FPGA Emulation of Quantum Circuits

Total Page:16

File Type:pdf, Size:1020Kb

FPGA Emulation of Quantum Circuits FPGA Emulation of Quantum Circuits Ahmed Usman Khalid Zeljko Zilic Katarzyna Radecka Microelectronics and Computer Microelectronics and Computer Department of Electrical and Systems Laboratory Systems Laboratory Computer Engineering McGill University McGill University Concordia University Montreal, Quebec Montreal, Quebec Montreal, Quebec Email: [email protected] Email: [email protected] Email: [email protected] Abstract— Quantum computing offers immense speedup in tems, it is advantageous to have a hardware emulator which performing tasks such as data encryption and searching. The approximates quantum effects, but mimics the parallel nature quantum algorithms can be modeled using classical computing of quantum computation more closely than software-based devices, however classical computer simulations cannot deal efficiently with the parallelism present in quantum algorithms. simulators. The quantum circuit model for quantum algorithms is sufficient Quantum circuits are one convenient way of describing to describe the known quantum algorithms. Using analogies quantum algorithms. Such circuits comprise of analogues to between quantum and digital circuits, we design the emulator of digital bits and gates. These components can be emulated quantum algorithms in FPGAs that allows efficient experimen- in existing FPGAs, which can map inherently parallel com- tation with new quantum algorithms. This paper concentrates on new techniques for modeling quantum circuits, including the putational tasks more efficiently than software simulations. entanglement and probabilistic computing realization, as well as For this reason, we investigate the design of quantum circuit the critical issues in the required precision of computing. emulators by classical circuits, and devise an FPGA-based quantum circuit emulator. Using quantum circuit primitives, I. INTRODUCTION the construction of new quantum algorithms becomes intuitive There is an increased interest in quantum computing and and similar to the common software library approaches. algorithms [5]. Many quantum algorithms outperform their The paper is organized as follows. In Section II, we provide classical counterparts through parallelism that is impossible in the background on quantum computation. In Section III, we classical computing. Quantum algorithms use physical effects give details of our quantum circuit emulation system, followed like entanglement and super-position to achieve the speedup. by several case studies and performance analysis in Section IV. These effects are hard to replicate at large scale and lead to reliability and precision issues, as well as to the need to II. BACKGROUND employ suitable quantum measurement procedures [1]. Nev- ertheless, some of the quantum effects have been successfully In this section, we provide a brief review of the concepts used in practical applications such as data encryption and com- in quantum computing that have implications to the design of munication [5]. Further, several quantum-computing systems a quantum circuit emulator. are being developed [7]. IBM has developed a small-scale A. Probabilistic vs. Deterministic Computing quantum machine that is able to execute the celebrated Shor’s algorithms for factoring numbers. However, creating larger One of the major distinctions of quantum computing is and more practical quantum computers is still not possible, that it is probabilistic and that quantum algorithms have to as knowledge about building quantum systems is still in its deal with the reality of measurement errors. Surprisingly, infancy. To develop quantum algorithms, simulation models this difference often gets overlooked when modeling quantum nevertheless suffice. circuits and most modeling approaches still try to make the Feynman noted that a quantum computer can be modeled simulations fit within the deterministic mode of computation. efficiently only by another quantum machine. In absence Deterministic circuits present a computation model where of large-scale quantum machines, quantum algorithms are results of the computation can be obtained without any mea- currently being simulated by classical computers. Modeling surement error. A classical (non-quantum) probabilistic circuit of quantum processes in software is the arduous task that is runs a series of inputs through the network of gates and outputs currently facilitated mostly by quantum computing libraries the bits according to the probability distribution induced by the [3], [11], [12]. The challenge here comes from the need for given network. Hence, in probabilistic computing the result using approximations of quantum processes, as their exact of computation cannot be determined correctly every time a representation in classical computing is not possible. Even by measurement of the result is made. Consequently, there is using approximations, it is estimated that a single simulation a probability of an error in measuring probabilistic circuit run over a 20-bit quantum system requires a day of computing outputs, and the computation has to be performed a sufficient time on modern computers [8]. For developing quantum sys- number of times to make the expected error acceptable. In this paper, we address both modes of modeling by FPGA is a key design issue. The second goal is to emulate the emulators. parallelism in quantum computing using FPGAs. Finally, it is desired that the modeling tool be simple to use and that the B. Quantum Information Representation construction of the model does not require significant effort The second major difference to classical computing arises from the developer. from the types of signal values required to perform computing. While the basic information units for classical circuits are 0 Import quantum and 1, quantum computing uses complex numbers as bearers of circuit package to design information. Hence, representing a single quantum information unit might require a large number of classical bits, depending on the precision required. Construct quantum circuit More formally, the states of the quantum system belong to using gates provided a vector space over complex numbers in which there exists an inner product of vectors. Such a vector space is usually referred to as the Hilbert Space H. For our purposes, it suffices Synthesize circuit on FPGA to say that the quantum states are depicted as vectors of Simulate circuit using VHDL for hardware emulation of simulation tools the quantum circuit complex numbers. In denoting these vectors, commonly used is the Dirac bra- ket notation. Elements of H are ”ket” vectors given by |xi ∈ Fig. 1. Modeling quantum circuits using the VHDL quantum gate library H. A corresponding ”bra” vector hx| is an element of the dual space H∗ of all operators on the vector space that act on The overall design process is illustrated in Figure 1. Quan- vectors and produce scalar values. tum circuits are constructed from the quantum gate com- ponents provided in the library that we have created. The C. Quantum Bits correctness of the circuit can be verified either by software The basic units of quantum information can be viewed as simulation or by FPGA emulation. We thus, have a technique simple two-state systems, such as magnetic spin of plus/minus for modeling quantum ciruits using VHDL and then synthe- one half. The state of a spin is given as a continuous quantity sizing the circuit in hardware to achieve performance needed represented by two real numbers. It is exactly this continuity to make the whole process more practical. in spin representation that contributes to the ability of storing We next show how the fundamental constructs of quantum the infinite classical information by a single quantum system. circuits and the rules governing quantum computation are Quantum bits defined this way are commonly referred to as simulated by classical technology. qubits. Qubits can be realized by means such as NMR and α trapped ion interactions. real αimaginary Sign Decimal Sign Decimal Binary qubits have two computational base states denoted N bit Mantissa N bit Mantissa as |0i and |1i. Unlike classical bits, quantum bits are in a Bit bit Bit bit linear superposition of the basis states |0i and |1i. βreal βimaginary Sign Decimal Sign Decimal N bit Mantissa N bit Mantissa |ψi = α|0i + β|1i (1) Bit bit Bit bit where α and β are complex coefficients related as Fig. 2. Fixed-point quantum bit representation |α|2 + |β|2 = 1. (2) B. Emulation of Pure Quantum Bits The superposition phenomena, by which the qubits simulta- The quantum bit is implemented using Equation 1. Thus, we neously exist in states |0i and |1i is explained by considering need to store the values of α and β to describe a qubit. The 2 2 |α| and |β| as probabilities of being in |0i and |1i, respec- finite precision description of α and β introduces imprecision tively. However, when a measurement is performed on a qubit, errors, as quantum gates involve operations like add and it collapses to either of the two basis states. multiply on α and β. To keep the size of the quantum circuit to a manageable proportion, we implement the α and β using III. FPGA QUANTUM CIRCUIT EMULATOR the fixed point scheme described in Figure 2. A. Challenges in Emulating Quantum Circuits Each qubit is represented by four fixed point numbers. Emulation of quantum circuits requires mapping concepts The fixed point scheme was chosen over the floating point from quantum physics to classical technologies. The main goal representations because α and β can have a decimal part is to simulate quantum
Recommended publications
  • CLEO/Europe-EQEC 2021 Advance Programme
    2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference Advance Programme Virtual Meeting CEST time zone 21 - 25 June 2021 www.cleoeurope.org Sponsored by • European Physical Society / Quantum Electronics and Optics Division • IEEE Photonics Society • The Optical Society 25th International Congress on Photonics in Europe Collocated with Laser World of Photonics Industry Days https://world-of-photonics.com/en/ 10th EPS-QEOD Europhoton Conference EUROPHOTON SOLID-STATE, FIBRE, AND WAVEGUIDE COHERENT LIGHT SOURCES 28 August – 02 September 2022 Hannover, Germany www.europhoton.org Fotos: © HMTG - Lars Gerhardts Fotos: © HMTG Table of contents TABLE OF CONTENTS Welcome and Foreword 02 Days at a Glance 04 Sessions at a Glance 14 How to Read the Session Codes? 15 How to Find the Room? 17 Topics 20 General Information 24 Technical Programme 28 01 Welcome and foreword Welcome to the 2021 Conference CLEO®/Europe will showcase the latest Particular highlights of the 2021 programme 2021 Conference on Lasers and on Lasers and Electro-Optics developments in a wide range of laser and will be a series of symposia: Electro-Optics Europe & European Europe & European Quantum photonics areas including solid-state lasers, Nanophononics, High-Field THz Genera- Quantum Electronics Conference Electronics Conference (hereafter semiconductor lasers, terahertz sources and tion and Applications, Attochemistry, Deep CLEO®/Europe-EQEC) at the World applications, applications of nonlinear op- learning in Photonics and Flexible Photonics. CLEO®/Europe - EQEC 2021 of Photonics Congress 2021 tics, optical materials, optical fabrication and Additionally, two joint sessions (EC- characterization, ultrafast optical technologies, BO-CLEO®/Europe and LiM-CLEO®/Europe) Virtual Meeting high-field laser and attosecond science, optical will be held.
    [Show full text]
  • Reconfigurable Optical Implementation of Quantum Complex Networks J Nokkala, F
    Reconfigurable optical implementation of quantum complex networks J Nokkala, F. Arzani, F Galve, R Zambrini, S Maniscalco, J Piilo, Nicolas Treps, V Parigi To cite this version: J Nokkala, F. Arzani, F Galve, R Zambrini, S Maniscalco, et al.. Reconfigurable optical implemen- tation of quantum complex networks. New Journal of Physics, Institute of Physics: Open Access Journals, 2018, 20, pp.053024. 10.1088/1367-2630/aabc77. hal-01798144 HAL Id: hal-01798144 https://hal.sorbonne-universite.fr/hal-01798144 Submitted on 23 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License PAPER • OPEN ACCESS Related content - An Introduction to the Formalism of Reconfigurable optical implementation of quantum Quantum Information with Continuous Variables: Quantum information with continuous variables complex networks C Navarrete-Benlloch - Spacetime replication of continuous To cite this article: J Nokkala et al 2018 New J. Phys. 20 053024 variable quantum information Patrick Hayden, Sepehr Nezami, Grant Salton et al. - Coupled harmonic systems as quantum buses in thermal environments View the article online for updates and enhancements. F Nicacio and F L Semião This content was downloaded from IP address 134.157.80.157 on 23/05/2018 at 09:58 New J.
    [Show full text]
  • Quantum Key Distribution Protocols and Applications
    Quantum Key Distribution Protocols and Applications Sheila Cobourne Technical Report RHUL{MA{2011{05 8th March 2011 Department of Mathematics Royal Holloway, University of London Egham, Surrey TW20 0EX, England http://www.rhul.ac.uk/mathematics/techreports Title: Quantum Key Distribution – Protocols and Applications Name: Sheila Cobourne Student Number: 100627811 Supervisor: Carlos Cid Submitted as part of the requirements for the award of the MSc in Information Security at Royal Holloway, University of London. I declare that this assignment is all my own work and that I have acknowledged all quotations from the published or unpublished works of other people. I declare that I have also read the statements on plagiarism in Section 1 of the Regulations Governing Examination and Assessment Offences and in accordance with it I submit this project report as my own work. Signature: Date: Acknowledgements I would like to thank Carlos Cid for his helpful suggestions and guidance during this project. Also, I would like to express my appreciation to the lecturers at Royal Holloway who have increased my understanding of Information Security immensely over the course of the MSc, without which this project would not have been possible. Contents Table of Figures ................................................................................................... 6 Executive Summary ............................................................................................. 7 Chapter 1 Introduction ...................................................................................
    [Show full text]
  • Book of Abstracts
    LANET 2017 Puebla (Mexico), September 25-29, 2017 1ST LATIN AMERICAN CONFERENCE ON COMPLEX NETWORKS AND LANET SCHOOL ON FUNDAMENTALS AND APPLICATIONS OF NETWORK SCIENCE LANET 2017 25-29 SEPTEMBER 2017 PUEBLA MEXICO BOOK OF ABSTRACTS ORGANIZED BY BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA Benemérita Universidad Autónoma de Puebla LANET 2017 Puebla (Mexico), September 25-29, 2017 BENEMÉRITA UNIVERSIDAD DE PUEBLA LANET BOARD Rector Nuno Araujo (Universidade de Lisboa, Portugal) Dr. J. Alfonso Esparza Ortiz Pablo Balenzuela (Universidad de Buenos Aires, Argentina) Secretario General Javier M. Buldú (URJC & CTB, Spain) Dr. René Valdiviezo Sandoval Lidia Braunstein (CONICET-UNMdP, Argentina) Vicerrector de Investigación Mario Chávez (CNRS, Hospital Pitié-Salpetriere, France) Dr. Ygnacio Martínez Laguna Hilda Cerdeira (IFT-UNESP, Brazil) Directora del Instituto de Física Luciano da Fontoura (University of Sao Paulo, Brazil) Dra. Ma. Eugenia Mendoza Álvarez Bruno Gonçalves (New York University, USA) Rafael Germán Hurtado (Universidad Nacional de Colombia, Bogota) Ernesto Estrada (University of Strathclyde, UK) LOCAL ORGANIZING COMMITTEE Jesús Gómez-Gardeñes (Universidad de Zaragoza, Spain) José Antonio Méndez-Bermúdez Marta C. González (MIT, USA) (BUAP, Puebla, Mexico) Rafael Gutiérrez (Universidad Antonio Nariño, Colombia) Ygnacio Martínez Laguna Cesar Hidalgo (MIT Media Lab, USA) (BUAP, Puebla, Mexico) Gustavo Martínez-Mekler (UNAM, Mexico) Pedro Hugo Hernández Tejeda Johann H. Martínez (INSERM, France) (BUAP, Puebla, Mexico) Cristina Masoller (Universitat Politècnica de Catalunya, Spain) Javier M. Buldú José Luis Mateos (Instituto de Física, UNAM, Mexico) (URJC & CTB, Spain) José F. Mendes (University of Aveiro, Portugal) Jesús Gómez-Gardeñes José Antonio Méndez-Bermúdez (BUAP, Puebla Mexico) (Universidad de Zaragoza, Spain) Ronaldo Menezes (Florida Institute of Technology, USA) Johann H.
    [Show full text]
  • Graphical and Programming Support for Simulations of Quantum Computations
    AGH University of Science and Technology in Kraków Faculty of Computer Science, Electronics and Telecommunications Institute of Computer Science Master of Science Thesis Graphical and programming support for simulations of quantum computations Joanna Patrzyk Supervisor: dr inż. Katarzyna Rycerz Kraków 2014 OŚWIADCZENIE AUTORA PRACY Oświadczam, świadoma odpowiedzialności karnej za poświadczenie nieprawdy, że niniejszą pracę dyplomową wykonałam osobiście i samodzielnie, i nie korzystałam ze źródeł innych niż wymienione w pracy. ................................... PODPIS Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Informatyki Praca Magisterska Graficzne i programowe wsparcie dla symulacji obliczeń kwantowych Joanna Patrzyk Opiekun: dr inż. Katarzyna Rycerz Kraków 2014 Acknowledgements I would like to express my sincere gratitude to my supervisor, Dr Katarzyna Rycerz, for the continuous support of my M.Sc. study, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me a lot during my research and writing of this thesis. I would also like to thank Dr Marian Bubak, for his suggestions and valuable advices, and for provision of the materials used in this study. I would also thank Dr Włodzimierz Funika and Dr Maciej Malawski for their support and constructive remarks concerning the QuIDE simulator. My special thank goes to Bartłomiej Patrzyk for the encouragement, suggestions, ideas and a great support during this study. Abstract The field of Quantum Computing is recently rapidly developing. However before it transits from the theory into practical solutions, there is a need for simulating the quantum computations, in order to analyze them and investigate their possible applications. Today, there are many software tools which simulate quantum computers.
    [Show full text]
  • QUANTUM COMPUTER and QUANTUM ALGORITHM for TRAVELLING SALESMAN PROBLEM Utpal Roy, Sanchita Pal Chawdhury, Susmita Nayek
    ISSN: 0974-3308, VOL. 2, NO. 1, JUNE 2009 © SRIMCA 54 QUANTUM COMPUTER AND QUANTUM ALGORITHM FOR TRAVELLING SALESMAN PROBLEM Utpal Roy, Sanchita Pal Chawdhury, Susmita Nayek ABSTRACT Depending upon the extraordinary power of Quantum Computing Algorithms various branches like Quantum Cryptography, Quantum Information Technology, Quantum Teleportation have emerged [1-4]. It is thought that this power of Quantum Computing Algorithms can also be successfully applied to many combinatorial optimization problems. In this article, a class of combinatorial optimization problem is chosen as case study under Quantum Computing. These problems are widely believed to be unsolvable in polynomial time. Mostly it provides suboptimal solutions in finite time using best known classical algorithms. Travelling Salesman Problem (TSP) is one such problem to be studied here. A great deal of effort has already been devoted towards devising efficient algorithms that can solve the problem [5-18]. Moreover, the methods of finding solutions for the TSP with Artificial Neural Network and Genetic Algorithms [5-8] do not provide the exact solution to the problems for all the cases, excepting a few. A successful attempt has been made to have a deterministic solution for TSP by applying the power of Quantum Computing Algorithm. Keywords: Quantum Computing, Travelling Salesman Problem, Quantum algorithms. 1. INTRODUCTION A quantum computer is a device that can arbitrarily manipulate the quantum state of a part or itself. The field of quantum computation is largely a body of theoretical promises for some impressively fast algorithms which could be executed on quantum computers. The field of quantum computing has advanced remarkably in the past few years since Shor [1] presented his quantum mechanical algorithm for efficient prime factorization of very large numbers, potentially providing an exponential speedup over the fastness on known classical algorithm.
    [Show full text]
  • Download the 3Rd Edition of the Book of Abstracts
    Book of Abstracts 3rd BSC International Doctoral Symposium Editors Nia Alexandrov María José García Miraz Graphic and Cover Design: Cristian Opi Muro Laura Bermúdez Guerrero This is an open access book registered at UPC Commons (http://upcommons.upc.edu) under a Creative Commons license to protect its contents and increase its visibility. This book is available at http://www.bsc.es/doctoral-symposium-2016 published by: Barcelona Supercomputing Center supported by: The “Severo Ochoa Centres of Excellence" programme 3rd Edition, September 2016 Introduction ACKNOWLEDGEMENTS The BSC Education & Training team gratefully acknowledges all the PhD candidates, Postdoc researchers, experts and especially the Keynote Speaker Francisco J. Doblas-Reyes and the tutorial lecturers Vassil Alexandrov and Javier Espinosa, for contributing to this Book of Abstracts and participating in the 3rd BSC International Doctoral Symposium 2016. We also wish to expressly thank the volunteers that supported the organisation of the event: Carles Riera and Felipe Nathan De Oliveira. BSC Education & Training team [email protected] 5 Introduction 6 Introduction CONTENTS EDITORIAL COMMENT ................................................................................................ 11 WELCOME ADDRESS .................................................................................................. 13 PROGRAM .................................................................................................................... 15 KEYNOTE SPEAKER ...................................................................................................
    [Show full text]
  • Models of Quantum Computation and Quantum Programming Languages
    Models of quantum computation and quantum programming languages Jaros law Adam MISZCZAK Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Ba ltycka 5, 44-100 Gliwice, Poland The goal of the presented paper is to provide an introduction to the basic computational mod- els used in quantum information theory. We review various models of quantum Turing machine, quantum circuits and quantum random access machine (QRAM) along with their classical counter- parts. We also provide an introduction to quantum programming languages, which are developed using the QRAM model. We review the syntax of several existing quantum programming languages and discuss their features and limitations. I. INTRODUCTION of existing models of quantum computation is biased towards the models interesting for the development of Computational process must be studied using the fixed quantum programming languages. Thus we neglect some model of computational device. This paper introduces models which are not directly related to this area (e.g. the basic models of computation used in quantum in- quantum automata or topological quantum computa- formation theory. We show how these models are defined tion). by extending classical models. We start by introducing some basic facts about clas- A. Quantum information theory sical and quantum Turing machines. These models help to understand how useful quantum computing can be. It can be also used to discuss the difference between Quantum information theory is a new, fascinating field quantum and classical computation. For the sake of com- of research which aims to use quantum mechanical de- pleteness we also give a brief introduction to the main res- scription of the system to perform computational tasks.
    [Show full text]
  • Gr Qkd 003 V2.1.1 (2018-03)
    ETSI GR QKD 003 V2.1.1 (2018-03) GROUP REPORT Quantum Key Distribution (QKD); Components and Internal Interfaces Disclaimer The present document has been produced and approved by the Group Quantum Key Distribution (QKD) ETSI Industry Specification Group (ISG) and represents the views of those members who participated in this ISG. It does not necessarily represent the views of the entire ETSI membership. 2 ETSI GR QKD 003 V2.1.1 (2018-03) Reference RGR/QKD-003ed2 Keywords interface, quantum key distribution ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • One-Way Quantum Computer Simulation
    One-Way Quantum Computer Simulation Eesa Nikahd, Mahboobeh Houshmand, Morteza Saheb Zamani, Mehdi Sedighi Quantum Design Automation Lab Department of Computer Engineering and Information Technology Amirkabir University of Technology Tehran, Iran {e.nikahd, houshmand, szamani, msedighi}@aut.ac.ir Abstract— In one-way quantum computation (1WQC) model, universal quantum computations are performed using measurements to designated qubits in a highly entangled state. The choices of bases for these measurements as well as the structure of the entanglements specify a quantum algorithm. As scalable and reliable quantum computers have not been implemented yet, quantum computation simulators are the only widely available tools to design and test quantum algorithms. However, simulating the quantum computations on a standard classical computer in most cases requires exponential memory and time. In this paper, a general direct simulator for 1WQC, called OWQS, is presented. Some techniques such as qubit elimination, pattern reordering and implicit simulation of actions are used to considerably reduce the time and memory needed for the simulations. Moreover, our simulator is adjusted to simulate the measurement patterns with a generalized flow without calculating the measurement probabilities which is called extended one-way quantum computation simulator (EOWQS). Experimental results validate the feasibility of the proposed simulators and that OWQS and EOWQS are faster as compared with the well-known quantum circuit simulators, i.e., QuIDDPro and libquantum for simulating 1WQC model1. Keywords-Quantum Computing, 1WQC, Simulation 1 INTRODUCTION Quantum information [2] is an interdisciplinary field which combines quantum physics, mathematics and computer science. Quantum computers have some advantages over the classical ones, e.g., they give dramatic speedups for tasks such as integer factorization [3] and database search [4].
    [Show full text]
  • Dissertação André Silva.Pdf
    Andr´ePaulo Pires Miranda Ferreira da Silva Simulation of a Quantum Algorithm using Quantum Fourier Transforms Thesis submitted to the University of Coimbra for the degree of Master in Engineering Physics Supervisor: Prof. Dr. Maria Helena Vieira Alberto Coimbra, 2018 Esta c´opiada tese ´efornecida na condi¸c~aode que quem a consulta reconhece que os direitos de autor s~aoperten¸cado autor da tese e que nenhuma cita¸c~aoou informa¸c~ao obtida a partir dela pode ser publicada sem a refer^enciaapropriada. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without proper acknowledgement. ii Acknowledgments O desenvolvimento desta tese foi uma aventura, no que toca a todas as ´areasnovas que tive que explorar. Sabendo que a minha forma¸c~aona ´areade computa¸c~ao qu^antica era b´asica,n~aobastou gostar do tema para suceder, foi preciso um grande esfor¸coque sozinho n~aoseria poss´ıvel. Merece uma men¸c~aoespecial, a Prof. Dra. Maria Helena Vieira Alberto. Mesmo sem ter obriga¸c~oes(nem ser a sua ´area),disponibilizou-se a ajudar-me, orientar- me e corrigir-me durante todo o esfor¸coque foi a conclus~aoda tese. Nos temas mais dif´ıceisnunca negou a disponibilidade para me ajudar. E teve sempre muita paci^enciapara me explicar os mais f´aceis.Por todo o esfor¸coe dedica¸c~ao,um muito obrigado.
    [Show full text]
  • Jquantum Manual
    A Quantum Computer Simulator Version 0.9beta — Documentation — Andreas de Vries FH Sudwestfalen¨ University of Applied Sciences, Haldener Straße 182, D-58095 Hagen, Germany e-mail: [email protected] Contents 1 About this Program 1 2 Short manual 1 2.1 Installation . 1 2.2 The structure of the work space window . 2 2.3 How to initialize a quantum register . 2 2.4 Design a circuit . 3 2.5 Run the algorithm . 3 3 Theoretical Background 4 3.1 Why quantum computers? . 4 3.2 What is quantum computation? . 5 3.3 Quantum logic . 5 3.4 Where can I get more information? . 5 1 About this Program The program jQuantum is a quantum computer simulator. It simulates the implementation of quantum circuits on a small quantum register up to about 15 qubits. Its main intention is to create images — images which may help to learn and understand quantum circuits, and which perhaps will serve as building blocks for inventing new quantum algorithms. 2 Short manual 2.1 Installation You need the Java Virtual Machine JRE 1.4.1 or higher to run jQuantum. If you do not have it, you can simply download it from http://java.sun.com. To start jQuantum, under most platforms you simply click 1 on the jar-file. If this does not work you can start the shell, change into the directory of jQuantum.jar and and type in: java -jar jQuantum.jar 2.2 The structure of the work space window After having started the program, you see the work space window (Fig.
    [Show full text]