Dissipation and Thermal Noise in Hybrid Quantum Systems in the Ultrastrong Coupling Regime
Dissipation and Thermal Noise in Hybrid Quantum Systems in the Ultrastrong Coupling Regime Alessio Settineri,1 Vincenzo Macr´ı,2 Alessandro Ridolfo,2 Omar Di Stefano,2 Anton Frisk Kockum,2, 3 Franco Nori,2, 4 and Salvatore Savasta1, 2 1Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Universit`adi Messina, I-98166 Messina, Italy 2Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan 3Wallenberg Centre for Quantum Technology, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden 4Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA (Dated: November 22, 2018) arXiv:1807.06348v3 [quant-ph] 21 Nov 2018 1 Abstract The interaction among the components of a hybrid quantum system is often neglected when con- sidering the coupling of these components to an environment. However, if the interaction strength is large, this approximation leads to unphysical predictions, as has been shown for cavity-QED and optomechanical systems in the ultrastrong-coupling regime. To deal with these cases, master equations with dissipators retaining the interaction between these components have been derived for the quantum Rabi model and for the standard optomechanical Hamiltonian. In this article, we go beyond these previous derivations and present a general master equation approach for arbi- trary hybrid quantum systems interacting with thermal reservoirs. Specifically, our approach can be applied to describe the dynamics of open hybrid systems with harmonic, quasi-harmonic, and anharmonic transitions. We apply our approach to study the influence of temperature on multipho- ton vacuum Rabi oscillations in circuit QED.
[Show full text]