 2.0 ¨ specifying relation to other Documents § Combined features from Mosaic, Arena and other browsers § META ¨ e.g. Forms § SCRIPT § then Netscape was founded – browser are ahead of definitions § STYLE ¨ 1997 HTML 3.2 ¨ embedded Style Sheet § when published far behind the state of the art § functionality ¨ z.B.
    [Show full text]