Understanding Statistical Methods Through Elliptical Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Statistical Methods Through Elliptical Geometry Statistical Science 2013, Vol. 28, No. 1, 1–39 DOI: 10.1214/12-STS402 c Institute of Mathematical Statistics, 2013 Elliptical Insights: Understanding Statistical Methods through Elliptical Geometry Michael Friendly, Georges Monette and John Fox Abstract. Visual insights into a wide variety of statistical methods, for both didactic and data analytic purposes, can often be achieved through geomet- ric diagrams and geometrically based statistical graphs. This paper extols and illustrates the virtues of the ellipse and her higher-dimensional cousins for both these purposes in a variety of contexts, including linear models, mul- tivariate linear models and mixed-effect models. We emphasize the strong relationships among statistical methods, matrix-algebraic solutions and ge- ometry that can often be easily understood in terms of ellipses. Key words and phrases: Added-variable plots, Bayesian estimation, con- centration ellipse, data ellipse, discriminant analysis, Francis Galton, hy- pothesis-error plots, kissing ellipsoids, measurement error, mixed-effect mod- els, multivariate meta-analysis, regression paradoxes, ridge regression, sta- tistical geometry. 1. INTRODUCTION In the beginning, there was an ellipse. As mod- Whatever relates to extent and quantity ern statistical methods progressed from bivariate to may be represented by geometrical figures. multivariate, the ellipse escaped the plane to a 3D Statistical projections which speak to the ellipsoid, and then grew onward to higher dimen- senses without fatiguing the mind, possess sions. This paper extols and illustrates the virtues the advantage of fixing the attention on a of the ellipse and her higher-dimensional cousins for great number of important facts. both didactic and data analytic purposes. When Francis Galton (1886) first studied the re- Alexander von Humboldt [(1811), lationship between heritable traits of parents and page ciii] their offspring, he had a remarkable visual insight— arXiv:1302.4881v1 [stat.ME] 20 Feb 2013 contours of equal bivariate frequencies in the joint Michael Friendly is Professor, Psychology Department, distribution seemed to form concentric shapes whose York University, 4700 Keele St, Toronto, Ontario, M3J outlines were, to Galton, tolerably close to concen- 1P3, Canada e-mail: [email protected]. Georges tric ellipses differing only in scale. Monette is Associate Professor, Mathematics and Galton’s goal was to to predict (or explain) how Statistics Department, York University, 4700 Keele St, Toronto, Ontario, M3J 1P3, Canada e-mail: a characteristic, Y , (e.g., height) of children was re- [email protected]. John Fox is Senator William lated to that of their parents, X. To this end, he calculated summaries, Ave(Y X), and, for symme- McMaster Professor of Social Statistics, Department of | Sociology, McMaster University, 1280 Main Street try, Ave(X Y ), and plotted these as lines of means | West, Hamilton, Ontario, L8S 4M4, Canada e-mail: on his diagram. Lo and behold, he had a second vi- [email protected]. sual insight: the lines of means of (Y X) and (X Y ) | | This is an electronic reprint of the original article corresponded approximately to the locus of horizon- published by the Institute of Mathematical Statistics in tal and vertical tangents to the concentric ellipses. Statistical Science, 2013, Vol. 28, No. 1, 1–39. This To complete the picture, he added lines showing the reprint differs from the original in pagination and major and minor axes of the family of ellipses, with typographic detail. the result shown in Figure 1. 1 2 M. FRIENDLY, G. MONETTE AND J. FOX lines to the curve) with remarkable clarity nearly 2000 years before the development of analytic ge- ometry by Descartes. Over time, the ellipse would be called to duty to provide simple explanations of phenomena once thought complex. Most notable is Kepler’s insight that the Copernican theory of the orbits of plan- ets as concentric circles (which required notions of epicycles to account for observations) could be brought into alignment with the detailed observational data from Tycho Brahe and others by an exquisitely sim- ple law: “The orbit of every planet is an ellipse with the sun at a focus.” One century later, Isaac New- ton was able to connect this elliptical geometry with astrophysics by deriving all three of Kepler’s laws as simpler consequences of general laws of motion and Fig. 1. Galton’s 1886 diagram, showing the relationship of universal gravitation. height of children to the average of their parents’ height. The This paper takes up the cause of the ellipse as a diagram is essentially an overlay of a geometrical interpreta- tion on a bivariate grouped frequency distribution, shown as geometric form that can provide similar service to numbers. statistical understanding and data analysis. Indeed, it has been doing that since the time of Galton, but It is not stretching the point too far to say that these graphic and geometric contributions have of- a large part of modern statistical methods descends ten been incidental and scattered in the literature from these visual insights:1 correlation and regres- [e.g., Bryant (1984), Campbell and Atchley (1981), sion [Pearson (1896)], the bivariate normal distri- Saville and Wood (1991), Wickens (1995)]. We fo- bution, and principal components [Pearson (1901), cus here on visual insights through ellipses in the Hotelling (1933)] all trace their ancestry to Galton’s areas of linear models, multivariate linear models geometrical diagram.2 and mixed-effect models. Our goal is to provide as Basic geometry goes back at least to Euclid, but comprehensive a treatment of this topic as possible the properties of the ellipse and other conic sections in a single article together with online supplements. may be traced to Apollonius of Perga (ca. 262 BC– The plan of this paper is as follows: Section 2 ca. 190 BC), a Greek geometer and astronomer who provides the minimal notation and properties of el- gave the ellipse, parabola and hyperbola their mod- lipsoids3 necessary for the remainder of the paper. ern names. In a work popularly called the Conics Due to length restrictions, other useful and impor- [Boyer (1991)], he described the fundamental prop- tant properties of geometric and statistical ellipsoids erties of ellipses (eccentricity, axes, principles of tan- have been relegated to the Appendix. Section 3 de- gency, normals as minimum and maximum straight scribes the use of the data ellipsoid as a visual sum- mary for multivariate data. In Section 4 we apply 1Pearson [(1920), page 37] later stated, “that Galton should data ellipsoids and confidence ellipsoids for parame- have evolved all this from his observations is to my mind one ters in linear models to explain a wide range of phe- of the most noteworthy scientific discoveries arising from pure nomena, paradoxes and fallacies that are clarified analysis of observations.” by this geometric approach. This view is extended 2Well, not entirely. Auguste Bravais [1811–1863] (1846), an astronomer and physicist first introduced the mathematical to multivariate linear models in Section 5, primar- theory of the bivariate normal distribution as a model for the ily through the use of ellipsoids to portray hypoth- joint frequency of errors in the geometric position of a point. esis (H) and error (E) covariation in what we call Bravais derived the formula for level slices as concentric el- HE plots. Finally, in Section 6 we discuss a diverse lipses and had a rudimentary notion of correlation but did not appreciate this as a representation of data. Nonetheless, Pearson (1920) acknowledged Bravais’s contribution, and the 3As in this paragraph, we generally use the term “ellipsoid” correlation coefficient is often called the Bravais-Pearson co- as to refer to “ellipse or ellipsoid” where dimensionality does efficient in France [Denis (2001)]. not matter or context is clear. ELLIPTICAL INSIGHTS 3 Table 1 Statistical and geometrical measures of “size” of an ellipsoid Size Conceptual formula Geometry Function (a) Generalized variance: det(Σ)= Qi λi area, (hyper)volume geometric mean (b) Average variance: tr(Σ)= Pi λi linear sum arithmetic mean −1 (c) Average precision: 1/ tr(Σ ) = 1/ Pi(1/λi) harmonic mean (d) Maximal variance: λ1 maximum dimension supremum collection of current statistical problems whose so- 2.2 Statistical Ellipsoids lutions can all be described and visualized in terms In statistical applications, C will often be the in- of “kissing ellipsoids.” verse of a covariance matrix (or a sum of squares 2. NOTATION AND BASIC RESULTS and cross-products matrix) and the ellipsoid will be centered at the means of variables or at estimates of There are various representations of an ellipse (or parameters under some model. Hence, we will also ellipsoid in three or more dimensions), both geomet- use the following notation: ric and statistical. Some basic notation and proper- For a positive definite matrix Σ we use (µ, Σ) ties are described below. to denote the ellipsoid E 2.1 Geometrical Ellipsoids T 1 (4) := x : (x µ) Σ− (x µ) = 1 . We refer to the common notion of a bounded ellip- E { − − } When Σ is the covariance matrix of a multivariate soid (with nonempty interior) in the p-dimensional vector x with eigenvalues λ λ , the follow- space Rp as a proper ellipsoid. An origin-centered 1 2 ing properties represent the “size”≥ of≥··· the ellipsoid in proper ellipsoid may be defined by the quadratic Rp form (see Table 1). T For testing hypotheses for parameters of multi- (1) := x : x Cx 1 , E { ≤ } variate linear models, these different senses of “size” where equality in equation (1) gives the boundary, correspond (with suitable transformations) to (a) T x = (x1,x2,...,xp) is a vector referring to the co- Wilks’s Λ, (b) the Hotelling–Lawley trace, (c) the ordinate axes and C is a symmetric positive defi- Pillai trace, and (d) Roy’s maximum root tests, as nite p p matrix.
Recommended publications
  • Estimating Confidence Regions of Common Measures of (Baseline, Treatment Effect) On
    Estimating confidence regions of common measures of (baseline, treatment effect) on dichotomous outcome of a population Li Yin1 and Xiaoqin Wang2* 1Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Box 281, SE- 171 77, Stockholm, Sweden 2Department of Electronics, Mathematics and Natural Sciences, University of Gävle, SE-801 76, Gävle, Sweden (Email: [email protected]). *Corresponding author Abstract In this article we estimate confidence regions of the common measures of (baseline, treatment effect) in observational studies, where the measure of baseline is baseline risk or baseline odds while the measure of treatment effect is odds ratio, risk difference, risk ratio or attributable fraction, and where confounding is controlled in estimation of both baseline and treatment effect. To avoid high complexity of the normal approximation method and the parametric or non-parametric bootstrap method, we obtain confidence regions for measures of (baseline, treatment effect) by generating approximate distributions of the ML estimates of these measures based on one logistic model. Keywords: baseline measure; effect measure; confidence region; logistic model 1 Introduction Suppose that one conducts a randomized trial to investigate the effect of a dichotomous treatment z on a dichotomous outcome y of certain population, where = 0, 1 indicate the 푧 1 active respective control treatments while = 0, 1 indicate positive respective negative outcomes. With a sufficiently large sample,푦 covariates are essentially unassociated with treatments z and thus are not confounders. Let R = pr( = 1 | ) be the risk of = 1 given 푧 z. Then R is marginal with respect to covariates and thus푦 conditional푧 on treatment푦 z only, so 푧 R is also called marginal risk.
    [Show full text]
  • Chapter 11. Three Dimensional Analytic Geometry and Vectors
    Chapter 11. Three dimensional analytic geometry and vectors. Section 11.5 Quadric surfaces. Curves in R2 : x2 y2 ellipse + =1 a2 b2 x2 y2 hyperbola − =1 a2 b2 parabola y = ax2 or x = by2 A quadric surface is the graph of a second degree equation in three variables. The most general such equation is Ax2 + By2 + Cz2 + Dxy + Exz + F yz + Gx + Hy + Iz + J =0, where A, B, C, ..., J are constants. By translation and rotation the equation can be brought into one of two standard forms Ax2 + By2 + Cz2 + J =0 or Ax2 + By2 + Iz =0 In order to sketch the graph of a quadric surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces of the surface. Ellipsoids The quadric surface with equation x2 y2 z2 + + =1 a2 b2 c2 is called an ellipsoid because all of its traces are ellipses. 2 1 x y 3 2 1 z ±1 ±2 ±3 ±1 ±2 The six intercepts of the ellipsoid are (±a, 0, 0), (0, ±b, 0), and (0, 0, ±c) and the ellipsoid lies in the box |x| ≤ a, |y| ≤ b, |z| ≤ c Since the ellipsoid involves only even powers of x, y, and z, the ellipsoid is symmetric with respect to each coordinate plane. Example 1. Find the traces of the surface 4x2 +9y2 + 36z2 = 36 1 in the planes x = k, y = k, and z = k. Identify the surface and sketch it. Hyperboloids Hyperboloid of one sheet. The quadric surface with equations x2 y2 z2 1.
    [Show full text]
  • Radar Back-Scattering from Non-Spherical Scatterers
    REPORT OF INVESTIGATION NO. 28 STATE OF ILLINOIS WILLIAM G. STRATION, Governor DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, Director RADAR BACK-SCATTERING FROM NON-SPHERICAL SCATTERERS PART 1 CROSS-SECTIONS OF CONDUCTING PROLATES AND SPHEROIDAL FUNCTIONS PART 11 CROSS-SECTIONS FROM NON-SPHERICAL RAINDROPS BY Prem N. Mathur and Eugam A. Mueller STATE WATER SURVEY DIVISION A. M. BUSWELL, Chief URBANA. ILLINOIS (Printed by authority of State of Illinois} REPORT OF INVESTIGATION NO. 28 1955 STATE OF ILLINOIS WILLIAM G. STRATTON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, Director RADAR BACK-SCATTERING FROM NON-SPHERICAL SCATTERERS PART 1 CROSS-SECTIONS OF CONDUCTING PROLATES AND SPHEROIDAL FUNCTIONS PART 11 CROSS-SECTIONS FROM NON-SPHERICAL RAINDROPS BY Prem N. Mathur and Eugene A. Mueller STATE WATER SURVEY DIVISION A. M. BUSWELL, Chief URBANA, ILLINOIS (Printed by authority of State of Illinois) Definitions of Terms Part I semi minor axis of spheroid semi major axis of spheroid wavelength of incident field = a measure of size of particle prolate spheroidal coordinates = eccentricity of ellipse = angular spheroidal functions = Legendse polynomials = expansion coefficients = radial spheroidal functions = spherical Bessel functions = electric field vector = magnetic field vector = back scattering cross section = geometric back scattering cross section Part II = semi minor axis of spheroid = semi major axis of spheroid = Poynting vector = measure of size of spheroid = wavelength of the radiation = back scattering
    [Show full text]
  • Theory Pest.Pdf
    Theory for PEST Users Zhulu Lin Dept. of Crop and Soil Sciences University of Georgia, Athens, GA 30602 [email protected] October 19, 2005 Contents 1 Linear Model Theory and Terminology 2 1.1 Amotivationexample ...................... 2 1.2 General linear regression model . 3 1.3 Parameterestimation. 6 1.3.1 Ordinary least squares estimator . 6 1.3.2 Weighted least squares estimator . 7 1.4 Uncertaintyanalysis ....................... 9 1.4.1 Variance-covariance matrix of βˆ and estimation of σ2 . 9 1.4.2 Confidence interval for βj ................ 9 1.4.3 Confidence region for β ................. 10 1.4.4 Confidence interval for E(y0) .............. 10 1.4.5 Prediction interval for a future observation y0 ..... 11 2 Nonlinear regression model 13 2.1 Linearapproximation. 13 2.2 Nonlinear least squares estimator . 14 2.3 Numericalmethods ........................ 14 2.3.1 Steepest Descent algorithm . 16 2.3.2 Gauss-Newton algorithm . 16 2.3.3 Levenberg-Marquardt algorithm . 18 2.3.4 Newton’smethods . 19 1 2.4 Uncertainty analysis . 22 2.4.1 Confidence intervals for parameter and model prediction 22 2.4.2 Nonlinear calibration-constrained method . 23 3 Miscellaneous 27 3.1 Convergence criteria . 27 3.2 Derivatives computation . 28 3.3 Parameter estimation of compartmental models . 28 3.4 Initial values and prior information . 29 3.5 Parametertransformation . 30 1 Linear Model Theory and Terminology Before discussing parameter estimation and uncertainty analysis for nonlin- ear models, we need to review linear model theory as many of the ideas and methods of estimation and analysis (inference) in nonlinear models are essentially linear methods applied to a linear approximate of the nonlinear models.
    [Show full text]
  • Random Vectors
    Random Vectors x is a p×1 random vector with a pdf probability density function f(x): Rp→R. Many books write X for the random vector and X=x for the realization of its value. E[X]= ∫ x f.(x) dx = µ Theorem: E[Ax+b]= AE[x]+b Covariance Matrix E[(x-µ)(x-µ)’]=var(x)=Σ (note the location of transpose) Theorem: Σ=E[xx’]-µµ’ If y is a random variable: covariance C(x,y)= E[(x-µ)(y-ν)’] Theorem: For constants a, A, var (a’x)=a’Σa, var(Ax+b)=AΣA’, C(x,x)=Σ, C(x,y)=C(y,x)’ Theorem: If x, y are independent RVs, then C(x,y)=0, but not conversely. Theorem: Let x,y have same dimension, then var(x+y)=var(x)+var(y)+C(x,y)+C(y,x) Normal Random Vectors The Central Limit Theorem says that if a focal random variable x consists of the sum of many other independent random variables, then the focal random variable will asymptotically have a 2 distribution that is basically of the form e−x , which we call “normal” because it is so common. 2 ⎛ x−µ ⎞ 1 − / 2 −(x−µ) (x−µ) / 2 1 ⎜ ⎟ 1 2 Normal random variable has pdf f (x) = e ⎝ σ ⎠ = e σ 2πσ2 2πσ2 Denote x p×1 normal random variable with pdf 1 −1 f (x) = e−(x−µ)'Σ (x−µ) (2π)p / 2 Σ 1/ 2 where µ is the mean vector and Σ is the covariance matrix: x~Np(µ,Σ).
    [Show full text]
  • John Ellipsoid 5.1 John Ellipsoid
    CSE 599: Interplay between Convex Optimization and Geometry Winter 2018 Lecture 5: John Ellipsoid Lecturer: Yin Tat Lee Disclaimer: Please tell me any mistake you noticed. The algorithm at the end is unpublished. Feel free to contact me for collaboration. 5.1 John Ellipsoid In the last lecture, we discussed that any convex set is very close to anp ellipsoid in probabilistic sense. More precisely, after renormalization by covariance matrix, we have kxk2 = n ± Θ(1) with high probability. In this lecture, we will talk about how convex set is close to an ellipsoid in a strict sense. If the convex set is isotropic, it is close to a sphere as follows: Theorem 5.1.1. Let K be a convex body in Rn in isotropic position. Then, rn + 1 B ⊆ K ⊆ pn(n + 1)B : n n n Roughly speaking, this says that any convex set can be approximated by an ellipsoid by a n factor. This result has a lot of applications. Although the bound is tight, making a body isotropic is pretty time- consuming. In fact, making a body isotropic is the current bottleneck for obtaining faster algorithm for sampling in convex sets. Currently, it can only be done in O∗(n4) membership oracle plus O∗(n5) total time. Problem 5.1.2. Find a faster algorithm to approximate the covariance matrix of a convex set. In this lecture, we consider another popular position of a convex set called John position and its correspond- ing ellipsoid is called John ellipsoid. Definition 5.1.3. Given a convex set K.
    [Show full text]
  • Automatic Estimation of Sphere Centers from Images of Calibrated Cameras
    Automatic Estimation of Sphere Centers from Images of Calibrated Cameras Levente Hajder 1 , Tekla Toth´ 1 and Zoltan´ Pusztai 1 1Department of Algorithms and Their Applications, Eotv¨ os¨ Lorand´ University, Pazm´ any´ Peter´ stny. 1/C, Budapest, Hungary, H-1117 fhajder,tekla.toth,[email protected] Keywords: Ellipse Detection, Spatial Estimation, Calibrated Camera, 3D Computer Vision Abstract: Calibration of devices with different modalities is a key problem in robotic vision. Regular spatial objects, such as planes, are frequently used for this task. This paper deals with the automatic detection of ellipses in camera images, as well as to estimate the 3D position of the spheres corresponding to the detected 2D ellipses. We propose two novel methods to (i) detect an ellipse in camera images and (ii) estimate the spatial location of the corresponding sphere if its size is known. The algorithms are tested both quantitatively and qualitatively. They are applied for calibrating the sensor system of autonomous cars equipped with digital cameras, depth sensors and LiDAR devices. 1 INTRODUCTION putation and memory costs. Probabilistic Hough Transform (PHT) is a variant of the classical HT: it Ellipse fitting in images has been a long researched randomly selects a small subset of the edge points problem in computer vision for many decades (Prof- which is used as input for HT (Kiryati et al., 1991). fitt, 1982). Ellipses can be used for camera calibra- The 5D parameter space can be divided into two tion (Ji and Hu, 2001; Heikkila, 2000), estimating the pieces. First, the ellipse center is estimated, then the position of parts in an assembly system (Shin et al., remaining three parameters are found in the second 2011) or for defect detection in printed circuit boards stage (Yuen et al., 1989; Tsuji and Matsumoto, 1978).
    [Show full text]
  • Exploding the Ellipse Arnold Good
    Exploding the Ellipse Arnold Good Mathematics Teacher, March 1999, Volume 92, Number 3, pp. 186–188 Mathematics Teacher is a publication of the National Council of Teachers of Mathematics (NCTM). More than 200 books, videos, software, posters, and research reports are available through NCTM’S publication program. Individual members receive a 20% reduction off the list price. For more information on membership in the NCTM, please call or write: NCTM Headquarters Office 1906 Association Drive Reston, Virginia 20191-9988 Phone: (703) 620-9840 Fax: (703) 476-2970 Internet: http://www.nctm.org E-mail: [email protected] Article reprinted with permission from Mathematics Teacher, copyright May 1991 by the National Council of Teachers of Mathematics. All rights reserved. Arnold Good, Framingham State College, Framingham, MA 01701, is experimenting with a new approach to teaching second-year calculus that stresses sequences and series over integration techniques. eaders are advised to proceed with caution. Those with a weak heart may wish to consult a physician first. What we are about to do is explode an ellipse. This Rrisky business is not often undertaken by the professional mathematician, whose polytechnic endeavors are usually limited to encounters with administrators. Ellipses of the standard form of x2 y2 1 5 1, a2 b2 where a > b, are not suitable for exploding because they just move out of view as they explode. Hence, before the ellipse explodes, we must secure it in the neighborhood of the origin by translating the left vertex to the origin and anchoring the left focus to a point on the x-axis.
    [Show full text]
  • Algebraic Study of the Apollonius Circle of Three Ellipses
    EWCG 2005, Eindhoven, March 9–11, 2005 Algebraic Study of the Apollonius Circle of Three Ellipses Ioannis Z. Emiris∗ George M. Tzoumas∗ Abstract methods readily extend to arbitrary inputs. The algorithms for the Apollonius diagram of el- We study the external tritangent Apollonius (or lipses typically use the following 2 main predicates. Voronoi) circle to three ellipses. This problem arises Further predicates are examined in [4]. when one wishes to compute the Apollonius (or (1) given two ellipses and a point outside of both, Voronoi) diagram of a set of ellipses, but is also of decide which is the ellipse closest to the point, independent interest in enumerative geometry. This under the Euclidean metric paper is restricted to non-intersecting ellipses, but the extension to arbitrary ellipses is possible. (2) given 4 ellipses, decide the relative position of the We propose an efficient representation of the dis- fourth one with respect to the external tritangent tance between a point and an ellipse by considering a Apollonius circle of the first three parametric circle tangent to an ellipse. The distance For predicate (1) we consider a circle, centered at the of its center to the ellipse is expressed by requiring point, with unknown radius, which corresponds to the that their characteristic polynomial have at least one distance to be compared. A tangency point between multiple real root. We study the complexity of the the circle and the ellipse exists iff the discriminant tritangent Apollonius circle problem, using the above of the corresponding pencil’s determinant vanishes. representation for the distance, as well as sparse (or Hence we arrive at a method using algebraic numbers toric) elimination.
    [Show full text]
  • 2.3 Conic Sections: Ellipse
    2.3 Conic Sections: Ellipse Ellipse: (locus definition) set of all points (x, y) in the plane such that the sum of each of the distances from F1 and F2 is d. Standard Form of an Ellipse: Horizontal Ellipse Vertical Ellipse 22 22 (xh−−) ( yk) (xh−−) ( yk) +=1 +=1 ab22 ba22 center = (hk, ) 2a = length of major axis 2b = length of minor axis c = distance from center to focus cab222=− c eccentricity e = ( 01<<e the closer to 0 the more circular) a 22 (xy+12) ( −) Ex. Graph +=1 925 Center: (−1, 2 ) Endpoints of Major Axis: (-1, 7) & ( -1, -3) Endpoints of Minor Axis: (-4, -2) & (2, 2) Foci: (-1, 6) & (-1, -2) Eccentricity: 4/5 Ex. Graph xyxy22+4224330−++= x2 + 4y2 − 2x + 24y + 33 = 0 x2 − 2x + 4y2 + 24y = −33 x2 − 2x + 4( y2 + 6y) = −33 x2 − 2x +12 + 4( y2 + 6y + 32 ) = −33+1+ 4(9) (x −1)2 + 4( y + 3)2 = 4 (x −1)2 + 4( y + 3)2 4 = 4 4 (x −1)2 ( y + 3)2 + = 1 4 1 Homework: In Exercises 1-8, graph the ellipse. Find the center, the lines that contain the major and minor axes, the vertices, the endpoints of the minor axis, the foci, and the eccentricity. x2 y2 x2 y2 1. + = 1 2. + = 1 225 16 36 49 (x − 4)2 ( y + 5)2 (x +11)2 ( y + 7)2 3. + = 1 4. + = 1 25 64 1 25 (x − 2)2 ( y − 7)2 (x +1)2 ( y + 9)2 5. + = 1 6. + = 1 14 7 16 81 (x + 8)2 ( y −1)2 (x − 6)2 ( y − 8)2 7.
    [Show full text]
  • Introduction to Aberrations OPTI 518 Lecture 13
    Introduction to aberrations OPTI 518 Lecture 13 Prof. Jose Sasian OPTI 518 Topics • Aspheric surfaces • Stop shifting • Field curve concept Prof. Jose Sasian OPTI 518 Aspheric Surfaces • Meaning not spherical • Conic surfaces: Sphere, prolate ellipsoid, hyperboloid, paraboloid, oblate ellipsoid or spheroid • Cartesian Ovals • Polynomial surfaces • Infinite possibilities for an aspheric surface • Ray tracing for quadric surfaces uses closed formulas; for other surfaces iterative algorithms are used Prof. Jose Sasian OPTI 518 Aspheric surfaces The concept of the sag of a surface 2 cS 4 6 8 10 ZS ASASASAS4 6 8 10 ... 1 1 K ( c2 1 ) 2 S Sxy222 K 2 K is the conic constant K=0, sphere K=-1, parabola C is 1/r where r is the radius of curvature; K is the K<-1, hyperola conic constant (the eccentricity squared); -1<K<0, prolate ellipsoid A’s are aspheric coefficients K>0, oblate ellipsoid Prof. Jose Sasian OPTI 518 Conic surfaces focal properties • Focal points for Ellipsoid case mirrors Hyperboloid case Oblate ellipsoid • Focal points of lenses K n2 Hecht-Zajac Optics Prof. Jose Sasian OPTI 518 Refraction at a spherical surface Aspheric surface description 2 cS 4 6 8 10 ZS ASASASAS4 6 8 10 ... 1 1 K ( c2 1 ) 2 S 1122 2222 22 y x Aicrasphe y 1 x 4 K y Zx 28rr Prof. Jose Sasian OTI 518P Cartesian Ovals ln l'n' Cte . Prof. Jose Sasian OPTI 518 Aspheric cap Aspheric surface The aspheric surface can be thought of as comprising a base sphere and an aspheric cap Cap Spherical base surface Prof.
    [Show full text]
  • Geodetic Position Computations
    GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem.
    [Show full text]