Identical Emitters, Collective Effects and Dissipation in Quantum Optics

Total Page:16

File Type:pdf, Size:1020Kb

Identical Emitters, Collective Effects and Dissipation in Quantum Optics Identical Emitters, Collective Efects and Dissipation in Quantum Optics Novel numerical approaches for quantum master equations vorgelegt von M.Sc. Michael Gegg geb. in München von der Fakultät II – Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften – Dr.rer.nat. – genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Thomas Möller Gutachter: Prof. Dr. Andreas Knorr Gutachter: Prof. Dr. Jan Wiersig Gutachter: Dr. Marten Richter Tag der wissenschaftlichen Aussprache: 6. Oktober 2017 Berlin 2017 ii iii Abstract In this thesis a formalism for indistinguishable multi-level quantum emitters in quantum master equations is developed. The complexity of the approach scales only polynomially in the number of quantum emitters. Complexity here means the number of coupled equations or rather the dimension of the Liouville space. This approach opens new possibilities for calculating open quantum systems. The method is implemented in the PsiQuaSP library, which allows to setup and solve arbitrary master equations, in particular master equations with the reduced polyno- mial scaling. The introduced tools are utilized to study subradiance in the open Dicke model and various cQED lasers. One of the main current research goals in quantum optics and quantum information science is the generation and stabilization of quantum coherence between distinct quantum systems. These systems can for instance be photons or quantum emitters, qubits. From a theoretical stance the difculty with these systems is that their complexity scales in general exponentially with the system size, like the number of quantum emitters. The reduced scaling of the formalism introduced in this thesis stems from the permutation symmetry of the indistinguishable emit- ters. The method is derived in the context of Lindblad quantum master equations. Lindblad quantum master equations for many identical multi-level systems have been used to study funda- mental quantum optical systems, such as lasing and laser like action, various phase transitions, optical bistability, cooperative resonance fuorescence, entanglement, quantum light generation, quantum to classical transitions, super- and subradiance etc. In most of these cases the single emitter, the many emitter and the weak correlation limit can be satisfactorily treated with ex- isting techniques, such as direct integration, phase space methods or cluster expansion. However these techniques are not well suited for the few emitter case with strong correlations. The the- ory developed in this thesis allows to study all these systems for moderate numbers of quantum emitters and arbitrary correlation strengths, thus flling the gap left open by conventional meth- ods. Even though the theory is developed around Lindblad quantum master equations it is not limited to this case – the requirement of indistinguishability is used to construct symmetrized Liouville space basis states and operators which can also be used to construct other master equations. In this thesis the general methodology for the polynomial scaling of the many emitter master equation is derived by two diferent approaches. Generalized permutation symmetric Liouville space states and operators are introduced that allow for the construction of arbitrary mas- ter equations and observables. These Liouville space states and operators are translated into a graphical representation that greatly facilitates their usage. This representation is found to have a close connection to Lie algebras as well as graph theory. The whole method is implemented in a general and modular way in a C++ library called PsiQuaSP, which allows to simulate arbitrary master equations based on a number state representation. The design of the library heavily relies on the introduced graphical representation, which greatly facilitates the setup of a simulation. The treatment of non-identical systems with PsiQuaSP is illustrated and further techniques for complexity reduction and computational speedup are discussed. These tools are applied to the two main cases of cQED lasers/spasers and super-, subradiance. In the latter case a new type of phase transition in the open Dicke model is predicted that leads to a deterministic generation of subradiant steady state coherences, with applications in quantum information science. Furthermore the interaction of quantum dots with the dissipative modes at metal interfaces is investigated in order to explain experimental fndings. iv v Zusammenfassung In dieser Arbeit wird ein Formalismus für ununterscheidbare Multi-Niveau Quantenemitter in Quanten Mastergleichungen entwickelt. Die Komplexität dieses Ansatzes skaliert nur poly- nomiell und nicht exponentiell in der Anzahl der Emitter. Komplexität bedeutet hier die Anzahl der gekoppelten Gleichungen bzw. die Dimension des Liouville Raumes. Dieser Ansatz erlaubt neuartige Betrachtungen in ofenen, quantenoptischen Systemen. Die Methode wurde in der Psi- QuaSP Programmbibliothek implementiert. Diese erlaubt es generelle Quanten-Mastergleichungen numerisch zu lösen, insbesondere Mastergleichungen mit der reduzierten polynomiellen Skalierung. Mit Hilfe der eingefürten Methoden werden Subradianz im ofenen Dicke Modell und ver- schiedene cQED Laser untersucht. Eines der zentralen, aktuellen Forschungsziele in der Quantenoptik und der Quanteninforma- tions Technologie ist die Generierung und Stabilisierung von Quantenkorrelationen zwischen unterschiedlichen Quantensystemen. Beispiele für solche Quantensysteme sind Photonen oder Quantenemitter, Qubits. Aus theoretischer Sicht liegt die Schwierigkeit mit diesen Systemen in der Tatsache, dass im Allgemeinen ihre Komplexität exponentiell mit der Systemgröße, wie etwa der Anzahl der Quantenemitter, skaliert. Die Reduzierung der Komplexität in dem hier einge- fürten Formalismus resultiert aus der Vertauschungssymmetrie der ununterscheidbaren Emit- ter. Die Methode wird im Kontext von Lindblad Quanten-Mastergleichungen entwickelt. Lind- blad Quanten-Mastergleichungen für identische Multi-Niveau Systeme werden verwendet um fundamentale quantenoptische Systeme zu untersuchen, wie etwa Lasing und laserartiges Ver- halten, verschiedene Phasenübergänge, optische Bistabilität, Kooperative Resonanzfuoreszenz, Verschränkung, Quantenlicht, Übergang von der Quanten- zur klassischen Physik und Super-, Subradianz. In den meisten dieser Fälle können die Grenzfälle von einzelnen Emittern, vie- len Emittern und schwachen Korrelationen mit bestehenden Methoden zufriedenstellend gelöst werden. Diese Methoden sind etwa direkte Integration, Phasenraummethoden oder Cluster Entwicklung. Diese Methoden sind jedoch nicht geeignet für den Fall von mittleren Emitter- Anzahlen mit starken Korrelationen. Der hier entwickelte Formalismus erlaubt es all diese Sys- teme mit mittleren Emitter-Anzahlen und beliebigen Korrelationsstärken zu berechnen. Somit füllt der Formalismus die Lücke welche von herkömmlichen Methoden zurückgelassen wird. In dieser Arbeit wird der Formalismus anhand von zwei verschiedenen Betrachtungsweisen en- twickelt. Generelle Liouville Raum Operatoren und symmetrisierte Liouville Raum Basiszustände werden eingeführt mit denen beliebige Mastergleichungen und Observablen konstruiert wer- den können. Diese Zustände und Operatoren werden in eine graphische Darstellung übersetzt welche die Benutzung stark vereinfacht. Die graphische Darstellung hat Verknüpfungen zu Lie Algebren und der Graphentheorie. Der gesamte Formalismus ist in der Bibliothek PsiQuaSP implementiert, welche Simulationsrechnungen für beliebige Mastergleichungen auf Basis von Nummernzuständen erlaubt. Die Bibliothek basiert auf der graphischen Darstellung, was das Implementieren von Simulationen stark vereinfacht. Des weiteren werden die Behandlung von nicht-identischen Emittern in PsiQuaSP sowie zusätzliche Methoden zur Reduzierung der Kom- plexität vorgestellt. Der Formalismus und die Bibliothek werden auf die zwei Gebiete cQED Laser und Super-, Subradianz angewendet. Im letzteren Fall wird ein neuartiger Phasenüber- gang im ofenen Dicke Modell vorhergesagt, der zur Ausbildung von subradianten Kohärenzen im stationären Zustand führt. Des weiteren wird die Wechselwirkung von einzelnen Quantenpunkten mit den dissipativen op- tischen Moden an Metallgrenzfächen untersucht um experimentelle Befunde zu erklären. vi Contents 1 Introduction 1 I Theoretical Background 5 2 Model systems 7 2.1 Quantum emitters . .8 2.1.1 Two-level Systems . .8 2.1.2 Three and more levels . 10 2.2 Electromagnetic modes in quantum optics . 11 2.2.1 Electromagnetic modes in vacuum . 11 2.2.2 Dissipative modes – Quantum optics in media . 12 3 Open system dynamics 15 3.1 Density matrix . 15 3.2 Closed quantum systems - von Neumann equation . 16 3.3 Open quantum systems - Lindblad equation . 17 3.4 Steady states and the Liouvillian spectrum . 19 II Formalism 21 4 Many emitters – Complex quantum systems 23 4.1 Identical two-level emitters . 24 4.1.1 The product state basis . 25 4.1.2 The Dicke basis . 25 vii viii CONTENTS 4.2 Identical multi-level systems . 28 4.2.1 Product state basis . 29 4.2.2 The Lie algebras su(d) ............................. 30 4.2.3 Dicke states for multi-level systems – su(d) multiplets . 31 4.3 Conclusion . 32 5 Permutation symmetry in quantum master equations 33 5.1 Symmetries, size and averages . 33 5.2 Dissipation vs. symmetry . 35 5.3 Time evolution of identical multi-level systems . 37 5.3.1 Time evolution of a simple master
Recommended publications
  • The Theory of Quantum Coherence María García Díaz
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Universitat Aut`onomade Barcelona The theory of quantum coherence by Mar´ıaGarc´ıaD´ıaz under supervision of Prof. Andreas Winter A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy in Unitat de F´ısicaTe`orica:Informaci´oi Fen`omensQu`antics Departament de F´ısica Facultat de Ci`encies Bellaterra, December, 2019 “The arts and the sciences all draw together as the analyst breaks them down into their smallest pieces: at the hypothetical limit, at the very quick of epistemology, there is convergence of speech, picture, song, and instigating force.” Daniel Albright, Quantum poetics: Yeats, Pound, Eliot, and the science of modernism Abstract Quantum coherence, or the property of systems which are in a superpo- sition of states yielding interference patterns in suitable experiments, is the main hallmark of departure of quantum mechanics from classical physics. Besides its fascinating epistemological implications, quantum coherence also turns out to be a valuable resource for quantum information tasks, and has even been used in the description of fundamental biological processes.
    [Show full text]
  • Matter-Field Entanglement Within the Dicke Model
    Matter-Field Entanglement within the Dicke Model O. Casta~nos,R. L´opez-Pe~na,J. G. Hirsch, and E. Nahmad-Achar Instituto de Ciencias Nucleares, UNAM 2012{ Beauty in Physics: Theory and Experiment Matter-Field Entanglement Cocoyoc, 2012 Content The Dicke Hamiltonian Energy Surface of coherent states (CS) Symmetry adapted coherent states (SAS) Comparison variational vs Exact Results Fidelity Linear and von Neumann entropies Matter squeezing coefficient Conclusions 2012{ Beauty in Physics: Theory and Experiment Matter-Field Entanglement Cocoyoc, 2012 The Dicke Hamiltonian The Dicke model describes a cloud of cold atoms interacting with a one-mode electromagnetic field in an optical cavity [Dicke 1954] y γ y HD =a ^ a^ + !A^Jz + p a^ +a ^ ^J+ + ^J- : N Consider only the symmetric configuration of atoms i.e., N = 2j. The model presents a quantum phase transition when the p coupling constant, for N , takes the value γc = !A=2 [Hepp, Lieb 1973]. ! 1 2012{ Beauty in Physics: Theory and Experiment Matter-Field Entanglement Cocoyoc, 2012 Energy surface for CS The energy surface, or associated classical Hamilton function, is formed by means of the expectation value of the Hamiltonian with respect to a test state. We consider as test state the direct product of coherent states of the groups HW(1), for the electromagnetic part (Glauber 1963) and SU(2), for the atomic part (Arecchi et al 1972) , i.e., 2 +j e-jαj =2 αν 2j 1=2 p j+m jαi⊗jζi = j ζ jνi ⊗ jj; mi : 2 1 ν! j + m 1 + jζj ν=0 m=-j X X 2012{ Beauty in Physics: Theory and Experiment Matter-Field Entanglement Cocoyoc, 2012 Energy surface for CS The energy surface is given by H(α, ζ) ≡ hαj ⊗ hζjHDjαi ⊗ jζi 1 = p2 + q2 - j ! cos θ + 2pjγ q sin θ cos φ : 2 A We define 1 α = p (q + i p) ; 2 θ ζ = tan exp (i φ) ; 2 where (q; p) correspond to the expectation values of the quadratures of the electromagnetic field and (θ, φ) determine a point on the Bloch sphere.
    [Show full text]
  • The Measurement, Creation and Manipulation of Quantum Optical States Via Photodetection
    The measurement, creation and manipulation of quantum optical states via photodetection James G. Webb B.E. (Hons), University of Canberra, 1997. A thesis submitted for the degree of Doctor of Philosophy at The University of New South Wales Submitted 31 March 2009 Revised 13 August 2009 Declaration This thesis is an account of research undertaken in the School of Engineering and Infor- mation Technology, The University of New South Wales and Tokyo University between July 2004 and March 2009. I herebydeclare that this submission is my own workand to thebest of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledge- ment is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged. James G. Webb 13 August 2009 Acknowledgments With a journey lasting just over 5 years - where does one begin to say thankyou to those that made the voyage possible? Firstly I’d like to thank my supervisor Elanor Huntington, who is also as acutely as aware as to how long the journey took! Thankyou for your patience and guidance into the (previously) unfamiliar realms of experimental physics.
    [Show full text]
  • Atom-Only Theories for U(1) Symmetric Cavity-QED Models
    PHYSICAL REVIEW RESEARCH 3, L032016 (2021) Letter Atom-only theories for U(1) symmetric cavity-QED models Roberta Palacino and Jonathan Keeling SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom (Received 26 November 2020; accepted 29 June 2021; published 19 July 2021) We consider a generalized Dicke model with U(1) symmetry, which can undergo a transition to a superradiant state that spontaneously breaks this symmetry. By exploiting the difference in timescale between atomic and cavity dynamics, one may eliminate the cavity dynamics, providing an atom-only theory. We show that the standard Redfield theory cannot describe the transition to the superradiant state, but including higher-order corrections does recover the transition. Our work reveals how the forms of effective theories must vary for models with continuous symmetry, and provides a template to develop effective theories of more complex models. DOI: 10.1103/PhysRevResearch.3.L032016 While phase transitions in equilibrium many-body sys- continuous symmetry breaking in extended multimode sys- tems have been extensively studied and are broadly un- tems allows one to explore the dispersion of the (complex) derstood [1,2], the critical behavior of driven-dissipative Goldstone modes [4,62] and their contribution to critical be- out-of-equilibrium systems [3–6] poses open questions. A havior. As noted above, theoretically modeling such systems central challenge in numerical exploration of such systems is challenging; one fruitful approach is to adiabatically elimi- is the exponential growth of Hilbert space dimension with nate fast degrees of freedom, providing an effective theory of problem size.
    [Show full text]
  • Arxiv:2103.12042V3 [Quant-Ph] 25 Jul 2021 Approximation)
    Unified Gorini{Kossakowski{Lindblad{Sudarshan quantum master equation beyond the secular approximation Anton Trushechkin1, 2 1Steklov Mathematical Institute of Russian Academy of Sciences, Moscow 119991, Russia 2National University of Science and Technology MISIS, Moscow 119049, Russia∗ (Dated: July 27, 2021) Derivation of a quantum master equation for a system weakly coupled to a bath which takes into account nonsecular effects, but nevertheless has the mathematically correct Gorini{Kossakowski{ Lindblad{Sudarshan form (in particular, it preserves positivity of the density operator) and also satisfies the standard thermodynamic properties is a known long-standing problem in theory of open quantum systems. The nonsecular terms are important when some energy levels of the system or their differences (Bohr frequencies) are nearly degenerate. We provide a fully rigorous derivation of such equation based on a formalization of the weak-coupling limit for the general case. I. INTRODUCTION particular, does not preserve positivity of the density op- erator, thus leading to unphysical predictions. Also, this Quantum master equations are at the heart of theory of equation does not have the mentioned thermodynamic open quantum systems [1{3]. They describe the dynam- properties. ics of the reduced density operator of a system interact- Derivation of a mathematically correct quantum mas- ing with the environment (\bath") and are widely used ter equation which takes into account nonsecular effects in quantum optics, condensed matter physics, charge and is actively studied. Several heuristic approaches turning energy transfer in molecular systems, bio-chemical pro- the Redfield equation into an equation of the GKLS form cesses [4], quantum thermodynamics [5,6], etc.
    [Show full text]
  • Experimentally Exploring the Dicke Phase Transition
    Diss. ETH No. 19943 Experimental Realization of the Dicke Quantum Phase Transition A dissertation submitted to the ETH Zurich¨ for the degree of Doctor of Sciences presented by Kristian Gotthold Baumann Dipl.-Phys., Technische Universit¨at Munchen,¨ Germany born 7.4.1983 in Leipzig, Germany citizen of Germany accepted on the recommendation of Prof. Dr. Tilman Esslinger, examiner Prof. Dr. Johann Blatter, co-examiner 2011 Zusammenfassung In dieser Arbeit wird die erste experimentelle Realisierung des Quantenphasenuberganges¨ im Dicke Modell vorgestellt. Wir betrachten die Quantenbewegung eines Bose-Einstein Konden- sates die an einen optischen Resonator gekoppelt ist. Konzeptionell ist der Phasenubergang¨ durch langreichweitige Wechselwirkungen induziert, die zum Entstehen eines selbstorgani- sierten suprasoliden Zustandes fuhren.¨ Der Quantenphasenubergang¨ im Dicke Modell wurde bereits 1973 vorhergesagt. Vor dieser Arbeit konnte dieser aber wegen grundlegenden und technologischen Grunden¨ experimentell nicht nachgewiesen werden. Durch die Verwendung von atomaren Impulszust¨anden konnten wir diese Herausforderung nun bew¨altigen. Die Impulszust¨ande werden durch Zweiphotonen- Uberg¨ ¨ange miteinander gekoppelt, wobei je ein Photon aus dem Resonator und ein Photon aus einer transversalen Lichtwelle gebraucht werden. Diese offene Implementierung des Di- cke Modells erlaubt es alle relevanten Parameter einzustellen und bietet eine einzigartige Detektionsmethode in Echtzeit. Wir zeigen in dieser Doktorarbeit, dass der Phasenubergang¨ von einem
    [Show full text]
  • Charge and Energy Transfer Processes: Open Problems in Open Quantum Systems
    CHARGE AND ENERGY TRANSFER PROCESSES: OPEN PROBLEMS IN OPEN QUANTUM SYSTEMS Aaron Kelly (Dalhousie), Marco Merkli (Memorial), Dvira Segal (Toronto) Aug 18 - Aug 23, 2019 1 Overview of the Field Open quantum systems. A quantum system subjected to external influences is said to be open. The external degrees of freedom are often referred to as an environment, a bath, a reservoir or simply a noise. Typical examples of open quantum systems cover artificial and natural systems including a register of qubits (the system) in contact with a substrate they are mounted on (the environment), or a molecule undergoing a chemical reaction while immersed in a sea of surrounding substances (the solvent) influencing the process. Moreover, in large molecules the electrons and nuclear coordinates that do not directly take part in the reaction may act as a reservoir for the reaction coordinate(s). An open system may experience phase loss, energy and particle exchange with the surroundings, thus being open drastically impacts its dynamics. As even slight external influences can change the evolution of a quantum system considerably, it is important, both from a theoretical and practical standpoint, to be able to model and analyze such interactions. The study of open quantum systems is an important part of modern science. It carries a direct impact on different areas, such as the development of energy conversion and storage technologies based on organic or biological molecules and the realization of quantum-based technologies. According to the postulates of quantum mechanics, the dynamical equation of a closed quantum system (not subjected to an external noise) is the Schrodinger¨ equation, a differential equation governing the time evolution of the wave function (the state) of a system.
    [Show full text]
  • Ligos Quantum Response to Squeezed States
    LIGO’s Quantum Response to Squeezed States L. McCuller,1, ∗ S. E. Dwyer,2 A. C. Green,3 Haocun Yu,1 L. Barsotti,1 C. D. Blair,4 D. D. Brown,5 A. Effler,4 M. Evans,1 A. Fernandez-Galiana,1 P. Fritschel,1 V. V. Frolov,4 N. Kijbunchoo,6 G. L. Mansell,1, 2 F. Matichard,7, 1 N. Mavalvala,1 D. E. McClelland,6 T. McRae,6 A. Mullavey,4 D. Sigg,2 B. J. J. Slagmolen,6 M. Tse,1 T. Vo,8 R. L. Ward,6 C. Whittle,1 R. Abbott,7 C. Adams,4 R. X. Adhikari,7 A. Ananyeva,7 S. Appert,7 K. Arai,7 J. S. Areeda,9 Y. Asali,10 S. M. Aston,4 C. Austin,11 A. M. Baer,12 M. Ball,13 S. W. Ballmer,8 S. Banagiri,14 D. Barker,2 J. Bartlett,2 B. K. Berger,15 J. Betzwieser,4 D. Bhattacharjee,16 G. Billingsley,7 S. Biscans,1, 7 R. M. Blair,2 N. Bode,17, 18 P. Booker,17, 18 R. Bork,7 A. Bramley,4 A. F. Brooks,7 A. Buikema,1 C. Cahillane,7 K. C. Cannon,19 X. Chen,20 A. A. Ciobanu,5 F. Clara,2 C. M. Compton,2 S. J. Cooper,21 K. R. Corley,10 S. T. Countryman,10 P. B. Covas,22 D. C. Coyne,7 L. E. H. Datrier,23 D. Davis,8 C. Di Fronzo,21 K. L. Dooley,24, 25 J. C. Driggers,2 T. Etzel,7 T. M. Evans,4 J.
    [Show full text]
  • Dissipation and Thermal Noise in Hybrid Quantum Systems in the Ultrastrong Coupling Regime
    Dissipation and Thermal Noise in Hybrid Quantum Systems in the Ultrastrong Coupling Regime Alessio Settineri,1 Vincenzo Macr´ı,2 Alessandro Ridolfo,2 Omar Di Stefano,2 Anton Frisk Kockum,2, 3 Franco Nori,2, 4 and Salvatore Savasta1, 2 1Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Universit`adi Messina, I-98166 Messina, Italy 2Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan 3Wallenberg Centre for Quantum Technology, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden 4Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA (Dated: November 22, 2018) arXiv:1807.06348v3 [quant-ph] 21 Nov 2018 1 Abstract The interaction among the components of a hybrid quantum system is often neglected when con- sidering the coupling of these components to an environment. However, if the interaction strength is large, this approximation leads to unphysical predictions, as has been shown for cavity-QED and optomechanical systems in the ultrastrong-coupling regime. To deal with these cases, master equations with dissipators retaining the interaction between these components have been derived for the quantum Rabi model and for the standard optomechanical Hamiltonian. In this article, we go beyond these previous derivations and present a general master equation approach for arbi- trary hybrid quantum systems interacting with thermal reservoirs. Specifically, our approach can be applied to describe the dynamics of open hybrid systems with harmonic, quasi-harmonic, and anharmonic transitions. We apply our approach to study the influence of temperature on multipho- ton vacuum Rabi oscillations in circuit QED.
    [Show full text]
  • Coding Closed and Open Quantum Systems in MATLAB: Applications in Quantum Optics and Condensed Matter
    Coding closed and open quantum systems in MATLAB: applications in quantum optics and condensed matter Ariel Norambuena1, Diego Tancara2, and Ra´ulCoto1 1 Centro de Investigaci´onDAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Chile 2 Faculty of Physics, Pontificia Universidad Cat´olicade Chile, Avda. Vicu~na Mackenna 4860, Santiago, Chile E-mail: [email protected] Abstract. We develop a package of numerical simulations implemented in MATLAB to solve complex many-body quantum systems. We focus on widely used examples that include the calculation of the magnetization dynamics for the closed and open Ising model, dynamical quantum phase transition in cavity QED arrays, Markovian dynamics for interacting two-level systems, and the non-Markovian dynamics of the pure-dephasing spin-boson model. These examples will be useful for undergraduate and graduate students with a medium or high background in MATLAB, and also for researches interested in numerical studies applied to quantum optics and condensed matter systems. 1. Introduction Myriad current research fields in quantum optics and condensed matter demand numerical analysis of complex many-body systems (MBS). Interesting effects like arXiv:1911.04906v2 [quant-ph] 27 Feb 2020 dynamical quantum phase transition (DQPT), meta-stability, steady states, among others, can naturally emerge in MBS. These effects are observed in closed decoherence- free dynamics such as the Jaynes-Cummings [1], Jaynes-Cummings-Hubbard [2], trapped ions [3], cavity opto-mechanics [4] or Ising models [5]. Furthermore, for open quantum systems, the environment may cause memory effects in the reservoir time scale, which is known as non-Markovianity (NM) [6, 7].
    [Show full text]
  • Quantum Correlations and Quantum Coherence in Open Quantum Systems
    Paola Andrea Concha Obando QUANTUM CORRELATIONS AND QUANTUM COHERENCE IN OPEN QUANTUM SYSTEMS Brasil 2018 Paola Andrea Concha Obando QUANTUM CORRELATIONS AND QUANTUM COHERENCE IN OPEN QUANTUM SYSTEMS Tese apresentada ao Curso de Pós-Graduação em Física da Universidade Federal Flumi- nense, como requisito parcial para obtenção do Título de Doutor em Física. Universidade Federal Fluminense Instituto de Física Programa de Pós-Graduação Orientador Prof. Dr. Marcelo Silva Sarandy Coorientador Prof. Dr. Fagner Muruci de Paula Brasil 2018 Paola Andrea Concha Obando QUANTUM CORRELATIONS AND QUANTUM COHERENCE IN OPEN QUAN- TUM SYSTEMS/ Paola Andrea Concha Obando. – Brasil, 2018- 141 p. : il. (algumas color.) ; 30 cm. Orientador: Prof. Dr. Marcelo Silva Sarandy Co-Orientador: Prof. Dr. Fagner Muruci de Paula Tese (Doutorado) – Universidade Federal Fluminense Instituto de Física Programa de Pós-Graduação, 2018. 1. Decoherence, open systems. 2. quantum statistical methods. 2. quantum information.. I. Dr. Marcelo Silva Sarandy II. Universidade Federal Fluminense. III. Programa de Física. IV. Título A mi vida y a mi madre. ACKNOWLEDGEMENTS Os meus agradecimentos são em primeiro lugar para o meu orientador Marcelo Sarandy, pelo seu tempo, paciência, dedicação e ensinamentos. Sem dúvidas uma grande pessoa e por quem tenho uma profunda admiração. Para mim, foi um enorme privilégio trabalhar sobre a sua orientação durante estes quatro anos e espero poder contar com a sua colaboração e amizade no futuro. Agradeço ao meu co-orientador Fagner Muruci de Paula, obrigada pela sua amizade, as suas valiosas ideias, pelas discussões e pelos trabalhos em conjunto. Agradeço a minha família por estar sempre comigo sem importar a distância, a meus pais que me apoiaram nesta decisão, a minha irmã Jenny por compartilhar o amor pela física e nosso trabalho em conjunto.
    [Show full text]
  • Two-Window Heterodyne Methods to Characterize Light Fields by Frank Reil Department of Physics Duke University
    Copyright °c 2003 by Frank Reil All rights reserved Two-Window Heterodyne Methods to Characterize Light Fields by Frank Reil Department of Physics Duke University Date: Approved: Dr. John E. Thomas, Supervisor Dr. Daniel J. Gauthier Dr. Robert Behringer Dr. Moo-Young Han Dr. Bob Guenther Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2003 abstract (Physics) Two-Window Heterodyne Methods to Characterize Light Fields by Frank Reil Department of Physics Duke University Date: Approved: Dr. John E. Thomas, Supervisor Dr. Daniel J. Gauthier Dr. Robert Behringer Dr. Moo-Young Han Dr. Bob Guenther An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2003 Abstract In this dissertation, I develop a novel Two-Window heterodyne technique for mea- suring the time-resolved Wigner function of light fields, which allows their complete characterization. A Wigner function is a quasi-probability density that describes the transverse position and transverse momentum of a light field and is Fourier- transform related to its mutual coherence function. It obeys rigorous transport equations and therefore provides an ideal way to characterize a light field and its propagation through various media. I first present the experimental setup of our Two-Window technique, which is based on a heterodyne scheme involving two phase-coupled Local Oscillator beams we call the Dual-LO. The Dual-LO consists of a focused beam (’SLO’) which sets the spatial resolution, and a collimated beam (’BLO’) which sets the momental resolution.
    [Show full text]