REVIEW ARTICLE the GABAA Receptors F

Total Page:16

File Type:pdf, Size:1020Kb

REVIEW ARTICLE the GABAA Receptors F Biochem. J. (1995) 310,1-9 (Printed in Great Britain) 1 REVIEW ARTICLE The GABAA receptors F. Anne STEPHENSON School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1 N 1AX, U.K. INTRODUCTION although the classical benzodiazepines, valium and librium, bind y-Aminobutyric acid (GABA) is the major inhibitory neuro- to a single high-affinity site in the brain, other related compounds, transmitter in the mammalian brain. It mediates its effects via which are again thought to act at the benzodiazepine or an the specific interaction with the integral membrane proteins, the adjacent overlapping site, show shallow displacement curves GABA receptors. GABA receptors can be classified according to in radioligand-binding studies. It is now known that these their respective transduction mechanisms following activation, compounds, for example the fi-carbolines, zolpidem and as the GABA and the GABAB receptor respectively. The focus oxoquazepam, discriminate between GABAA receptor subtypes of this review is the GABAA receptor. GABAA receptors are fast- (see below). acting ligand-gated chloride ion channels. Thus receptor ac- Other allosteric modulators of GABAA receptors include the tivation in the brain is followed within milliseconds by the gating barbiturate drugs, non-competitive chloride channel blocking or opening of an integral chloride ion channel which results, in agents [including picrotoxin and the cage convulsant compound, general, in the hyperpolarization of the recipient neuronal cell. t-butylbicyclophosphorothionate (TBPS)], certain neurosteroids, The GABAA receptors are of importance because of both the the anthelminthic agents, the avermectins, Zn2+, ethanol and the pivotal role that they play in the regulation of brain excitability anti-convulsant drug, loreclezole. Each of these compounds and the fact that their function is allosterically regulated by modulates GABAA receptor function by binding to a distinct site several distinct classes of therapeutic compounds. These include within the receptor complex. Figure 1 is a diagrammatic rep- anxiolytic benzodiazepines such as valium, barbiturates, neuro- resentation of the complex pharmacology of the mammalian steroids and some volatile anaesthetics. The first GABAA receptor GABAA receptors. gene sequences were reported in 1987 by Schofield et al. [1]. Since that time, a plethora of homologous genes encoding GABAA MOLECULAR BIOLOGY OF GABAA RECEPTORS receptor polypeptides have been identified. These polypeptides At the current time, 15 mammalian GABAA receptor genes have are thought to co-assemble, predominantly in the brain, to form been identified (for review see [6]). These are classified with heteromeric receptor proteins with distinct biophysical. and respect to the conservation in amino acid sequence homology of pharmacological properties. This review will focus on the their gene products. Thus there are five GABAA receptor subunit developments in this field since the GABAA receptor genes were types a, fi, y, a and p. Within four of these, isoforms exist with first cloned, addressing in particular, the structural and functional the now accepted nomenclature of al-a6, fll-,83, yl-y3 and significances of mammalian GABAA receptor heterogeneity. pl-p2. Isoforms of a single subunit type, for example comparing all the a subunits, have at least 70 % amino acid sequence GABAA RECEPTOR PHARMACOLOGY identity, whereas if the conservation in primary structure is The rich pharmacology ofthe GABAA receptors has had a major compared across subunit classes, for example a versus , subunits, impact in the elucidation of the biochemical properties of the the percentage identity falls to within the range 30-40 %. Some GABAA receptors. Before describing the current developments in of the GABAA receptor genes undergo alternative splicing. The the understanding of their structures, it is necessary to have an most prevalent of these is the y2 subunit which exists in two appreciation of their pharmacological properties. Perhaps the forms, y2Short (y2s) and y2lOng (y2L) [7,8]. But also, alternative most important of these was the realization that the anxiolytic splicing of the human ,B3- [9] and the rat a6-subunit gene have benzodiazepine drugs (e.g. valium and librium) exerted their been described [10]. In the chick, the GABAA receptor subunit action by a facilitation ofGABA neurotransmission (for detailed genes fl2 and f4 have been found to undergo splicing to yield reviews, see [2,3]). Thus it was found that benzodiazepines bound ,f2' and f84' [11,12]. (Note that for the chick, a fl4 and a y4 with high affinity to an allosteric modulatory site of the GABAA GABAA receptor subunit gene have been reported but it is receptor. In the presence of GABA, they potentiated the in- probable that these are the avian homologues of the mammalian hibitory response by an increase in the frequency of chloride ion ,f1- and y3-subunit genes respectively, [13].) Two invertebrate channel opening. The benzodiazepine mode of action permitted GABAA receptor genes have been cloned. They are the Drosophila the purification of the GABAA receptors by benzodiazepine Rdl gene [14], and a GABAA receptor gene from the pond snail, affinity chromatography (e.g. [4,5]). Benzodiazepines such as Lymnaea stagnalis [15]. Interestingly, in amino acid sequence valium, are anxiolytic. Although they are unable to activate comparisons with vertebrate GABAA receptor genes, these are GABAA receptors by themselves, by convention they are termed both most closely related to the , subunits, with identities of the agonists. Other benzodiazepines and related compounds thought order of 28 %. This low percentage ofconservation is in contrast to act at similar sites within the GABAA receptors have been to comparisons between the subunits of various vertebrate identified which are anxiogenic and, in the presence of GABA, species, where values of greater than 90 % are found. Figure 2 decrease the frequency of chloride channel opening. These shows the evolutionary tree of the GABAA receptor and the compounds are termed, by convention again, 'inverse agonists'. related glycine receptor subunit genes reported to date. The The benzodiazepine Ro 15-1788 has no or very low intrinsic lineage is consistent with the evolution from a single ancestral efficacy and is recognized as an antagonist. Furthermore, gene [16]. Abbreviations: GABA, y-aminobutyric acid; y2L, y2Long; y2s, y2Short; TBPS, t-butylbicyclophosphorothionate. 2 F. A. Stephenson (a) 1 226 429 NH2 -A 0 Cys-Cys Ml M2 M3 M4 I 139 153 Clomethiazol ? 313 319 Splice variant y2L insert in a6 Avermectin ? Splice variant in ,3 (b) 'hols Channel-openers o (barbiturates, steroids, [Ca2+1; alcohols) Frusemide (anion-channel blockers) Figure 1 Schematic presentation of the various binding sites associated with the GABAA receptors of mammalian brain Figure 3 Schematic representation of the pertinent features of GABAA receptors Abbreviations: PKC, protein kinase C; PTZ, pentylenetetrazol; [Ca2+]i, intracellular free Ca2+ concentration; misc., miscellaneous. Reprinted from [3] with the kind permission of (a) This shows the numbered amino acid sequence of the bovine al subunit highlighting F. Hoffmann-La Roche Ltd, Basel, Switzerland. domains conserved between all GABAA receptor polypeptides. V, consensus sequences for N-glycosylation; Ml-M4, transmembrane domains; Cys-Cys, conserved extracellular motif common to all members of the ligand-gated ion channel superfamily. (b) shows a schematic view of the receptor oligomer as viewed perpendicular to the plane of the membrane. It represents each of the five subunits of the receptor as a segment within the annular structure where the hole in the middle represents the chloride ion channel. The four membrane-spanning regions within each polypeptide are shown as filled circles with the predicted a helix of M2 lining the wall of the channel. The subunit complements and their ordering around the rosette are not definitively established, but see the text for discussion. The mature GABAA receptor subunits have similar molecular masses as deduced from their respective cDNA sequences. These range from 48000 (y subunits) to a maximum of 64000 (a4 subunit). They all share a similar predicted domain structure not only between themselves but also with other members of the ligand-gated ion channel superfamily, most notably the proto- typic peripheral nicotinic acetylcholine receptor (cf. [17]). A schematic diagram of the pertinent features of a typical GABAA receptor subunit is shown in Figure 3. Thus it is predicted that each subunit has an extended, extracellular, hydrophilic N- terminal domain of the order of 220 amino acids. Within this region are consensus sequences for N-glycosylation. There are L GABc four putative hydrophobic domains, M1-M4, which are pre- GABrG ' GABm dicted to span the membrane and form the chloride ion channel. M2, again by analogy with nicotinic acetylcholine receptors and | ~~GABsB3 GABhRl also by some mutagenesis studies (see below), is thought to form GABhR2 GABcB4 the inner lining of the channel. The M I-M3 regions are adjacent ,GABrB2 to the N-terminal domain whereas M4 is at the C-terminal end GABbBl GABrBl of the proteins. This transmembrane topology model predicts 'GABhBl GABhB3 that both the N- and C-terminal regions are extracellular but, GABrB3 surprisingly, this remains unproven. Separating the M3 and M4 A GABcB3 transmembrane-spanning regions is a second hydrophilic region often referred to as the cytoplasmic
Recommended publications
  • Valerenic Acid Potentiates and Inhibits GABAA Receptors: Molecular Mechanism and Subunit Specificity
    ARTICLE IN PRESS + MODEL Neuropharmacology xx (2007) 1e10 www.elsevier.com/locate/neuropharm Valerenic acid potentiates and inhibits GABAA receptors: Molecular mechanism and subunit specificity S. Khom a, I. Baburin a, E. Timin a, A. Hohaus a, G. Trauner b, B. Kopp b, S. Hering a,* a Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria b Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria Received 8 December 2006; received in revised form 11 April 2007; accepted 30 April 2007 Abstract Valerian is a commonly used herbal medicinal product for the treatment of anxiety and insomnia. Here we report the stimulation of chloride currents through GABAA receptors (IGABA) by valerenic acid (VA), a constituent of Valerian. To analyse the molecular basis of VA action, we expressed GABAA receptors with 13 different subunit compositions in Xenopus oocytes and measured IGABA using the two-microelectrode voltage-clamp technique. We report a subtype-dependent stimulation of IGABA by VA. Only channels incorporating b2 or b3 subunits were stimulated by VA. Replacing b2/3 by b1 drastically reduced the sensitivity of the resulting GABAA channels. The stimulatory effect of VA on a1b2 receptors was substantially reduced by the point mutation b2N265S (known to inhibit loreclezole action). Mutating the corresponding residue of b1 (b1S290N) induced VA sensitivity in a1b1S290N comparable to a1b2 receptors. Modulation of IGABA was not significantly dependent on incorporation of a1, a2, a3 or a5 subunits. VA displayed a significantly lower efficiency on channels incorporating a4 subunits. IGABA modulation by VA was not g subunit dependent and not inhibited by flumazenil (1 mM).
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Dynamic Regulation of the GABAA Receptor Function by Redox Mechanisms S
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2016/07/20/mol.116.105205.DC1 1521-0111/90/3/326–333$25.00 http://dx.doi.org/10.1124/mol.116.105205 MOLECULAR PHARMACOLOGY Mol Pharmacol 90:326–333, September 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics MINIREVIEW—A LATIN AMERICAN PERSPECTIVE ON ION CHANNELS Dynamic Regulation of the GABAA Receptor Function by Redox Mechanisms s Daniel J. Calvo and Andrea N. Beltrán González Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Downloaded from ¨Dr. Héctor N. Torres¨ (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina (D.J.C., A.N.B.G.) Received May 15, 2016; accepted July 14, 2016 ABSTRACT molpharm.aspetjournals.org Oxidizing and reducing agents, which are currently involved normally present in neurons and glia or are endogenously in cell metabolism and signaling pathways, can regulate fast generated in these cells under physiologic states or during inhibitory neurotransmission mediated by GABA receptors in the oxidative stress (e.g., hydrogen peroxide, superoxide and hy- nervous system. A number of in vitro studies have shown that droxyl radicals, nitric oxide, ascorbic acid, and glutathione), diverse redox compounds, including redox metabolites and induce potentiating or inhibiting actions on different native and reactive oxygen and nitrogen species, modulate phasic and recombinant GABAA receptor subtypes. Based on these results, it tonic responses mediated by neuronal GABAA receptors through is thought that redox signaling might represent a homeostatic both presynaptic and postsynaptic mechanisms.
    [Show full text]
  • Anxiety Disorders and GABA Neurotransmission: a Disturbance of Modulation
    Journal name: Neuropsychiatric Disease and Treatment Article Designation: REVIEW Year: 2015 Volume: 11 Neuropsychiatric Disease and Treatment Dovepress Running head verso: Nuss Running head recto: Anxiety and modulation open access to scientific and medical research DOI: http://dx.doi.org/10.2147/NDT.S58841 Open Access Full Text Article REVIEW Anxiety disorders and GABA neurotransmission: a disturbance of modulation Philippe Nuss1,2 Abstract: Lines of evidence coming from many branches of neuroscience indicate that anxiety 1Department of Psychiatry, Hôpital St disorders arise from a dysfunction in the modulation of brain circuits which regulate emotional Antoine, AP-HP, 2UMR 7203, INSERM responses to potentially threatening stimuli. The concept of anxiety disorders as a disturbance ERL 1057 – Bioactive Molecules of emotional response regulation is a useful one as it allows anxiety to be explained in terms Laboratory, Pierre and Marie Curie University, Paris, France of a more general model of aberrant salience and also because it identifies avenues for devel- oping psychological, behavioral, and pharmacological strategies for the treatment of anxiety disorder. These circuits involve bottom-up activity from the amygdala, indicating the presence of potentially threatening stimuli, and top-down control mechanisms originating in the prefron- tal cortex, signaling the emotional salience of stimuli. Understanding the factors that control cortical mechanisms may open the way to identification of more effective cognitive behavioral strategies for managing anxiety disorders. The brain circuits in the amygdala are thought to For personal use only. comprise inhibitory networks of γ-aminobutyric acid-ergic (GABAergic) interneurons and this neurotransmitter thus plays a key role in the modulation of anxiety responses both in the normal and pathological state.
    [Show full text]
  • Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors
    International Journal of Molecular Sciences Article Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors Hana Kubová 1,* , Zde ˇnkaBendová 2,3 , Simona Moravcová 2,3 , Dominika Paˇcesová 2,3, Luisa Rocha 4 and Pavel Mareš 1 1 Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic; [email protected] 2 Faculty of Science, Charles University, 12800 Prague, Czech Republic; [email protected] (Z.B.); [email protected] (S.M.); [email protected] (D.P.) 3 National Institute of Mental Health, 25067 Klecany, Czech Republic 4 Pharmacobiology Department, Center of Research and Advanced Studies, Mexico City 14330, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +420-2-4106-2565 Received: 31 March 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: Benzodiazepines (BZDs) are widely used in patients of all ages. Unlike adults, neonatal animals treated with BZDs exhibit a variety of behavioral deficits later in life; however, the mechanisms underlying these deficits are poorly understood. This study aims to examine whether administration of clonazepam (CZP; 1 mg/kg/day) in 7–11-day-old rats affects Gama aminobutyric acid (GABA)ergic receptors in both the short and long terms. Using RT-PCR and quantitative autoradiography, we examined the expression of the selected GABAA receptor subunits (α1, α2, α4, γ2, and δ) and the GABAB B2 subunit, and GABAA, benzodiazepine, and GABAB receptor binding 48 h, 1 week, and 2 months after treatment discontinuation. Within one week after CZP cessation, the expression of the α2 subunit was upregulated, whereas that of the δ subunit was downregulated in both the hippocampus and cortex.
    [Show full text]
  • Coupling of Autism Genes to Tissue-Wide Expression and Dysfunction of Synapse, Calcium Signalling and Transcriptional Regulation
    PLOS ONE RESEARCH ARTICLE Coupling of autism genes to tissue-wide expression and dysfunction of synapse, calcium signalling and transcriptional regulation 1 2,3 4 1,5 Jamie ReillyID *, Louise Gallagher , Geraldine Leader , Sanbing Shen * 1 Regenerative Medicine Institute, School of Medicine, Biomedical Science Building, National University of a1111111111 Ireland (NUI) Galway, Galway, Ireland, 2 Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland, 3 Trinity Translational Medicine Institute, Trinity Centre for Health SciencesÐTrinity College a1111111111 Dublin, St. James's Hospital, Dublin, Ireland, 4 Irish Centre for Autism and Neurodevelopmental Research a1111111111 (ICAN), Department of Psychology, National University of Ireland (NUI) Galway, Galway, Ireland, a1111111111 5 FutureNeuro Research Centre, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland a1111111111 * [email protected] (JR); [email protected] (SS) Abstract OPEN ACCESS Citation: Reilly J, Gallagher L, Leader G, Shen S Autism Spectrum Disorder (ASD) is a heterogeneous disorder that is often accompanied (2020) Coupling of autism genes to tissue-wide with many co-morbidities. Recent genetic studies have identified various pathways from expression and dysfunction of synapse, calcium hundreds of candidate risk genes with varying levels of association to ASD. However, it is signalling and transcriptional regulation. PLoS ONE unknown which pathways are specific to the core symptoms or which are shared by the co- 15(12): e0242773. https://doi.org/10.1371/journal. pone.0242773 morbidities. We hypothesised that critical ASD candidates should appear widely across dif- ferent scoring systems, and that comorbidity pathways should be constituted by genes Editor: Nirakar Sahoo, The University of Texas Rio Grande Valley, UNITED STATES expressed in the relevant tissues.
    [Show full text]
  • Mechanisms Underlying the EEG Biomarker in Dup15q Syndrome Joel Frohlich1,2,3* , Lawrence T
    Frohlich et al. Molecular Autism (2019) 10:29 https://doi.org/10.1186/s13229-019-0280-6 RESEARCH Open Access Mechanisms underlying the EEG biomarker in Dup15q syndrome Joel Frohlich1,2,3* , Lawrence T. Reiter4, Vidya Saravanapandian2, Charlotte DiStefano2, Scott Huberty2,5, Carly Hyde2, Stormy Chamberlain6, Carrie E. Bearden7, Peyman Golshani8, Andrei Irimia9, Richard W. Olsen10, Joerg F. Hipp1† and Shafali S. Jeste2† Abstract Background: Duplications of 15q11.2-q13.1 (Dup15q syndrome), including the paternally imprinted gene UBE3A and three nonimprinted gamma-aminobutyric acid type-A (GABAA) receptor genes, are highly penetrant for neurodevelopmental disorders such as autism spectrum disorder (ASD). To guide targeted treatments of Dup15q syndrome and other forms of ASD, biomarkers are needed that reflect molecular mechanisms of pathology. We recently described a beta EEG phenotype of Dup15q syndrome, but it remains unknown which specific genes drive this phenotype. Methods: To test the hypothesis that UBE3A overexpression is not necessary for the beta EEG phenotype, we compared EEG from a reference cohort of children with Dup15q syndrome (n = 27) to (1) the pharmacological effects of the GABAA modulator midazolam (n = 12) on EEG from healthy adults, (2) EEG from typically developing (TD) children (n = 14), and (3) EEG from two children with duplications of paternal 15q (i.e., the UBE3A-silenced allele). Results: Peak beta power was significantly increased in the reference cohort relative to TD controls. Midazolam administration recapitulated the beta EEG phenotype in healthy adults with a similar peak frequency in central channels (f = 23.0 Hz) as Dup15q syndrome (f = 23.1 Hz).
    [Show full text]
  • Neurochemical Mechanisms Underlying Alcohol Withdrawal
    Neurochemical Mechanisms Underlying Alcohol Withdrawal John Littleton, MD, Ph.D. More than 50 years ago, C.K. Himmelsbach first suggested that physiological mechanisms responsible for maintaining a stable state of equilibrium (i.e., homeostasis) in the patient’s body and brain are responsible for drug tolerance and the drug withdrawal syndrome. In the latter case, he suggested that the absence of the drug leaves these same homeostatic mechanisms exposed, leading to the withdrawal syndrome. This theory provides the framework for a majority of neurochemical investigations of the adaptations that occur in alcohol dependence and how these adaptations may precipitate withdrawal. This article examines the Himmelsbach theory and its application to alcohol withdrawal; reviews the animal models being used to study withdrawal; and looks at the postulated neuroadaptations in three systems—the gamma-aminobutyric acid (GABA) neurotransmitter system, the glutamate neurotransmitter system, and the calcium channel system that regulates various processes inside neurons. The role of these neuroadaptations in withdrawal and the clinical implications of this research also are considered. KEY WORDS: AOD withdrawal syndrome; neurochemistry; biochemical mechanism; AOD tolerance; brain; homeostasis; biological AOD dependence; biological AOD use; disorder theory; biological adaptation; animal model; GABA receptors; glutamate receptors; calcium channel; proteins; detoxification; brain damage; disease severity; AODD (alcohol and other drug dependence) relapse; literature review uring the past 25 years research- science models used to study with- of the reasons why advances in basic ers have made rapid progress drawal neurochemistry as well as a research have not yet been translated Din understanding the chemi- reluctance on the part of clinicians to into therapeutic gains and suggests cal activities that occur in the nervous consider new treatments.
    [Show full text]
  • Bicuculline and Gabazine Are Allosteric Inhibitors of Channel Opening of the GABAA Receptor
    The Journal of Neuroscience, January 15, 1997, 17(2):625–634 Bicuculline and Gabazine Are Allosteric Inhibitors of Channel Opening of the GABAA Receptor Shinya Ueno,1 John Bracamontes,1 Chuck Zorumski,2 David S. Weiss,3 and Joe Henry Steinbach1 Departments of 1Anesthesiology and 2Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, and 3University of Alabama at Birmingham, Neurobiology Research Center and Department of Physiology and Biophysics, Birmingham, Alabama 35294-0021 Anesthetic drugs are known to interact with GABAA receptors, bicuculline only partially blocked responses to pentobarbital. both to potentiate the effects of low concentrations of GABA and These observations indicate that the blockers do not compete to directly gate open the ion channel in the absence of GABA; with alphaxalone or pentobarbital for a single class of sites on the however, the site(s) involved in direct gating by these drugs is not GABAA receptor. Finally, at receptors containing a1b2(Y157S)g2L known. We have studied the ability of alphaxalone (an anesthetic subunits, both bicuculline and gabazine showed weak agonist steroid) and pentobarbital (an anesthetic barbiturate) to directly activity and actually potentiated responses to alphaxalone. These activate recombinant GABAA receptors containing the a1, b2, and observations indicate that the blocking drugs can produce allo- g2L subunits. Steroid gating was not affected when either of two steric changes in GABAA receptors, at least those containing this mutated b2 subunits [b2(Y157S) and b2(Y205S)] are incorporated mutated b2 subunit. We conclude that the sites for binding ste- into the receptors, although these subunits greatly reduce the roids and barbiturates do not overlap with the GABA-binding site.
    [Show full text]
  • Molecular Mechanisms of Antiseizure Drug Activity at GABAA Receptors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Seizure 22 (2013) 589–600 Contents lists available at SciVerse ScienceDirect Seizure jou rnal homepage: www.elsevier.com/locate/yseiz Review Molecular mechanisms of antiseizure drug activity at GABAA receptors L. John Greenfield Jr.* Dept. of Neurology, University of Arkansas for Medical Sciences, 4301W. Markham St., Slot 500, Little Rock, AR 72205, United States A R T I C L E I N F O A B S T R A C T Article history: The GABAA receptor (GABAAR) is a major target of antiseizure drugs (ASDs). A variety of agents that act at Received 6 February 2013 GABAARs s are used to terminate or prevent seizures. Many act at distinct receptor sites determined by Received in revised form 16 April 2013 the subunit composition of the holoreceptor. For the benzodiazepines, barbiturates, and loreclezole, Accepted 17 April 2013 actions at the GABAAR are the primary or only known mechanism of antiseizure action. For topiramate, felbamate, retigabine, losigamone and stiripentol, GABAAR modulation is one of several possible Keywords: antiseizure mechanisms. Allopregnanolone, a progesterone metabolite that enhances GABAAR function, Inhibition led to the development of ganaxolone. Other agents modulate GABAergic ‘‘tone’’ by regulating the Epilepsy synthesis, transport or breakdown of GABA. GABAAR efficacy is also affected by the transmembrane Antiepileptic drugs chloride gradient, which changes during development and in chronic epilepsy. This may provide an GABA receptor Seizures additional target for ‘‘GABAergic’’ ASDs. GABAAR subunit changes occur both acutely during status Chloride channel epilepticus and in chronic epilepsy, which alter both intrinsic GABAAR function and the response to GABAAR-acting ASDs.
    [Show full text]
  • Characterisation of GABAA Receptors and Cation-Chloride Cotransporters in the Uterus and Their Role in Pre-Term Labour
    Characterisation of GABAA receptors and cation-chloride cotransporters in the uterus and their role in pre-term labour Melissa Linda Sutherland December 2017 Supervisors: Dr. Amy V. Poole, Dr. Jennifer A. Fraser, Dr. Claire Garden. A thesis submitted in partial fulfilment of the requirements of Edinburgh Napier University, for the award of Master by Research Declaration It is hereby declared that this thesis is the result of the author’s original research. It has been composed by the author and has not been previously submitted for examination, which has led to the award of a degree or professional qualification. Signed: Date: Contents page Abbreviations .............................................................................................. 1 Acknowledgements ................................................................................... 3 Abstract ......................................................................................................... 4 CHAPTER 1. Introduction ......................................................................... 5 1.1-aminobutyric acid (GABA) .............................................................. 5 1.2 GABA receptor structure and function .......................................... 5 Figure 1.1 Schematic diagram of the GABAA subunit and receptor ......................................................................................................... 6 1.3 GABAARs role in development central nervous system ..........................................................................................................
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]