Urinalysis – a Simple Diagnostic Tool in Kidney Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interpretation of Canine and Feline Urinalysis
$50. 00 Interpretation of Canine and Feline Urinalysis Dennis J. Chew, DVM Stephen P. DiBartola, DVM Clinical Handbook Series Interpretation of Canine and Feline Urinalysis Dennis J. Chew, DVM Stephen P. DiBartola, DVM Clinical Handbook Series Preface Urine is that golden body fluid that has the potential to reveal the answers to many of the body’s mysteries. As Thomas McCrae (1870-1935) said, “More is missed by not looking than not knowing.” And so, the authors would like to dedicate this handbook to three pioneers of veterinary nephrology and urology who emphasized the importance of “looking,” that is, the importance of conducting routine urinalysis in the diagnosis and treatment of diseases of dogs and cats. To Dr. Carl A. Osborne , for his tireless campaign to convince veterinarians of the importance of routine urinalysis; to Dr. Richard C. Scott , for his emphasis on evaluation of fresh urine sediments; and to Dr. Gerald V. Ling for his advancement of the technique of cystocentesis. Published by The Gloyd Group, Inc. Wilmington, Delaware © 2004 by Nestlé Purina PetCare Company. All rights reserved. Printed in the United States of America. Nestlé Purina PetCare Company: Checkerboard Square, Saint Louis, Missouri, 63188 First printing, 1998. Laboratory slides reproduced by permission of Dennis J. Chew, DVM and Stephen P. DiBartola, DVM. This book is protected by copyright. ISBN 0-9678005-2-8 Table of Contents Introduction ............................................1 Part I Chapter 1 Sample Collection ...............................................5 -
A Dipstick Test Combined with Urine Specific Gravity Improved the Accuracy of Proteinuria Determination in Pregnancy Screening
Kobe J. Med. Sci., Vol. 56, No. 4, pp. E165-E172, 2010 A Dipstick Test Combined with Urine Specific Gravity Improved the Accuracy of Proteinuria Determination in Pregnancy Screening NATSUKO MAKIHARA1, MINEO YAMASAKI1,2, HIROKI MORITA1, and HIDETO YAMADA1* 1Division of Obstetrics and Gynecology, Department of Surgery-related, and 2Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan. Received 12 July 2010/ Accepted 20 August 2010 Key Words: dipstick test, pregnancy proteinuria, protein/creatinine ratio, urine specific gravity Proteinuria screening using a semi-quantitative dipstick test of the spot urine in antenatal clinic is known to have high false-positive rates. The aim of this study was to assess availability of a dipstick test combined with the urine specific gravity for the determination of pathological proteinuria. A dipstick test was performed on 582 urine samples obtained from 283 pregnant women comprising 260 with normal blood pressure and 23 with pregnancy-induced hypertension. The urine protein (P) and creatinine (C) concentrations, specific gravity (SG), P/C ratio were determined, and compared with dipstick test results. The P concentration increased along the stepwise augmentations in dipstick test result. Frequencies of the urine samples with 0.265 or more P/C ratio were 0.7% with − dipstick test result, 0.7% with the ± result, 3.3% with the 1+ result, and 88.9% with the ≥2+ result. However, if the urine specific gravity was low, frequencies of the high P/C ratio were 5.0% with ± dipstick test result and 9.3% with the 1+ result. -
Specific Gravity, Urine
Lab Dept: Urine/Stool Test Name: SPECIFIC GRAVITY, URINE General Information Lab Order Codes: USG Synonyms: N/A CPT Codes: 81003 – Urinalysis; automated, without microscopy Test Includes: Specific gravity measurement by colorimetric reagent strip. Logistics Test Indications: Useful for evaluating the concentrating and excretory power of the kidney. Lab Testing Sections: Urinalysis Phone Numbers: MIN Lab: 612-813-6280 STP Lab: 651-220-6550 Test Availability: Daily, 24 hours Turnaround Time: 2 - 4 hours Special Instructions: Indicate method of collection on request form (catheterized, clean- catch, or void). Deliver to lab within 30 minutes of collection. Refrigerate specimen if there is a delay in transport of 30 minutes or more. Specimen Specimen Type: Urine Container: Urine cup Draw Volume: Entire urine collection Processed Volume: Minimum volume: 1 mL Collection: Collect a clean-catch urine specimen as follows: Males: Clean glans with soap and water. Rinse area with wet gauze pads. While holding foreskin retracted, begin voiding. After several mL’s have passed, collect midstream portion without stopping flow of urine. Place the cap on the cup and tighten securely. Refrigerate specimen after collection and promptly forward to the lab. Females: Thoroughly clean urethral area with soap and water. Rinse area with wet gauze pads. While holding labia apart, begin voiding. After several mL’s have passed, collect midstream portion without stopping the flow of urine. Place the cap on the cup and tighten securely. Refrigerate specimen after collection and promptly forward to the lab. Note: Indicate type of specimen (catheterized or void) and time of collection on the label. Special Processing: N/A Patient Preparation: See above Sample Rejection: Less than 1 mL urine; mislabeled or unlabeled specimens Interpretive Reference Range: Age: Specific Gravity: Infant (0 days - 1 year): 1.002 - 1.006 >1 year: 1.001 - 1.030 Critical Values: N/A Limitations: Radiographic dyes in urine increase the specific gravity by hydrometer or refractometer. -
Usmle Rx Qbank 2017 Step 1 Renal
Item: 1 of 24 ~ 1 • M k -<:J 1>- Jil ~· !:';-~ QIO: 4749 ..L a r Previous Next Labfli!llues Not es Calculat o r • 1 & & A 67-year-old man admitted for postoperative recovery is found to be oliguric. Laboratory studies show a blood urea nitrogen level of 200 • 2 mg/dl and a serum creatinine level of 6 mg/dl. Urinalysis shows: • 3 Specific gravity: 1.050 · 4 Urine osmolality: 670 mOsm/kg • 5 Sodium: 14 mEq/L BUN/Creatinine ratio: 56 • 6 Fractional excretion of Na: 0.54% • 7 Protein: negative Casts: negative · 8 . 9 • 10 Which of the following is the most likely cause of this patient's oliguria? • 11 : • 12 A. Acute interstitial nephritis • 13 B. Acute tubular necrosis • 14 C. Bladder calculus • 15 • 16 D. Heart failure • 17 E. Nephrotic syndrome • 18 • 19 • 20 • 21 • a s 8 Lock Suspend End Block Item: 1of24 ~ . , . M k <:] t> al ~· ~ QIO: 4749 .l. ar Previous Next Lab'lifllues Notes Calculator 1 • The correct a nswer is 0. 4 80/o c hose t his. • 2 This patient's laboratory tests confirm the classic criteria for d iagnosing prerenal azotemia. Prerenal azotemia is caused by a reduction of the • 3 g lomerular filtration rate (GFR} provoked by an insult to the vascular supply to the kidney. Causes of prerenal azotemia include heart failure, sepsis, and renal artery stenosis. The reduction in GFR increases the accumulation of both blood urea nitrogen (BUN} and creatinine (Cr} in the • 4 blood, but because the BUN concentration in blood is determined by both g lomerular filtration and reabsorption (in contrast to Cr, which is • 5 limited to filtration and not reabsorbed}, the BUN level rises out of proportion to the Cr leveL This therefore elevates the BUN :Cr ratio. -
Name: Akinbile Grace Oluwaseun Matric Number
NAME: AKINBILE GRACE OLUWASEUN MATRIC NUMBER: 18/MHS02/029 DEPARTMENT: NURSING, MHS COURSE CODE: PHS 212 (PHYSIOLOGY) ANSWER URINALYSIS Urinalysis is the process of analysing urine for target parameters of health and disease. A urinalysis (UA), also known as routine and microscopy (R&M), is an array of tests performed on urine, and one of the most common methods of medical diagnosis. Urinalysis means the analysis of urine, and it is used to diagnose several diseases. The target parameters that are measured or quantified in urinalysis include many substances and cells, as well as other properties, such as specific gravity. A part of a urinalysis can be performed by using urine test strips, in which the test results can be read as the strip’s colour changes. Another method is light microscopy of urine samples. Test Strip Urinalysis Test strip urinalysis exposes urine to strips that react if the urine contains certain cells or molecules. Test strip urinalysis is the most common technique used in routine urinalysis. A urine test strip can identify: Leukocytes—their presence in urine is known as leukocyturia. Nitrites—their presence in urine is known as nitrituria. Proteins —their presence in urine is known as proteinuria, albuminuria, or micro albuminuria. Blood—its presence in urine is known as haematuria. pH—the acidity of urine is easily quantified by test strips, which can identify cases of metabolic acidosis or alkalosis. Urine Microscopy The numbers and types of cells and/or material, such as urinary casts, can yield a great detail of information and may suggest a specific diagnosis. -
Urine Specific Gravity
Please purchase PDFcamp Printer on http://www.verypdf.com/ to remove this watermark. Urine Specific Gravity Urine Specific Gravity (SG) Specific gravity (SG) is a measurement of the kidneys' ability to concentrate urine. The test compares the density of urine against the density of distilled water, which has an SG of 1.000. Because urine is a solution of minerals, salts, and compounds dissolved in water, the SG is a measure of the density of the dissolved chemicals in the specimen. As a measurement of specimen density, SG is influenced by both the number of particles present and the size of the particles. Osmolality is a more exact measurement and may be needed in certain circumstances. Please purchase PDFcamp Printer on http://www.verypdf.com/ to remove this watermark. • The range of urine SG depends on the state of hydration and varies with urine volume and the load of solids to be excreted under standardized conditions; when fluid intake is restricted or increased, SG measures the concentrating and diluting functions of the kidney. Loss of these functions is an indication of renal dysfunction. Please purchase PDFcamp Printer on http://www.verypdf.com/ to remove this watermark. • Reference Values • Normal • 1.005-1.030 (usually between 1.010 and 1.025) • Concentrated urine: 1.025-1.030+ • Dilute urine: 1.001-1.010 • Infant < 2 years old: 1.001-1.018 Please purchase PDFcamp Printer on http://www.verypdf.com/ to remove this watermark. • Procedure • Test SG with the use of a multiple-test dipstick that has a separate reagent area for SG. -
Reliability of Three Urinalysis Methods Used in the Assessment of Hydration
International Journal of Sport, Exercise and Health Research 2018; 2(2): 100-105 Research Article Reliability of three urinalysis methods used in the IJSEHR 2018; 2(2): 100-105 © 2018, All rights reserved assessment of hydration www.sportscienceresearch.com Received: 30-08-2018 Aric J. Warren1, Matthew S. O’Brien1, Doug B. Smith2 Accepted: 18-10-2018 1 Associate Professor, Department of Athletic Training, Oklahoma State University Center for Health Sciences, 1111 W. 17th Street, Tulsa, OK 74107, USA 2 Professor, Oklahoma State University, School of Kinesiology, Applied Health and Recreation, Stillwater, OK 74078, USA Abstract Objective: The purpose of this study was to determine the intratester and intertester reliability of three common methods of assessing hydration; urine color chart (UCC), dipstick reagent strip (DRS) and refractometer (REF). Methods: Twenty-three male collegiate wrestlers (n = 23, age = 20.09 ± 1.35, weight = 78.73 ± 11.25 kg, height = 174.49 ± 7.23 cm) provided urine samples on three separate occasions totaling 69 samples (n = 69). Samples were analyzed with repeated measures by three testers, three trials, and three separate methods of assessment. Results: All methods had very high intertester reliability as demonstrated by Cronbach’s Alpha coefficients; DRS (r = .985), UCC (r = .973) and REF (r = .968). Intraclass correlation coefficient ranges were also very high; DRS .983 - .994, UCC 964-.983, and REF .829-.996. Conclusions: The three modes of urine hydration assessment are highly reliable, and are a practical, noninvasive method to evaluate hydration status in the field. Keywords: Hydration; Reliability; Urinalysis. INTRODUCTION Athletes that compete in body weight restrictive sports such as wrestling, judo, and rowing sometimes go to extreme measures to qualify for a specific weight class or event. -
Diabetic Ketoacidosis
Diabetic ketoacidosis Diabetic Ketoacidosis Dr. Christiane Stengel Dipl. ECVIM-CA (IM) FTÄ für Kleintiere High blood glucose with the presence of ketones in the urine and bloodstream, often caused by having/giving too little insulin or during illness. Dr. Christiane Stengel Diabetic ketoacidosis v Diabetes mellitus not diagnosed so far (common) v Or „derailed“ Diabetes (possible) & a “triggering condition” lead to increased „counter- regulatory“ hormones: o Glucagon ↑ o Cortisol ↑ o Adrenalin ↑ o GH ↑ v Low insulin and high glucagon increased glucagon:insulin-ratio medpets.de v Bacterial infections v Endocrine disease o Urinary tract o Hypercortisolism o Pneumonia o Hypothyroidism o Pyometra /prostatitis o Hyperthyroidism o Pyoderma o Acromegaly v Inflammatory v Physiological condition endocrine change o Pancreatitis o Dioestrus v Iatrogenic v Miscellaneous o Steroid administration o Chronic kidney disease o Neoplasia Dr. Christiane Stengel Diabetic ketoacidosis v Vomiting, lethargy, anorexia, weakness, (PU/PD), triggering effect signs v Severe dehydration (hypovolaemic shock) o Glukosuria osmotic diuresis o Ketonuria osmotic diuresis o Fluid loss from vomiting o Decreased fluid intake from anorexia and lethargy A. Kussmaul v Tachycardia, change in pulse quality, colour and capillary refill time v Increased breathing effort (often with normal frequency) due to metabolic acidosis (Kussmaul breathing) , ketone smell v Haematology v Biochemistry profile ± ketones in plasma v Urinalysis and urine culture v Blood gas analysis v ± abdominal -
Cardiovascular II 10:30 AM Saturday, February 23, 2019
Abstracts J Investig Med: first published as 10.1136/jim-2018-000974.619 on 28 January 2019. Downloaded from 669 NITRIC OXIDE SYNTHASE INHIBITION STIMULATES diagnostic information otherwise not identified in a single RENIN SYNTHESIS INDEPENDENT OF CGMP IN inspection. COLLECTING DUCT CELLS Methods used Microscopic examination of the urinary sedi- 1 1 1 1 1 2 ment (MicrExUrSed)±Sternheimer Malbin stain was under- A Curnow*, SR Gonsalez, B Visniauskas, SL Crabtree, VR Gogulamudi, EE Simon, 3Lara Morcillo Ld, 1,4MC Prieto. 1Tulane University-SOM, New Orleans, LA; 2Tulane taken in all patients with AKI stage 2 who were seen on University HSC, New Orleans, LA; 3Instituto de Biofisica Chagas Filho, Universidade Federal consultation in an inpatient nephrology service during a do Rio de Janeiro, Rio de Janeiro, Brazil; 4Tulane Hypertension and Renal Center of 6 month period. MicrExUrSed were done on the day of con- Excellence, Tulane University, New Orleans, LA sult (day 1), 48 hours later (day 3) and 96 hours later (day 5). Urinary cast scores (based on Chawla et al and Perazella 10.1136/jim-2018-000974.675 et al) were assigned to each specimen. Chawla scores (CS) 3– 4 and Perazella scores (PS) 2–3 were categorized as consistent Purpose of study Nitric oxide (NO) synthase (NOS) inhibitors with acute tubular injury (ATI), whereas CS 1–2 and PS 0–1 attenuate any stimulation of juxtaglomerular renin gene were categorized as non-diagnostic for ATI (non-ATI). Worsen- expression, regardless of the underlying challenge of the ing AKI was defined as a rise in serum creatinine renin-angiotensin system. -
Urinalysis: Sediment Examination, Currently, a Liquid Kidney Biopsy?
Nephrology and Renal Diseases Review Article ISSN: 2399-908X Urinalysis: Sediment examination, currently, a liquid kidney biopsy? Glísia Mendes Tavares Gomes* Laboratório de Diagnóstico, Ensino e Pesquisa-Centro de Saúde Escola Germano Sinval Faria/Escola Nacional de Saúde Pública Sergio Arouca (ENSP/Fiocruz), Rio de Janeiro, Brazil. Abstract The current article aims to assist in understanding the importance of urinalysis, more specifically, urinary sediment examination, in the diagnosis and monitoring of kidney injuries, its particularities and, especially, its most relevant characteristics: sample which is easy to obtain, low execution cost and diagnostic utility. In view of the panorama of the increase in kidney diseases in recent decades, the application of this analytical tool has been of paramount importance, which, when performed well, both in laboratory and clinic, can bring great benefits to patients who use it, being these people in a risk group for chronic kidney diseases or not. The databases used for search were- PubMed, Scielo and Web of Science. Introduction Urine testing is emphasized as an excellent biomarker of kidney disease. We highlight the important contribution of the centrifuged Among the diseases that represent a major public health problem urine test, evaluated by an experienced nephrologist, as a tool in the are the different types of kidney disorders that affect about 850 million diagnosis and management of many conditions that affect the kidneys people around the world [1,2]. It is believed that until 2040, chronic [18-28]. However, studies indicate low sensitivity and high specificity kidney disease (CKD) will be the fifth disease in numbers of death [2,3]. -
Complete Urinalysis Panel
COMPLETE URINALYSIS PANEL INTERPRETATION GUIDE Scroll down or click on the following parameters to quickly access content A Complete Urinalysis is threefold: Physical exam Color Clarity - Turbidity Urine specific gravity Chemical exam pH PRO (protein) GLU (glucose) KET (ketones) UBG (urobilinogen) BIL (bilirubin) Blood LEU Sediment exam (see urine sediment guide) Cells, bacteria, casts, crystals and miscellaneous elements Urine Clarity Description In most animals, normal urine is clear to slightly cloudy. In horses, normal urine is cloudy due to the presence of calcium carbonate crystals and mucus. Values Below Reference Range Common Causes In an animal that typically shows cloudy urine, a clear urine would suggest absence of crystalluria. Values Above Reference Range Common Causes Excessively cloudy urine can be the result of high numbers of crystals, leukocytes, erythrocytes, bacteria, mucus, casts, lipids, or possibly sperm. Other Laboratory Tests Microscopic examination of the urine sediment is advised. References Barsanti JA, Lees GE, Willard MD, Green RA. Urinary disorders. In Small Animal Clinical Diagnosis by Laboratory Methods. Willard MD, Tvedten H, Turnwald GH, eds. Philadelphia, Pa: WB Saunders Company; 1999. DiBartola SP. Clinical approach and laboratory evaluation of renal disease. In Textbook of Veterinary Internal Medicine. Ettinger SJ, Feldman EC, eds. Philadelphia, Pa: WB Saunders Company; 1995. Duncan JR, Prasse KW, Mahaffey EA. Veterinary Laboratory Medicine. Ames, Iowa: Iowa State University Press; 1994. Urine Specific Gravity Description Specific gravity is a reflection of solute concentration. It should be determined by refractometry as dipsticks are inaccurate. Assuming normal hydration status and no treatments that alter water resorption by the kidneys, expected specific gravity results are: o Dogs: 1.015–1.045 o Cats: 1.035–1.060 o Horses: 1.020–1.050 The amount of other substances in urine should be interpreted in consideration of the specific gravity. -
A Glossary for Basic Sciences Subjects
Department of Basic Sciences Faculty of Allied Health Sciences University of Peradeniya Sri Lanka June 2020 Dr TN Haththotuwa Terms of Use All rights reserved. No part of this glossary may print, copy, reproduce and redistribute by any means (electronic, photocopying) without obtaining the written permission from the copyright holder (Dr T N Haththotuwa). Any modifications, edition or revision to the original text should carry out only under author’s consent. Failure to comply with the terms of the copyright warning may expose you to legal action for copyright infringement. Published by: Dr TN Haththotuwa Lecturer Department of Basic Sciences Faculty of Allied Health Sciences University of Peradeniya Sri Lanka Published date: 13th June 2020 © Dr TN Haththotuwa Department of Basic Sciences/FAHS/UOP June 2020 2 Preface This document prepared as supportive learning material for first-year Allied health undergraduates of university of Peradeniya, Sri Lanka. This glossary summarizes the list of common scientific terms student should aware of under Human Physiology, Basic Human Anatomy and General Pathology and Basic Biochemistry subjects. The terms are categorize under different topics and course modules for convenience in preparing upcoming lecture topics. These terms will also use in a scientific terms game or Moodle activity in future. Therefore, terms listed without definitions on purpose. At the end of the activity, students will have a complete glossary with definitions. Please note that I have used British English in this document. Therefore, you may notice some spelling differences when you read reference books (E.g. Anaemia, Haemoglobin etc). This glossary may not cover all the scientific terms use under-listed course modules.