Superradiant Phase Transition with Cavity Assisted Dynamical Spin-Orbit Coupling

Total Page:16

File Type:pdf, Size:1020Kb

Superradiant Phase Transition with Cavity Assisted Dynamical Spin-Orbit Coupling Superradiant phase transition with cavity assisted dynamical spin-orbit coupling Ying Lei1 and Shaoliang Zhang1, 2, ∗ 1School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, 030006,China (Dated: December 21, 2020) Superradiant phase transition represents an important quantum phenomenon that shows the col- lective excitations based on the coupling between atoms and cavity modes. The spin-orbit coupling is another quantum effect which induced from the interaction of the atom internal degrees of free- dom and momentum of center-of-mass. In this work, we consider the cavity assisted dynamical spin-orbit coupling which comes from the combination of these two effects. It can induce a series of interesting quantum phenomena, such as the flat spectrum and the singularity of the excitation energy spectrum around the critical point of quantum phase transition. We further discuss the influence of atom decay and nonlinear coupling to the phase diagram. The atom decay suppresses the singularity of the phase diragram and the nonlinear coupling can break the symmetric properties of the phase transition. Our work provide the theoretical methods to research the rich quantum phenomena in this dynamic many-body systems. I. INTRODUCTION such as the stripe phase [23] and algebra quantum liquids [24], etc. Recently, the cavity-assisted dynamical spin- The cavity quantum electrodynamics (CQED) has a orbit coupling which induced by a superradiant phase wide range of applications in quantum information and transition has been realized in experiment by replacing quantum simulations, because the interaction between one of the Raman laser with an optical cavity [25{27]. hyperfine spin states of atom and quantum photon field In this system, the cavity modes not only couple with has a great enhancement by the cavity. A famous the- the hyperfine spin states of atoms, but also interact with oretical model which used to describe this interaction is the atomic COM momentum. The interplay of cavity called Dicke model [1]. It is well known to undergo a modes, atomic internal and external degrees of freedom quantum phase transition from normal phase to superra- are expected to lead to novel quantum phenomena [28] diant phase called "superradiant phase transition" [2,3]. and pave a way for the research of quantum simulation Over the last few years, based on the development of ex- in topological matters and many-body physics. perimentally techniques, there are a series of works focus Our propose in this work is to understand the interplay on researching the properties of this system [4{8] and of these degrees of freedom. In the system with cavity- superradiant phase transition has also be observed ex- assisted dynamical SOC, the SOC comes from the col- perimentally first by the group at ETH [9{11] then many lective excitation of cavity photons and all atoms | the other groups [12{14]. Many interesting quantum phe- superradiance, which is very different from the coupling nomena has been observed such as supersolid-like phase, between Raman laser and single atom in static SOC. Al- and research about their applications has also been de- though the translation invariance is still conserved, the veloped rapidly [15]. energy dispersion is very different and some exotic quan- The standard Dicke model only includes the coupling tum phenomena emerges, such as the dynamical SOC between cavity modes and atomic internal degrees of free- induced flat spectrum. In this system, the superradi- dom. But in ultracold atomic system, the coupling be- ant phase transition has some interesting properties be- tween the internal degrees of freedom and the atomic cause of the interplay among cavity modes, hyperfine spin center-of-mass(COM) motion, which is called the spin- states and the COM momentum of atoms, which is very orbit coupling (SOC) effect, has attracted a lot of inter- different from the standard Dicke model. There is a first ests in past two decades[16{18]. With the SOC effect, order phase transition and the energy spectrum of polari- a lot of interesting quantum phenomena, especially the tons has singularity at the critical point. In this work, phenomena related to the topological physics, such as we also discuss the influence of atom decay and nonlinear arXiv:2012.10098v1 [cond-mat.quant-gas] 18 Dec 2020 the synthetic gauge fields [19, 20], chiral edge currents coupling to the phase diagram. We find that the atom [21, 22], has been observed experimentally. In ultracold decay suppresses the singularity of the phase diagram atom systems, the SOC effect can be realized by coupling which result in the first order phase transition is hard to two different hyperfine spin states using two-photon Ra- be observed experimentally, and the nonlinear coupling man process which also accompanied by the transfer of can break the symmetric form of the superradiant phase COM momentum. In systems with static SOC, the trans- transition. lation invariance is conserved and the energy dispersion Our paper is organized as follows. In Sec. II we'll give has some anomalous properties because of the SOC effect. a brief introduction about the cavity-assisted dynamical It is the source of many interesting quantum phenomena SOC model. Then we calculate the energy spectrum and 2 find the flat spectrum at critical point of superradiant where !, δ, λ and U are the effective cavity frequency, phase transition. We also draw the phase diagram and energy detuning between hyperfine spin states, coupling discuss the first order phase transition. In Sec. III we amplitude and dispersive cavity shift. In equation (1), discuss the energy spectrum of polaritons and find the pj is the momentum operator of the j-th atoms, Sα = singularity induced by the flat spectrum. In Sec. IV we PN j j=1 σα where α = x; y; z and S± = Sx ± iSy. In most discuss the influence of atom decay and cavity photon part of our work, we'll set the nonlinear atom-photon loss to the phase diagram. We find that in this dissipa- interaction U = 0 to simplify our discussion, the influence tive system, the singularity of the phase diagram will dis- of nonzero U will be discussion in the Sec. V. appear because of the atom decay. In Sec. V we discuss In this work, we only consider the case all atoms are the influence of nonlinear coupling to the phase diagram. condensed with the same COM momentum p. So pj in The Sec. VI is devoted to our conclusions. equation (1) can be simplified as a number instead of an operator. To further simplify our discussion, we can set the spin-orbit coupling along y direction and ignore the II. CAVITY-ASSISTED SPIN-ORBIT influence of other direction, the above Hamiltonian can COUPLING further be simplified as p2 pq H = N + r + δ S + !aya eff 2m m z (2) λ y + p (a + a)(S+ + S−) N Different with the original Dicke model, the Hamil- tonian (2) is also dependent on the COM momentum of atoms. The SOC effect doesn't break the transla- tion invariant symmetry, and the commutation relation [p; H ] = 0 is kept, which means the COM momen- FIG. 1: The schematic diagram of our proposal. (a) Experi- eff mental setup; (b) Level diagram of atom and light configura- tum of atom p is still a good quantum number, and the tion. eigenstates of the atoms are still plane waves. Because of the inversion symmetry, the Hamiltonian (2) is conserved with translation of p ! −p, δ ! −δ and Sz ! −Sz, We consider the atoms with two hyperfine spin states which means the ground state has the same energy for (denoted as j "i and j #i) confined in an optical cav- different sign of δ, so only δ ≥ 0 need to be considered. ity, as shown schematically in Fig. 1. The cavity sup- Define the effective energy detuning between j "i and j #i ports a single-mode quantum field with frequency !, two pqr states as !0 ≡ m + δ and ignores the influence of the counter-propogating external lights (red and blue arrows) kinetic energy term, the Eq.(2) becomes to the standard with frequency q+ = q− = qr produces additional clas- Dicke model as sical lights with different frequencies, which couple dif- ferent hyperfine spin states respectively. Each of these y λ y HDicke = !0Sz + !a a + p (a + a)(S+ + S−) (3) two classical lights and cavity quantum field induce a N two-photon Raman transition between different hyper- fine spin states, and spontaneously transfer COM mo- With the analytical calculation in the work of C. Emary mentum of ±q along the direction perpendicular to the and T. Brandes[29], one can get the eigenenergy and cor- r responding wave functions for different phase, the critical cavity axis in average. In the experiment of R. M. Kroeze p et. al[27], the discretized momentum distribution and the point of superradiant phase transition is at λcr = !!0=2 spatial modulation along cavity axis have been observed. in thermodynamic limit. But in this work, we just focus on the properties perpen- Consider the Hamiltonian (2), for an arbitrary cou- dicular to the cavity axis and the spatial modulation can pling strength λ and energy detuning δ, one can get the be ignored along this direction. After an unitary trans- energy spectrum with different COM momentum p first. formation, the effective Hamiltonian can be written as Because of the relative amplitude of λ and !0 at different [4, 27] p, the corresponding eigenstates should be superradiant states or normal states due to different COM momentum m 4λ2 m 4λ2 p.
Recommended publications
  • Matter-Field Entanglement Within the Dicke Model
    Matter-Field Entanglement within the Dicke Model O. Casta~nos,R. L´opez-Pe~na,J. G. Hirsch, and E. Nahmad-Achar Instituto de Ciencias Nucleares, UNAM 2012{ Beauty in Physics: Theory and Experiment Matter-Field Entanglement Cocoyoc, 2012 Content The Dicke Hamiltonian Energy Surface of coherent states (CS) Symmetry adapted coherent states (SAS) Comparison variational vs Exact Results Fidelity Linear and von Neumann entropies Matter squeezing coefficient Conclusions 2012{ Beauty in Physics: Theory and Experiment Matter-Field Entanglement Cocoyoc, 2012 The Dicke Hamiltonian The Dicke model describes a cloud of cold atoms interacting with a one-mode electromagnetic field in an optical cavity [Dicke 1954] y γ y HD =a ^ a^ + !A^Jz + p a^ +a ^ ^J+ + ^J- : N Consider only the symmetric configuration of atoms i.e., N = 2j. The model presents a quantum phase transition when the p coupling constant, for N , takes the value γc = !A=2 [Hepp, Lieb 1973]. ! 1 2012{ Beauty in Physics: Theory and Experiment Matter-Field Entanglement Cocoyoc, 2012 Energy surface for CS The energy surface, or associated classical Hamilton function, is formed by means of the expectation value of the Hamiltonian with respect to a test state. We consider as test state the direct product of coherent states of the groups HW(1), for the electromagnetic part (Glauber 1963) and SU(2), for the atomic part (Arecchi et al 1972) , i.e., 2 +j e-jαj =2 αν 2j 1=2 p j+m jαi⊗jζi = j ζ jνi ⊗ jj; mi : 2 1 ν! j + m 1 + jζj ν=0 m=-j X X 2012{ Beauty in Physics: Theory and Experiment Matter-Field Entanglement Cocoyoc, 2012 Energy surface for CS The energy surface is given by H(α, ζ) ≡ hαj ⊗ hζjHDjαi ⊗ jζi 1 = p2 + q2 - j ! cos θ + 2pjγ q sin θ cos φ : 2 A We define 1 α = p (q + i p) ; 2 θ ζ = tan exp (i φ) ; 2 where (q; p) correspond to the expectation values of the quadratures of the electromagnetic field and (θ, φ) determine a point on the Bloch sphere.
    [Show full text]
  • Atom-Only Theories for U(1) Symmetric Cavity-QED Models
    PHYSICAL REVIEW RESEARCH 3, L032016 (2021) Letter Atom-only theories for U(1) symmetric cavity-QED models Roberta Palacino and Jonathan Keeling SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom (Received 26 November 2020; accepted 29 June 2021; published 19 July 2021) We consider a generalized Dicke model with U(1) symmetry, which can undergo a transition to a superradiant state that spontaneously breaks this symmetry. By exploiting the difference in timescale between atomic and cavity dynamics, one may eliminate the cavity dynamics, providing an atom-only theory. We show that the standard Redfield theory cannot describe the transition to the superradiant state, but including higher-order corrections does recover the transition. Our work reveals how the forms of effective theories must vary for models with continuous symmetry, and provides a template to develop effective theories of more complex models. DOI: 10.1103/PhysRevResearch.3.L032016 While phase transitions in equilibrium many-body sys- continuous symmetry breaking in extended multimode sys- tems have been extensively studied and are broadly un- tems allows one to explore the dispersion of the (complex) derstood [1,2], the critical behavior of driven-dissipative Goldstone modes [4,62] and their contribution to critical be- out-of-equilibrium systems [3–6] poses open questions. A havior. As noted above, theoretically modeling such systems central challenge in numerical exploration of such systems is challenging; one fruitful approach is to adiabatically elimi- is the exponential growth of Hilbert space dimension with nate fast degrees of freedom, providing an effective theory of problem size.
    [Show full text]
  • Experimentally Exploring the Dicke Phase Transition
    Diss. ETH No. 19943 Experimental Realization of the Dicke Quantum Phase Transition A dissertation submitted to the ETH Zurich¨ for the degree of Doctor of Sciences presented by Kristian Gotthold Baumann Dipl.-Phys., Technische Universit¨at Munchen,¨ Germany born 7.4.1983 in Leipzig, Germany citizen of Germany accepted on the recommendation of Prof. Dr. Tilman Esslinger, examiner Prof. Dr. Johann Blatter, co-examiner 2011 Zusammenfassung In dieser Arbeit wird die erste experimentelle Realisierung des Quantenphasenuberganges¨ im Dicke Modell vorgestellt. Wir betrachten die Quantenbewegung eines Bose-Einstein Konden- sates die an einen optischen Resonator gekoppelt ist. Konzeptionell ist der Phasenubergang¨ durch langreichweitige Wechselwirkungen induziert, die zum Entstehen eines selbstorgani- sierten suprasoliden Zustandes fuhren.¨ Der Quantenphasenubergang¨ im Dicke Modell wurde bereits 1973 vorhergesagt. Vor dieser Arbeit konnte dieser aber wegen grundlegenden und technologischen Grunden¨ experimentell nicht nachgewiesen werden. Durch die Verwendung von atomaren Impulszust¨anden konnten wir diese Herausforderung nun bew¨altigen. Die Impulszust¨ande werden durch Zweiphotonen- Uberg¨ ¨ange miteinander gekoppelt, wobei je ein Photon aus dem Resonator und ein Photon aus einer transversalen Lichtwelle gebraucht werden. Diese offene Implementierung des Di- cke Modells erlaubt es alle relevanten Parameter einzustellen und bietet eine einzigartige Detektionsmethode in Echtzeit. Wir zeigen in dieser Doktorarbeit, dass der Phasenubergang¨ von einem
    [Show full text]
  • Dynamics of Coherent States in Regular and Chaotic Regimes of the Non-Integrable Dicke Model
    Dynamics of Coherent States in Regular and Chaotic Regimes of the Non-integrable Dicke Model S. Lerma-Hernandez´ 1,2,a), J. Chavez-Carlos´ 2, M. A. Bastarrachea-Magnani3, B. Lopez-del-Carpio´ 2 and J. G. Hirsch2 1Facultad de F´ısica,Universidad Veracruzana, Circuito Aguirre Beltr´ans/n, C.P. 91000 Xalapa, Mexico 2Instituto de Ciencias Nucleares, Universidad Nacional Aut´onomade M´exico,Apdo. Postal 70-543, C.P. 04510 Cd. Mx., Mexico 3Physikalisches Institut, Albert-Ludwigs-Universitat Freiburg, Hermann-Herder-Str. 3, Freiburg, Germany, D-79104. a)Corresponding author: [email protected] Abstract. The quantum dynamics of initial coherent states is studied in the Dicke model and correlated with the dynamics, regular or chaotic, of their classical limit. Analytical expressions for the survival probability, i.e. the probability of finding the system in its initial state at time t, are provided in the regular regions of the model. The results for regular regimes are compared with those of the chaotic ones. It is found that initial coherent states in regular regions have a much longer equilibration time than those located in chaotic regions. The properties of the distributions for the initial coherent states in the Hamiltonian eigenbasis are also studied. It is found that for regular states the components with no negligible contribution are organized in sequences of energy levels distributed according to Gaussian functions. In the case of chaotic coherent states, the energy components do not have a simple structure and the number of participating energy levels is larger than in the regular cases. Introduction Simple models, originally proposed to study schematically quantum phenomena present in more realistic and elab- orated systems, have become experimentally feasible.
    [Show full text]
  • Arxiv:1807.04915V1 [Cond-Mat.Quant-Gas] 13 Jul 2018
    Spinor self-ordering of a quantum gas in a cavity Ronen M. Kroeze,1, 2, ∗ Yudan Guo,1, 2, ∗ Varun D. Vaidya,1, 2, 3 Jonathan Keeling,4 and Benjamin L. Lev1, 2, 3 1Department of Physics, Stanford University, Stanford, CA 94305 2E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305 3Department of Applied Physics, Stanford University, Stanford, CA 94305 4SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS UK (Dated: July 16, 2018) We observe the joint spin-spatial (spinor) self-organization of a two-component BEC strongly coupled to an optical cavity. This unusual nonequilibrium Hepp-Lieb-Dicke phase transition is driven by an off-resonant two-photon Raman transition formed from a classical pump field and the emergent quantum dynamical cavity field. This mediates a spinor-spinor interaction that, above a critical strength, simultaneously organizes opposite spinor states of the BEC on opposite checkerboard configurations of an emergent 2D lattice. The resulting spinor density-wave polariton condensate is observed by directly detecting the atomic spin and momentum state and by holographically reconstructing the phase of the emitted cavity field. The latter provides a direct measure of the spin state, and a spin-spatial domain wall is observed. The photon-mediated spin interactions demonstrated here may be engineered to create dynamical gauge fields and quantum spin glasses. The strong interaction between quantum matter or vice-versa) allowing the atoms to superradiantly scat- and light provided by cavity quantum electrodynamics ter photons into the cavity mode. The emergent coherent (QED) provides unique opportunities for exploring quan- field further orders the spins in a self-reinforcing man- tum many-body physics away from equilibrium [1{3].
    [Show full text]
  • Collective Dynamics of a Generalized Dicke Model
    Collective Dynamics of a Generalized Dicke Model J. Keeling, J. A. Mayoh, M. J. Bhaseen, B. D. Simons Harvard, January 2012 Funding: Jonathan Keeling Collective dynamics Harvard, January 2012 1 / 25 New relevance Superconducting qubits Quantum dots Nitrogen-vacancies in diamond Cavity κ κ Ultra-cold atoms Pump Pump Rydberg atoms Coupling many atoms to light Old question: What happens to radiation when many atoms interact “collectively” with light. Superradiance — dynamical and steady state. Jonathan Keeling Collective dynamics Harvard, January 2012 2 / 25 Cavity κ κ Pump Pump Coupling many atoms to light Old question: What happens to radiation when many atoms interact “collectively” with light. Superradiance — dynamical and steady state. New relevance Superconducting qubits Quantum dots Nitrogen-vacancies in diamond Ultra-cold atoms Rydberg atoms Jonathan Keeling Collective dynamics Harvard, January 2012 2 / 25 If jr − r j λ, use P S ! S dρ Γ i j i i = − S+S−ρ − S−ρS+ + ρS+S− Collective decay: dt 2 N/2 2 ΓN /2 z = j j = = /dt If S S N 2 initially: 〉 z 〉 S z z 2 0 〈 S d dhS i ΓN ΓN 〈 I / −Γ = sech2 t Γ dt 4 2 I=- -N/2 0 tD tD Problem: dipole interactions dephase. [Friedberg et al, Phys. Lett. 1972] Dicke effect: Enhanced emission X y − −ik·ri Hint = gk k Si e + H.c. k;i Jonathan Keeling Collective dynamics Harvard, January 2012 3 / 25 N/2 2 ΓN /2 z = j j = = /dt If S S N 2 initially: 〉 z 〉 S z z 2 0 〈 S d dhS i ΓN ΓN 〈 I / −Γ = sech2 t Γ dt 4 2 I=- -N/2 0 tD tD Problem: dipole interactions dephase.
    [Show full text]
  • Two-Level Systems Coupled to Oscillators
    Chapter 35. Two-level systems and oscillators Two-level systems coupled to oscillators RLE Group Energy Production and Conversion Group Project Staff Peter L. Hagelstein and Irfan Chaudhary Introduction Basic physical mechanisms that are complicated can often be studied with the aid of simple quantum mechanical models that exhibit the effects of interest. We have been interested in energy exchange between two-level systems and an oscillator under conditions where the two- level system energy is much greater than the oscillator energy. This problem first became of interest in quantum mechanics in the course of early NMR studies by Bloch and Siegert [1]. A strong applied magnetic field causes a splitting of spin levels, creating a two-level system in the case of a spin ½ nucleus. A dynamical transverse field causes transitions between the upper and lower levels of the two-level system. Early work on this problem was done using the Rabi Hamiltonian, in which the oscillator appears in the problem as a time-dependent interaction potential [1,2]. In the mid 1970s, Cohen-Tannoudji and colleagues introduced the spin-boson model, in which a quantum model is used for the oscillator [3]. The spin-boson model in recent years has been used to model electromagnetic interactions between atomic or molecular systems and radiation fields, as well as serving as a workhorse model for testing new kinds of approximations or formulations. By now, there are hundreds of papers on spin-boson and related models, and the interest in such models as basic physical models is only increasing. We have been interested in the spin-boson model and the closely related Dicke model (which generalizes the spin-boson model to include many identical two-level systems) in the multiphoton regime, in order to focus on the coherent exchange of many small oscillator quanta for a single large two-level system quantum.
    [Show full text]
  • Characterizing the Dynamical Phase Diagram of the Dicke Model Via Classical and Quantum Probes
    PHYSICAL REVIEW RESEARCH 3, L022020 (2021) Letter Characterizing the dynamical phase diagram of the Dicke model via classical and quantum probes R. J. Lewis-Swan ,1,2 S. R. Muleady ,3,4,* D. Barberena ,3,4,* J. J. Bollinger ,5 and A. M. Rey 3,4 1Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019, USA 2Center for Quantum Research and Technology, The University of Oklahoma, Norman, Oklahoma 73019, USA 3JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA 4Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA 5National Institute of Standards and Technology, Boulder, Colorado 80305, USA (Received 8 February 2021; accepted 11 May 2021; published 4 June 2021) We theoretically study the dynamical phase diagram of the Dicke model in both classical and quantum limits using large, experimentally relevant system sizes. Our analysis elucidates that the model features dynamical critical points that are strongly influenced by features of chaos and emergent integrability in the model. Moreover, our numerical calculations demonstrate that mean-field features of the dynamics remain valid in the exact quantum dynamics, but we also find that in regimes where quantum effects dominate signatures of the dynamical phases and chaos can persist in purely quantum metrics such as entanglement and correlations. Our predictions can be verified in current quantum simulators of the Dicke model including arrays of trapped ions. DOI: 10.1103/PhysRevResearch.3.L022020 Introduction. Advances in atomic, molecular, and optical freedom such that the model remains amenable to analytic and (AMO) quantum simulators are driving a surge in the investi- numerical treatments.
    [Show full text]
  • Exact Solutions of an Extended Dicke Model
    Physics Letters A 341 (2005) 94–100 www.elsevier.com/locate/pla Exact solutions of an extended Dicke model Feng Pan a,b,∗,TaoWanga,JingPana, Yong-Fan Li a, J.P. Draayer b a Department of Physics, Liaoning Normal University, Dalian 116029, PR China b Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USA Received 1 February 2005; received in revised form 19 April 2005; accepted 4 May 2005 Available online 11 May 2005 Communicated by P.R. Holland Abstract Exact solutions of the Dicke Hamiltonian plus a dipole–dipole interaction among N two-level atoms are derived based on an algebraic Bethe ansatz. As an example application, the role of the dipole–dipole interaction in ground-state-atom condensates of a system is explored. 2005 Elsevier B.V. All rights reserved. PACS: 42.50.Ct; 42.50.Dv; 42.50.Hz; 42.50.Fx Keywords: Extended Dicke model; Dipole–dipole interaction; Exact solution A description of the interaction of a collection of atoms with a radiation field is a model problem in matter–field interaction phenomena that is of interest in many areas of physics. But because it is generally impossible to obtain exact solutions for this problem, approximations are normally adopted. The most common approximation assumes that the radiation field is quasi-monochromatic and the atoms are identical with no direct interactions between or among themselves. The Dicke model [1,2], which is the natural consequence of such an assumption, describes the interaction of N identical two-level atoms with a single-mode field in a perfect cavity.
    [Show full text]
  • Dicke-Type Phase Transition in a Spin-Orbit-Coupled Bose&Ndash
    ARTICLE Received 16 Jan 2014 | Accepted 30 Apr 2014 | Published 4 Jun 2014 DOI: 10.1038/ncomms5023 Dicke-type phase transition in a spin-orbit-coupled Bose–Einstein condensate Chris Hamner1, Chunlei Qu2, Yongping Zhang1,3, JiaJia Chang1, Ming Gong2,4, Chuanwei Zhang1,2 & Peter Engels1 Spin-orbit-coupled Bose–Einstein condensates (BECs) provide a powerful tool to investigate interesting gauge field-related phenomena. Here we study the ground state properties of such a system and show that it can be mapped to the well-known Dicke model in quantum optics, which describes the interactions between an ensemble of atoms and an optical field. A central prediction of the Dicke model is a quantum phase transition between a superradiant phase and a normal phase. We detect this transition in a spin-orbit-coupled BEC by measuring various physical quantities across the phase transition. These quantities include the spin polarization, the relative occupation of the nearly degenerate single-particle states, the quantity analogous to the photon field occupation and the period of a collective oscillation (quadrupole mode). The applicability of the Dicke model to spin-orbit-coupled BECs may lead to interesting applications in quantum optics and quantum information science. 1 Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, USA. 2 Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, USA. 3 Quantum System Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan. 4 Department of Physics and Center of Coherence, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
    [Show full text]
  • Interplay of Quantum Phase Transition and Flat Band in Hybrid Lattices
    PHYSICAL REVIEW RESEARCH 2, 033463 (2020) Interplay of quantum phase transition and flat band in hybrid lattices Gui-Lei Zhu ,1 Hamidreza Ramezani,2 Clive Emary ,3 Jin-Hua Gao,1 Ying Wu,1 and Xin-You Lü1,* 1School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China 2Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, Texas 78539, USA 3Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, United Kingdom (Received 8 October 2019; revised 18 June 2020; accepted 5 August 2020; published 22 September 2020) We establish a connection between quantum phase transitions (QPTs) and energy band theory in an extended Dicke-Hubbard lattice, where the periodical critical curves modulated by wave number k leadstorichequi- librium dynamics. Interestingly, the chiral-symmetry-protected flat band and the localization that it engenders exclusively occurs in the normal phase and disappears in the superradiant phase. This originates from the QPT induced simultaneous breaking up of the on-site resonance condition and off-site chiral symmetry of the system, which prohibits the destructive interference for obtaining a flat band. Our work offers an approach to identify different phases of the lattice via detecting the flat bands or simply the related localizations in a single cell, and, in turn, to control the appearance of flat bands by QPT. DOI: 10.1103/PhysRevResearch.2.033463 I. INTRODUCTION of light [23]. Recently, the flat bands have been observed in experiments with exciton-polariton condensates [24,25], The quantum phase transition (QPT), driven by quantum photonic lattices [26–29], and cold-atom lattices [30].
    [Show full text]
  • Mesoscopic Entanglement Induced by Spontaneous Emission in Solid-State Quantum Optics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE weekprovided ending by Sussex Research Online PRL 110, 080502 (2013) PHYSICAL REVIEW LETTERS 22 FEBRUARY 2013 Mesoscopic Entanglement Induced by Spontaneous Emission in Solid-State Quantum Optics Alejandro Gonza´lez-Tudela1 and Diego Porras2 1Departamento de Fı´sica Teo´rica de la Materia Condensada, Universidad Autonoma de Madrid, 28040 Madrid, Spain 2Departamento de Fı´sica Teo´rica I, Universidad Complutense, 28040 Madrid, Spain (Received 21 September 2012; revised manuscript received 29 November 2012; published 20 February 2013) Implementations of solid-state quantum optics provide us with devices where qubits are placed at fixed positions in photonic or plasmonic one-dimensional waveguides. We show that solely by controlling the position of the qubits and with the help of a coherent driving, collective spontaneous decay may be engineered to yield an entangled mesoscopic steady state. Our scheme relies on the realization of pure superradiant Dicke models by a destructive interference that cancels dipole-dipole interactions in one dimension. DOI: 10.1103/PhysRevLett.110.080502 PACS numbers: 03.67.Bg, 03.67.Ac, 37.10.Ty, 37.10.Vz The study of atoms coupled to the electromagnetic (EM) distance. Adding a classical drive to the pure Dicke model field confined in cavities or optical waveguides has played we obtain a dissipative system with a phase diagram of a central role in the fields of quantum optics and atomic steady states showing mesoscopic spin squeezing and physics. In recent years the basics of that physical system entanglement. This model has been theoretically investi- have been realized with artificially designed atoms in gated in the past [25–27], but experimental realizations are solid-state setups.
    [Show full text]