Epigenetic Changes in the Developing Brain: Effects on Behavior Eric B

Total Page:16

File Type:pdf, Size:1020Kb

Epigenetic Changes in the Developing Brain: Effects on Behavior Eric B FROM THE ACADEMY: COLLOQUIUM INTRODUCTION COLLOQUIUM INTRODUCTION Epigenetic changes in the developing brain: Effects on behavior Eric B. Kevernea, Donald W. Pfaffb, and Inna Tabanskyb,1 Indeed, epigenetics epitomizes the develop- aSub-Department of Animal Behaviour, University of Cambridge, Cambridge CB3 8AA, ment of the brain more than that of any other England; and bLaboratory of Neurobiology and Behaviour, The Rockefeller University, New structure. The billions of neurons exponen- York, NY 10021 tially magnified for function by the trillions of synaptic interconnections mean that no two brains are alike. Even monozygotic (MZ) This Sackler Colloquium encompasses a broad to an estrogen response element (7), followed twins show differences in behavior and in range of topics for the following reason. Our by the actions of coactivator proteins (8, 9). psychiatric disorders that become more marked knowledge of the chemistry of epigenetic Recent molecular endocrine papers are more with age (20). There are, as reported in this modifications is expanding at a rapid rate, ambiguous on the exact order of events (see Sackler Colloquium, reports of experience but most of the primary discoveries in this – Some Outstanding Questions,below)(10 12). driven heritable changes in the brain’s epi- field are made using nonneural tissue. So, The long-lasting epigenetic changes in the nu- genome, especially experiences involving ma- neuroscientists want to learn about this chem- clei of hypothalamic neurons, which are re- ternal care (13) and stress (21). Neural systems istry but may not have direct exposure to sponsible for the normal development of are designed to respond to the environment the material. In a complementary fashion, this chain of estrogen-dependent reproductive because the strengths of their synaptic con- molecular geneticists and protein chemists behaviors, have remained obscure. nections are activity-dependent. In humans who experiment on DNA methylation, histone Thus, the following series of papers in this the accumulation of brain knowledge across modifications, and noncoding RNAs realize Sackler Colloquium focus on mechanisms generations has played an integral role in that some of the most exciting applications of that include DNA methylation, genomic im- shaping and ameliorating environments to their discoveries are in the CNS, but for such printing, histone modifications, and noncod- optimize longevity and reproductive success. scientists behavioral assays, for example, are ing RNAs, applying this new knowledge to It is, however, important to distinguish distant from their expertise. The purpose of neuronal mechanisms for behavior, wherever between transgenerational hereditary and this Sackler Colloquium, therefore, was to possible.Hereweoffersubstantivebackgrounds intergenerational effects. Examples of the — bring together experts in the two fields on several types of mechanisms in play. latter include in utero exposure to nutritional epigenetic chemistry and behavioral neuro- To date, the behavioral systems most easily status, stress, or toxic environmental factors — science in the spirit of mutual education. explored with respect to epigenetic mecha- that act on the developing embryo and its We start with the chemistry of transcription nisms have been those that do not need to germ line (22). These intergenerational events itself. Decades of biochemical work led to the be learned. Thus, at the Sackler Colloquium should be distinguished from truly trans- concept of the basal transcriptional complex mechanisms discussed were those for ma- generational inheritance, which is found in (1, 2), and recently a structure for the tran- ternal behaviors (13), sexual behaviors and subsequent generations that were not exposed scription preinitiation complex was reported stress (14), and hypothalamically controlled to the initial environmental events that trig- (3). Neuroscientists concerned with the devel- behaviors (15). Circadian-regulated behav- gered the change. opment of behavior need to know the variety iors (16) clearly represent a case of normal When considering intergenerational effects of changes in the cell nucleus that precede the behaviors epigenetically regulated, whereas it is also important to consider which parent formation of that complex, with an emphasis problematic and abnormal behaviors, such as was exposed. Any harmful events experi- on those modifications that last a long time. in Prader-Willi syndrome (17), and changes enced in utero are likely to affect the next It has been established that specific genes in behavior during aging were also dis- generation of both males and females. These operating in specific neurons govern the cussed. Potential contributions of transposon events can also affect the third generation of appearance of specific, biologically crucial expression to expanded opportunities for neu- the female offspring, as the female germ line behaviors. The system that has been worked roplasticity were discussed at the meeting by develops in utero, where the primordial germ out in the most detail features estrogen- Gage, and are represented here among the cells undergo demethylation and remethyla- dependent female reproductive behavior (4, 5) Outstanding Questions emanating from tion. These epigenetic marks are likely to modulated by estrogen-facilitated transcription the meeting. of a range of genes in ventromedial hypo- This paper serves as an introduction to the articles which resulted thalamic neurons required to activate a spinal- Epigenetics from the Arthur M. Sackler Colloquium of the National Academy of midbrain-spinal circuit. Similarly, expression In 1946 Waddington (18) introduced the term Sciences, “Epigenetic Changes in the Developing Brain: Effects on of the gene encoding the estrogen receptor-α “epigenetics” to link the phenotype with ge- Behavior,” held March 28–29, 2014, at the National Academy of α Sciences in Washington, DC. The complete program and video re- (ER- ) in medial preoptic neurons is essential notype during development. The notion of cordings of most presentations are available on the NAS website at for the performance of maternal behaviors (6). heritability became linked to “memory” marks www.nasonline.org/Epigenetic_changes. For behavior and other physiological func- (DNA methylation) for propagating cell Author contributions: E.B.K., D.W.P., and I.T. wrote the paper. tions, early papers reported that the first mo- identity by structural regulation of chromatin The authors declare no conflict of interest. lecular event that leads to hormone-facilitated for gene-expression states (register, signal, or 1To whom correspondence should be addressed. Email: itabansky@ transcription, depends on the binding of ER-α perpetuate activity states) (19). rockefeller.edu. www.pnas.org/cgi/doi/10.1073/pnas.1501482112 PNAS Early Edition | 1of7 Downloaded by guest on September 23, 2021 persist in the egg, unlike those of the sperm, 5-hydroxymethylcytosine has been reported ceacams, and prolactins). These genes have which are erased after fertilization. In the ab- in Purkinje neurons (27). undergone multiple duplications across sence of in utero stressors or toxins, the mammalian species (Psgs 1–23, Ceas 1–19, demethylation/remethylation reprogramming Genomic Imprinting. During germ-cell de- Prls 3–18) with the lowest copy number in provides a major barrier to transgenerational velopment, genomic imprints are also estab- metatherians and highest in eutherian epigenetic inheritance. lished, allowing parent-of-origin specific ex- primates. An important feature of genes that In the context of intergenerational inheri- pression of particular genes. The primary are imprinted is their evolutionary stability tance, the placenta and brain are of particular origin and the role for the matriline in ge- through purifying selection, and the recruitment importance. The fetal placenta is integral to nomic imprinting (maternal methylation, of more genes to this epigenetic mode of the successful development of the next gen- maternal reprogramming) probably owes regulation (ICRs) has occurred across the eration, interacting and regulating much of much to its evolutionary significance and evolution of mammalian species (33). This maternal physiology and behavior, thereby success in mammalian in utero development. recruitment has often expanded the ICR to ensuring its own successful development and, Its contribution to placentation, metabolism, include noncoding RNAs. Imprinted gene in turn, that of its fetus continue. Maternal thermogenesis (body temperature regulation), clusters contain at least one long noncoding care interactions continue after birth, further maternal care, growth, and brain development RNA (lncRNA), and two clusters in partic- ensuring this next generation receives adequate are global functions targeted by imprinted ular (Kcnq1-Kcnq1 ot1; Igf2r-Airn)havean nutrition, warmth, and tactile stimulation. gene regulation. estimated 100 kb of lncRNA transcribed in Genomic imprinting is regulated by epi- an antisense direction from within the protein- DNA Methylation and Demethylation. In genetic marks in the imprint control region coding genes (34). The lncRNA plays an es- development, DNA methylation imposes a (ICR) of genes. These marks are heritable sential role in the imprinting of these clusters fundamental epigenetic barrier that guides and result in the monoallelic, parent of ori- and deletion of their promoter results in bial- and restricts developmental differentiation,
Recommended publications
  • Table S1. List of Proteins in the BAHD1 Interactome
    Table S1. List of proteins in the BAHD1 interactome BAHD1 nuclear partners found in this work yeast two-hybrid screen Name Description Function Reference (a) Chromatin adapters HP1α (CBX5) chromobox homolog 5 (HP1 alpha) Binds histone H3 methylated on lysine 9 and chromatin-associated proteins (20-23) HP1β (CBX1) chromobox homolog 1 (HP1 beta) Binds histone H3 methylated on lysine 9 and chromatin-associated proteins HP1γ (CBX3) chromobox homolog 3 (HP1 gamma) Binds histone H3 methylated on lysine 9 and chromatin-associated proteins MBD1 methyl-CpG binding domain protein 1 Binds methylated CpG dinucleotide and chromatin-associated proteins (22, 24-26) Chromatin modification enzymes CHD1 chromodomain helicase DNA binding protein 1 ATP-dependent chromatin remodeling activity (27-28) HDAC5 histone deacetylase 5 Histone deacetylase activity (23,29,30) SETDB1 (ESET;KMT1E) SET domain, bifurcated 1 Histone-lysine N-methyltransferase activity (31-34) Transcription factors GTF3C2 general transcription factor IIIC, polypeptide 2, beta 110kDa Required for RNA polymerase III-mediated transcription HEYL (Hey3) hairy/enhancer-of-split related with YRPW motif-like DNA-binding transcription factor with basic helix-loop-helix domain (35) KLF10 (TIEG1) Kruppel-like factor 10 DNA-binding transcription factor with C2H2 zinc finger domain (36) NR2F1 (COUP-TFI) nuclear receptor subfamily 2, group F, member 1 DNA-binding transcription factor with C4 type zinc finger domain (ligand-regulated) (36) PEG3 paternally expressed 3 DNA-binding transcription factor with
    [Show full text]
  • An Integrative Study
    Published OnlineFirst January 12, 2010; DOI: 10.1158/1535-7163.MCT-09-0321 Molecular Spotlight on Molecular Profiling Cancer Therapeutics Multifactorial Regulation of E-Cadherin Expression: An Integrative Study William C. Reinhold1, Mark A. Reimers1,2, Philip Lorenzi1,3, Jennifer Ho1, Uma T. Shankavaram1,4, Micah S. Ziegler1, Kimberly J. Bussey1,5, Satoshi Nishizuka1,6, Ogechi Ikediobi1,7, Yves G. Pommier1, and John N. Weinstein1,3 Abstract E-cadherin (E-cad) is an adhesion molecule associated with tumor invasion and metastasis. Its down- regulation is associated with poor prognosis for many epithelial tumor types. We have profiled E-cad in the NCI-60 cancer cell lines at the DNA, RNA, and protein levels using six different microarray platforms plus bisulfite sequencing. Here we consider the effects on E-cad expression of eight potential regulatory factors: E-cad promoter DNA methylation, the transcript levels of six transcriptional repressors (SNAI1, SNAI2, TCF3, TCF8, TWIST1, and ZFHX1B), and E-cad DNA copy number. Combined bioinformatic and pharmacological analyses indicate the following ranking of influence on E-cad expression: (1) E-cad pro- moter methylation appears predominant, is strongly correlated with E-cad expression, and shows a 20% to 30% threshold above which E-cad expression is silenced; (2) TCF8 expression levels correlate with (−0.62) and predict (P < 0.00001) E-cad expression; (3) SNAI2 and ZFHX1B expression levels correlate positively with each other (+0.83) and also correlate with (−0.32 and −0.30, respectively) and predict (P =0.03and 0.01, respectively) E-cad expression; (4) TWIST1 correlates with (−0.34) but does not predict E-cad expres- sion; and (5) SNAI1 expression, TCF3 expression, and E-cad DNA copy number do not correlate with or predict E-cad expression.
    [Show full text]
  • Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Co-Regulator in Invasive 6 Lobular Carcinoma of the Breast 7 8 Evelyn K
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423142; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Running Title: MDC1 co-regulates ER in ILC 2 3 Research article 4 5 Mediator of DNA damage checkpoint 1 (MDC1) is a novel estrogen receptor co-regulator in invasive 6 lobular carcinoma of the breast 7 8 Evelyn K. Bordeaux1+, Joseph L. Sottnik1+, Sanjana Mehrotra1, Sarah E. Ferrara2, Andrew E. Goodspeed2,3, James 9 C. Costello2,3, Matthew J. Sikora1 10 11 +EKB and JLS contributed equally to this project. 12 13 Affiliations 14 1Dept. of Pathology, University of Colorado Anschutz Medical Campus 15 2Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center 16 3Dept. of Pharmacology, University of Colorado Anschutz Medical Campus 17 18 Corresponding author 19 Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, 20 CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: 21 @mjsikora 22 23 Authors' contributions 24 MJS conceived of the project. MJS, EKB, and JLS designed and performed experiments. JLS developed models 25 for the project. EKB, JLS, SM, and AEG contributed to data analysis and interpretation. SEF, AEG, and JCC 26 developed and performed informatics analyses. MJS wrote the draft manuscript; all authors read and revised the 27 manuscript and have read and approved of this version of the manuscript.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The Direction of Cross Affects Obesity After Puberty in Male but Not Female
    Kärst et al. BMC Genomics (2015) 16:904 DOI 10.1186/s12864-015-2164-2 RESEARCH ARTICLE Open Access The direction of cross affects obesity after puberty in male but not female offspring Stefan Kärst1†, Danny Arends1†, Sebastian Heise1†, Jan Trost1, Marie-Laure Yaspo2, Vyacheslav Amstislavskiy2, Thomas Risch2, Hans Lehrach2 and Gudrun A. Brockmann1* Abstract Background: We investigated parent-of-origin and allele-specific expression effects on obesity and hepatic gene expression in reciprocal crosses between the Berlin Fat Mouse Inbred line (BFMI) and C57Bl/6NCrl (B6N). Results: We found that F1-males with a BFMI mother developed 1.8 times more fat mass on a high fat diet at 10 weeks than F1-males of a BFMI father. The phenotype was detectable from six weeks on and was preserved after cross-fostering. RNA-seq data of liver provided evidence for higher biosynthesis and elongation of fatty acids (p = 0.00635) in obese male offspring of a BFMI mother versus lean offspring of a BFMI father. Furthermore, fatty acid degradation (p = 0.00198) and the peroxisome pathway were impaired (p = 0.00094). The circadian rhythm was affected as well (p = 0.00087). Among the highest up-regulated protein coding genes in obese males were Acot4 (1.82 fold, p = 0.022), Cyp4a10 (1.35 fold, p = 0.026) and Cyp4a14 (1.32 fold, p = 0.012), which hydroxylize fatty acids and which are known to be increased in liver steatosis. Obese males showed lower expression of the genetically imprinted and paternally expressed 3 (Peg3) gene (0.31 fold, p = 0.046) and higher expression of the androgen receptor (Ar) gene (2.38 fold, p = 0.068).
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Decorin Causes Autophagy in Endothelial Cells Via Peg3 PNAS PLUS
    Decorin causes autophagy in endothelial cells via Peg3 PNAS PLUS Simone Buraschia,b,1, Thomas Neilla,b,1, Atul Goyala,b, Chiara Poluzzia,b, James Smythiesa,b, Rick T. Owensc, Liliana Schaeferd, Annabel Torresa,b, and Renato V. Iozzoa,b,2 aDepartment of Pathology, Anatomy and Cell Biology, and the bCell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107; cLifeCell Corporation, Branchburg, NJ 08876; and dPharmazentrum Frankfurt, Goethe University, 60590 Frankfurt, Germany Edited by Carlo M. Croce, The Ohio State University, Columbus, Ohio, and approved May 29, 2013 (received for review March 27, 2013) Soluble decorin affects the biology of several receptor tyrosine capable of significantly inhibiting neovascularization of triple- kinases by triggering receptor internalization and degradation. We negative basal cell breast carcinomas (23). found that decorin induced paternally expressed gene 3 (Peg3), an During preclinical studies focusing on identifying decorin- imprinted tumor suppressor gene, and that Peg3 relocated into induced genes in vivo, we found that systemic delivery of decorin autophagosomes labeled by Beclin 1 and microtubule-associated protein core to mice carrying orthotopic mammary carcinoma light chain 3. Decorin evoked Peg3-dependent autophagy in both xenografts induced expression of a small subset of genes (24). microvascular and macrovascular endothelial cells leading to sup- Notably, these genes were induced exclusively in the tumor stroma pression of angiogenesis. Peg3 coimmunoprecipitated with Beclin 1 of mouse origin but not in the mammary carcinomas of human and LC3 and was required for maintaining basal levels of Beclin 1. origin (24). One of the most up-regulated genes was Paternally Decorin, via Peg3, induced transcription of Beclin 1 and microtu- expressed gene 3 (Peg3), an imprinted putative tumor-suppressor bule-associated protein 1 light chain 3 alpha genes, thereby leading gene frequently silenced by promoter hypermethylation and/or to a protracted autophagic program.
    [Show full text]
  • Identification of Clustered YY1 Binding Sites in Imprinting Control Regions
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Identification of clustered YY1 binding sites in imprinting control regions Jeong Do Kim,1,3 Angela K. Hinz,2,3 Anne Bergmann,2 Jennifer M. Huang,1 Ivan Ovcharenko,2 Lisa Stubbs,2 and Joomyeong Kim1,4 1Department of Biological Sciences, Center for BioModular Multi-Scale Systems, Louisiana State University, Baton Rouge, Louisiana 70803, USA; 2Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA Mammalian genomic imprinting is regulated by imprinting control regions (ICRs) that are usually associated with tandem arrays of transcription factor binding sites. In this study, the sequence features derived from a tandem array of YY1 binding sites of Peg3-DMR (differentially methylated region) led us to identify three additional clustered YY1 binding sites, which are also localized within the DMRs of Xist, Tsix, and Nespas. These regions have been shown to play a critical role as ICRs for the regulation of surrounding genes. These ICRs have maintained a tandem array of YY1 binding sites during mammalian evolution. The in vivo binding of YY1 to these regions is allele specific and only to the unmethylated active alleles. Promoter/enhancer assays suggest that a tandem array of YY1 binding sites function as a potential orientation-dependent enhancer. Insulator assays revealed that the enhancer-blocking activity is detected only in the YY1 binding sites of Peg3-DMR but not in the YY1 binding sites of other DMRs. Overall, our identification of three additional clustered YY1 binding sites in imprinted domains suggests a significant role for YY1 in mammalian genomic imprinting.
    [Show full text]
  • Paternally Expressed Imprinted Snord116 and Peg3 Regulate Hypothalamic Orexin Neurons
    bioRxiv preprint doi: https://doi.org/10.1101/820738; this version posted October 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Paternally expressed imprinted Snord116 and Peg3 regulate hypothalamic orexin neurons Pace Marta1#, Falappa Matteo1,2#, Freschi Andrea1, Balzani Edoardo1, Berteotti Chiara3, Lo Martire Viviana3, Fatemeh Kaveh4, Eivind Hovig4,5, Zoccoli Giovanna3, Cerri Matteo6, Amici Roberto6, Urbanucci Alfonso 4, Tucci Valter *1 1 Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, via Morego 30, 16163, Italy. 2 Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, Genova, Italy; 3 PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy 4 Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo Norway 5 Department of Informatics, University of Oslo, Oslo, Norway 6Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy; # These authors contributed equally * corresponding author: [email protected] General information: Abstract words: 186; words count: 9525; figures: 4; Supplementary material: figures 6; table 8 Conflict of Interest: each author discloses the absence of any conflicts of interest relative to the research covered in the submitted manuscript. bioRxiv preprint doi: https://doi.org/10.1101/820738; this version posted October 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Insights from reconstructing cellular networks in transcription, stress, and cancer Permalink https://escholarship.org/uc/item/6s97497m Authors Ke, Eugene Yunghung Ke, Eugene Yunghung Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Insights from Reconstructing Cellular Networks in Transcription, Stress, and Cancer A dissertation submitted in the partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics and Systems Biology by Eugene Yunghung Ke Committee in charge: Professor Shankar Subramaniam, Chair Professor Inder Verma, Co-Chair Professor Web Cavenee Professor Alexander Hoffmann Professor Bing Ren 2012 The Dissertation of Eugene Yunghung Ke is approved, and it is acceptable in quality and form for the publication on microfilm and electronically ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ Co-Chair ________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION To my parents, Victor and Tai-Lee Ke iv EPIGRAPH [T]here are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there
    [Show full text]
  • Gene- and Tissue-Level Interactions in Normal Gastrointestinal Development and Hirschsprung Disease
    Gene- and tissue-level interactions in normal gastrointestinal development and Hirschsprung disease Sumantra Chatterjeea,b,1, Priyanka Nandakumara,1, Dallas R. Auera,b, Stacey B. Gabrielc, and Aravinda Chakravartia,b,2 aCenter for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; bCenter for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016; and cGenomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142 Contributed by Aravinda Chakravarti, November 1, 2019 (sent for review May 21, 2019; reviewed by William J. Pavan and Tatjana Sauka-Spengler) The development of the gut from endodermal tissue to an organ between the longitudinal and circular muscles, and the sub- with multiple distinct structures and functions occurs over a mucosal (Meissner’s) plexus, between the circular muscle and prolonged time during embryonic days E10.5–E14.5 in the mouse. the submucosal layer. The myenteric and submucoal plexuses During this process, one major event is innervation of the gut by provide motor innervation to both muscular layers of the gut, enteric neural crest cells (ENCCs) to establish the enteric nervous and secretomotor innervation of the mucosa nearest the lumen system (ENS). To understand the molecular processes underpinning of the gut, respectively (6). gut and ENS development, we generated RNA-sequencing profiles The many stages of gut development require numerous initiat- from wild-type mouse guts at E10.5, E12.5, and E14.5 from both ing signaling events activating transcription factors (TFs) targeting sexes. We also generated these profiles from homozygous Ret null diverse genes and pathways varying across development (7, 8).
    [Show full text]
  • Views: Swine 2001, OARDC Special Circular 185
    AN INVESTIGATION OF THE ASSOCIATIONS BETWEEN SEVERAL CANDIDATE GENES AND REPRODUCTIVE TRAITS IN SWINE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Bradley J. Isler, M.S. **** The Ohio State University 2003 Dissertation Committee: Approved by Dr. Keith M. Irvin, Adviser Dr. Michael E. Davis Dr. Harold C. Hines _____________________________ Dr. Steven J. Moeller Adviser Dr. Steven M. Neal Animal Sciences Graduate Program ABSTRACT Most commonly, improvement of livestock species is accomplished using traditional methods of genetic selection. New discoveries in the field of molecular genetics now allow the isolation and study of specific regions of the genome that influence important traits. Special attention has been focused on those genes that are thought to control the physiological pathways that influence the reproductive ability of our common livestock species. Reproduction is used as both a means to propagate animals within a livestock herd and as a way to facilitate genetic improvement of the herd. Unfortunately, the genetic improvement of reproductive traits using classical methods of genetic selection is severely limited, due to the low heritability and sex-limited nature of these traits. Molecular genetics can be used to determine which animals contain reproduction-specific marker regions. These animals can then be selected for inclusion in a marker assisted selection program. The purpose of this current study was to investigate the effect of several candidate genes on reproductive performance in swine. Candidate genes were selected for investigation based on previous studies that have shown associations between the gene of interest and reproduction in swine (estrogen receptor alpha) or reproduction in other mammalian species (estrogen receptor beta, paternally expressed gene 1, paternally expressed gene 3).
    [Show full text]