Tuning the Metamagnetism of an Antiferromagnetic Metal

Total Page:16

File Type:pdf, Size:1020Kb

Tuning the Metamagnetism of an Antiferromagnetic Metal RAPID COMMUNICATIONS PHYSICAL REVIEW B 87, 060404(R) (2013) Tuning the metamagnetism of an antiferromagnetic metal J. B. Staunton,1 M. dos Santos Dias,1,2 J. Peace,1 Z. Gercsi,3 and K. G. Sandeman3 1Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom 2Peter Grunberg¨ Institut and Institute for Advanced Simulation, Forschungszentrum Julich¨ and JARA, D-52425 Julich,¨ Germany 3Department of Physics, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom (Received 14 June 2012; revised manuscript received 14 September 2012; published 13 February 2013) We describe a “disordered local moment” first-principles electronic structure theory which demonstrates that tricritical metamagnetism can arise in an antiferromagnetic metal due to the dependence of local moment interactions on the magnetization state. Itinerant electrons can therefore play a defining role in metamagnetism in the absence of large magnetic anisotropy. Our model is used to accurately predict the temperature dependence of the metamagnetic critical fields in CoMnSi-based alloys, explaining the sensitivity of metamagnetism to Mn-Mn separations and compositional variations found previously. We thus provide a finite-temperature framework for modeling and predicting different metamagnets of interest in applications such as magnetic cooling. DOI: 10.1103/PhysRevB.87.060404 PACS number(s): 75.30.Kz, 75.10.Lp, 75.50.Ee, 75.30.Sg The application of a magnetic field to an antiferromagnet phase at a second-order transition. However, if anisotropy can cause abrupt changes to its magnetic state.1 While such effects are negligible, the helical order has no favored axis metamagnetic transitions have been known for a long time and, once a magnetic field is applied, the helix plane orients 3 in materials such as FeCl2 (Ref. 2) and MnF2, it is their perpendicular to the field. With increasing field the moments association with technologies such as magnetic cooling4 that cant smoothly into a conical spiral towards the field’s direction has driven recent efforts to control metamagnetism in the with a second-order transition to a high magnetization phase. room temperature range, and in accessible magnetic fields. Thus, in this localized picture, first-order metamagnetism Indeed, a large, or even “giant” magnetocaloric effect can relies on a source of anisotropy. arise at a first-order metamagnetic phase transition such as is Metamagnetism is accounted for differently in an itinerant found in FeRh.5 However, the thermomagnetic hysteresis as- electron system. Seminal work by Wohlfarth and Rhodes,10 sociated with most first-order transitions results in significant Moriya and Usami,11 developed and extended by many others, inefficiency during magnetic cycling. Therefore, (tri)critical e.g., Refs. 12 and 13, derived the coefficients of a Landau- transitions that straddle first- and second-order behavior are of Ginzburg free energy expansion for an AFM exposed to a great interest. It is worth noting that tricritical points have also uniform magnetic field in terms of the order parameter mq, been examined in the context of other technologies, such as with wave-vector modulation q. They considered both Stoner liquid crystal displays.6 particle-hole excitations10 and spin fluctuations11,13 generated Given the interest in finding room temperature magnetic from the collective behavior of the interacting electrons.11,14,15 refrigerants, a reexamination of tricritical antiferromagnetic Field-induced tricriticality occurs when the quadratic and (AFM) metamagnets is warranted. At present there are only quartic terms in mq both equal zero. More recently, by two first-order magnetic refrigerants, La-Fe-Si (Ref. 7) and analyzing a generic mean-field Hamiltonian describing a MnFe(P,As,Si),8 at an advanced stage of deployment in proto- helical state in an applied field, Vareogiannis16 has shown type cooling devices. Both materials are ferromagnets (FMs) how an itinerant electron system can undergo a first-order with field-induced metamagnetic critical points. However, “spin-flip” transition. The AFM polarization is parallel to a tricriticality allows AFMs to emulate the low hysteresis, high weak applied field and flips perpendicularly only if the field entropy change properties of their FM cousins. For such real exceeds a critical value.17 materials the greatest challenge is to understand the mixed In this Rapid Communication we describe an ab initio localized/itinerant electron spin nature of their magnetism, spin density functional theory (SDFT)-based “local moment” and how this influences tricritical properties. Metamagnetic theory for AFM to suit real materials where both itinerant transitions, however, have previously been investigated in and local spin effects are at play. Slowly varying “local terms of either spin effect alone. moments” can be identified from the complexity of the In AFM insulators,6 magnetic field-driven phase transitions electronic behavior. We find that where magnetic anisotropy can be understood qualitatively using a localized (classical) effects are small or neglected entirely, the local moments’ spin Hamiltonian with pairwise isotropic exchange interac- AFM order can still undergo a first-order transition to a tions, a source of magnetic anisotropy, and a Zeeman external fan or FM state owing to the feedback between the local magnetic field term. For example, Nagamiya9 showed that, if moment and itinerant aspects of the electronic structure. We the localized spins of a helical AFM are pinned by anisotropy test our theory against a detailed experimental case study and crystal field effects to spiral around a particular direction, of CoMnSi-based tricritical metamagnets and show how it the effect of a magnetic field brings about a first-order provides quantitative materials-specific guidance for tuning transition to a fan structure where the moments now oscillate metamagnetic and associated technological properties. about the field direction. At higher fields, the fan angle A generalization of SDFT18 describes the “local moment” smoothly reduces to zero to establish a high magnetization picture of metallic magnets at finite temperature.19–22 Its basic 1098-0121/2013/87(6)/060404(5)060404-1 ©2013 American Physical Society RAPID COMMUNICATIONS J. B. STAUNTON et al. PHYSICAL REVIEW B 87, 060404(R) (2013) premise is a time-scale separation between fast and slow structure, we approximate the hl via an expansion about a electronic degrees of freedom so that local moments are set up uniform m = 1 m , i.e., { } N i i with slowly varying orientations eˆi . The existence of these “disordered local moments” (DLMs) is established by the fast 2 ∂ ∂ electronic motions and likewise their presence affects these hl ≈− − · (m j −m) ∂m ∂m ∂m l m j l j m motions. Moreover, the local moments’ interactions depend on the type and extent of the long range magnetic order through (2) = h(m) + S˜ (m) · (m −m). (3) the associated itinerant electronic structure. The DLM picture l,j j j of the paramagnetic state maps to an Ising picture18 with, on average, one half of the moments oriented one way and the S˜(2)(m) is the direct correlation function and crucially de- rest antiparallel. However, once the symmetry is broken so i,j that there is a finite order parameter {m } profile, e.g., in a FM scribes effective interactions between the local moments that i depend on the magnitude of m. A solution of Eqs. (1)–(3) or AFM state and/or when an external magnetic field is applied, this simplicity is lost. Ensemble averages over the full range at a fixed T and applied field B minimizes the free energy F , {(1)} {(2)} of noncollinear local moment orientational configurations {eˆi } Eq. (1). Several solutions, ml , ml ,..., may be found and are needed to determine the system’s magnetic properties the one with the lowest F describes the system’s equilibrium { } realistically.22 state ml Equil.. Hence metamagnetic transitions can be tracked We now develop the DLM theory for a magnetic material as functions of T and B—for a given T the solutions for in an external magnetic field B at a temperature T .The increasing values of B can show a transition from, say, an AFM probability that the system’s local moments are configured to a high magnetization state at a critical field Bc [e.g., see { } { } = − { } Fig. 1(b)]. The material’s spin-polarized electronic structure according to eˆi is Pi ( eˆi ) exp[ β( eˆi ,B)]/Z, where = − { } = also depends on B and T and the state of magnetic order. the partition function Z j deˆj exp[ β( eˆi ,B)], β −1 In order to elucidate the main aspects of the general (kB T ) , and the free energy F =−kB T ln Z. A “generalized” framework laid out in Eqs. (1)–(3) for a putative helical electronic grand potential ({eˆi },B) is in principle available 18 metal, we assume temporarily that magnetic anisotropy effects from SDFT, where the spin density is constrained to be are small and can be neglected. Without a magnetic field orientated according to the local moment configuration {eˆi }. B, the solution {ml} which produces the lowest free energy It thus plays the role of a local moment Hamiltonian but = · + · its genesis can give it a complicated form. Nonetheless, is mi mq[cos(q Ri )xˆ sin(q Ri )yˆ]. The helical axis zˆ has no preferred direction in the crystal lattice. The order by expanding about a suitable reference “spin” Hamiltonian { }= · 23 parameter mq increases from 0 to 1 as T drops from TN 0 eˆi i hi eˆi and, using the Feynman inequality, we find a mean-field theoretical estimate of the free energy,18 to 0 K. On applying B, defining, say, the X axis of our coordinate frame, we find numerical solutions of the mean- F ({m },B,T) =({eˆ },B){ } field equations (1)–(3) of (i) distorted helical form, m i = (m + i i mi mq) cos(q · Ri )xˆ + mq sin(q · Ri )yˆ, (ii) a conical helix, + kB T Pi (eˆi )lnPi (eˆi )deˆi m i = mxˆ + mq[cos(q · Ri )yˆ + sin(q · Ri )zˆ], (iii) a fan state, i m i = mxˆ + mq cos(q · Ri )yˆ, and (iv) a high magnetization = − B · μi m i , (1) state with mq 0.
Recommended publications
  • United States Patent Application 20110255645 Kind Code A1 Zawodny; Joseph M
    ( 1 of 1 ) United States Patent Application 20110255645 Kind Code A1 Zawodny; Joseph M. October 20, 2011 Method for Producing Heavy Electrons Abstract A method for producing heavy electrons is based on a material system that includes an electrically-conductive material is selected. The material system has a resonant frequency associated therewith for a given operational environment. A structure is formed that includes a non-electrically-conductive material and the material system. The structure incorporates the electrically-conductive material at least at a surface thereof. The geometry of the structure supports propagation of surface plasmon polaritons at a selected frequency that is approximately equal to the resonant frequency of the material system. As a result, heavy electrons are produced at the electrically-conductive material as the surface plasmon polaritons propagate along the structure. Inventors: Zawodny; Joseph M.; (Poquoson, VA) Assignee: USA as represented by the Administrator of the National Aeronautics and Space Administration Washington DC Family ID: 44788191 Serial No.: 070552 Series 13 Code: Filed: March 24, 2011 Current U.S. Class: 376/108 Class at Publication: 376/108 Current CPC Class: G21B 3/00 20130101; Y02E 30/18 20130101 International Class: G21B 1/00 20060101 G21B001/00 Goverment Interests STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT [0002] The invention was made by an employee of the United States Government and may be manufactured and used by or for the Government of the United States of
    [Show full text]
  • Structural Chemistry and Metamagnetism of an Homologous Series of Layered Manganese Oxysulfides Zolta´Na.Ga´L,† Oliver J
    Published on Web 06/10/2006 Structural Chemistry and Metamagnetism of an Homologous Series of Layered Manganese Oxysulfides Zolta´nA.Ga´l,† Oliver J. Rutt,† Catherine F. Smura,† Timothy P. Overton,† Nicolas Barrier,† Simon J. Clarke,*,† and Joke Hadermann‡ Contribution from the Department of Chemistry, UniVersity of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, U.K., and Electron Microscopy for Materials Science (EMAT), UniVersity of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium Received February 7, 2006; E-mail: [email protected] Abstract: An homologous series of layered oxysulfides Sr2MnO2Cu2m-δSm+1 with metamagnetic properties is described. Sr2MnO2Cu2-δS2 (m ) 1), Sr2MnO2Cu4-δS3 (m ) 2) and Sr2MnO2Cu6-δS4 (m ) 3), consist of 2+ MnO2 sheets separated from antifluorite-type copper sulfide layers of variable thickness by Sr ions. All three compounds show substantial and similar copper deficiencies (δ ≈ 0.5) in the copper sulfide layers, and single-crystal X-ray and powder neutron diffraction measurements show that the copper ions in the m ) 2 and m ) 3 compounds are crystallographically disordered, consistent with the possibility of high two-dimensional copper ion mobility. Magnetic susceptibility measurements show high-temperature Curie- Weiss behavior with magnetic moments consistent with high spin manganese ions which have been oxidized to the (2+δ)+ state in order to maintain a full Cu-3d/S-3p valence band, and the compounds are correspondingly p-type semiconductors with resistivities around 25 Ω cm at 295 K. Positive Weiss temperatures indicate net ferromagnetic interactions between moments. Accordingly, magnetic susceptibility measurements and low-temperature powder neutron diffraction measurements show that the moments within a MnO2 sheet couple ferromagnetically and that weaker antiferromagnetic coupling between sheets leads to A-type antiferromagnets in zero applied magnetic field.
    [Show full text]
  • Low-Field-Enhanced Unusual Hysteresis Produced By
    PHYSICAL REVIEW B 94, 184427 (2016) Low-field-enhanced unusual hysteresis produced by metamagnetism of the MnP clusters in the insulating CdGeP2 matrix under pressure T. R. Arslanov,1,* R. K. Arslanov,1 L. Kilanski,2 T. Chatterji,3 I. V. Fedorchenko,4,5 R. M. Emirov,6 and A. I. Ril5 1Amirkhanov Institute of Physics, Daghestan Scientific Center, Russian Academy of Sciences (RAS), 367003 Makhachkala, Russia 2Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland 3Institute Laue-Langevin, Boˆıte Postale 156, 38042 Grenoble Cedex 9, France 4Kurnakov Institute of General and Inorganic Chemistry, RAS, 119991 Moscow, Russia 5National University of Science and Technology MISiS, 119049, Moscow, Russia 6Daghestan State University, Faculty of Physics, 367025 Makhachkala, Russia (Received 11 April 2016; revised manuscript received 28 October 2016; published 22 November 2016) Hydrostatic pressure studies of the isothermal magnetization and volume changes up to 7 GPa of magnetic composite containing MnP clusters in an insulating CdGeP2 matrix are presented. Instead of alleged superparamagnetic behavior, a pressure-induced magnetization process was found at zero magnetic field, showing gradual enhancement in a low-field regime up to H 5 kOe. The simultaneous application of pressure and magnetic field reconfigures the MnP clusters with antiferromagnetic alignment, followed by onset of a field-induced metamagnetic transition. An unusual hysteresis in magnetization after pressure cycling is observed, which is also enhanced by application of the magnetic field, and indicates reversible metamagnetism of MnP clusters. We relate these effects to the major contribution of structural changes in the composite, where limited volume reduction by 1.8% is observed at P ∼ 5.2 GPa.
    [Show full text]
  • Metamagnetism in Linear Chain Electron-Transfer Salts Based on Decamethylferrocenium and Metal–Bis(Dichalcogenate) Acceptors
    www.elsevier.com/locate/ica Inorganica Chimica Acta 326 (2001) 89–100 Metamagnetism in linear chain electron-transfer salts based on decamethylferrocenium and metal–bis(dichalcogenate) acceptors S. Rabac¸a a, R. Meira a, L.C.J. Pereira a, M. Teresa Duarte b, J.J. Novoa c, V. Gama a,* a Departamento Quı´mica, Instituto Tecnolo´gico e Nuclear, P-2686-953 Saca6e´m, Portugal b Departamento Engenharia Quı´mica, Instituto Superior Te´cnico, P-1049-001 Lisbon, Portugal c Departamento Quı´mica Fı´sica and CER Quimica Teo´rica, Uni6ersidad de Barcelona, A6. Diagonal 647, 08028 Barcelona, Spain Received 15 May 2001; accepted 12 September 2001 In memory of Professor Olivier Kahn Abstract The crystal structure of the electron-transfer (ET) salts [Fe(Cp*)2][M(tds)2], with M=Ni (1) and Pt (2), consists of an array of + − \ parallel alternating donors, [Fe(Cp*)2] , and acceptors, [M(tds)2] , ···DADADA···, stacks. For T 20 K, the magnetic susceptibility follows a Curie–Weiss behavior, with q values of 8.9 and 9.3 K for 1 and 2, respectively. A metamagnetic behavior was observed in 2, with TN =3.3 K and HC =3.95 kG at 1.7 K, resulting from a high magnetic anisotropy. A systematic study of the intra and interchain magnetic interactions was performed on 1, 2 and other ET salts based on decamethylferrocenium and on metal–bis(dichalcogenate) acceptors, with a similar crystal structure. The observed magnetic behavior of these compounds is consistent with the presence of strong ferromagnetic intrachain DA interactions and weaker antiferromagnetic interchain interactions, predicted by the McConnell I model.
    [Show full text]
  • Table of Contents (Online, Part 1)
    PERIODICALS PHYSICAL REVIEW BTM Postmaster send address changes to: For editorial and subscription correspondence, APS Subscription Services please see inside front cover Suite 1NO1 (ISSN: 1098-0121) 2 Huntington Quadrangle Melville, NY 11747-4502 THIRD SERIES, VOLUME 83, NUMBER 4 CONTENTS JANUARY 2011-15(II) RAPID COMMUNICATIONS Electronic structure and strongly correlated systems Signatures of Wigner localization in epitaxially grown nanowires (4 pages) ................................. 041101(R) L. H. Kristinsdottir,´ J. C. Cremon, H. A. Nilsson, H. Q. Xu, L. Samuelson, H. Linke, A. Wacker, and S. M. Reimann Suppression of metal-insulator transition at high pressure and pressure-induced magnetic ordering in pyrochlore oxide Nd2Ir2O7 (4 pages) ............................................................................ 041102(R) Masafumi Sakata, Tomoko Kagayama, Katsuya Shimizu, Kazuyuki Matsuhira, Seishi Takagi, Makoto Wakeshima, and Yukio Hinatsu LDA + DMFT study of Ru-based perovskite SrRuO3 and CaRuO3 (4 pages) ................................ 041103(R) E. Jakobi, S. Kanungo, S. Sarkar, S. Schmitt, and T. Saha-Dasgupta √ √ Geometrical frustration and the competing phases of the Sn/Si(111) 3 × 3R30◦ surface systems (4 pages) . 041104(R) Gang Li, Manuel Laubach, Andrzej Fleszar, and Werner Hanke Relativistic effects in a phosphorescent Ir(III) complex (4 pages) .......................................... 041105(R) A. R. G. Smith, M. J. Riley, S.-C. Lo, P. L. Burn, I. R. Gentle, and B. J. Powell Impurity scattering in a Luttinger liquid with electron-phonon coupling (4 pages) ............................ 041106(R) Alexey Galda, Igor V. Yurkevich, and Igor V. Lerner Semiconductors I: bulk Persistent polarization memory in sexithiophene nanostructures (4 pages) ................................... 041201(R) Benoit Gosselin, Vincent Cardin, Alexandre Favron, Jelissa De Jonghe, Laura-Isabelle Dion-Bertrand, Carlos Silva, and Richard Leonelli Candidates for topological insulators: Pb-based chalcogenide series (4 pages) ..............................
    [Show full text]
  • Spin Canting, Metamagnetism, and Single-Chain Magnetic Behaviour in the Cyano-Bridged Homospin Iron(II) Compound
    Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015 Electronic Supplementary Material (ESI) for Chem. Commun. This journal is © The Royal Society of Chemistry 2014 Spin canting, metamagnetism, and single-chain magnetic behaviour in the cyano-bridged homospin Iron(II) compound Dong Shao, Shao-Liang Zhang, Xin-hua Zhao, Xin-Yi Wang* † State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China. *Email: [email protected] Supporting Information 1 Table of contents: 1. Physical Measurements……………………………………………………………..3 2. Synthesis…………………………………………………………………………….3 3. X-ray crystallography……………………………………………………………….4 3.1 X-ray data collection, structure solution and refinement for 1 ……………………………4 Table S1 Crystallographic Data and Structure Refinement Parameters for 1 …………………5 Table S2 Selected Bond Lengths (Ǻ) and Bond Angles (deg) in 1 ……………………………6 Figure S1 The asymmetric unit of 1…………………………………………….……….……6 Figure S2 The packing diagram of 1 showing the interchain distances.………………………6 4. Magnetic Properties…………………………………………………………………………….7 Figure S3 Field-dependent isothermal magnetization curve for 1 below 7 K.…...……………7 Figure S4 The derivatives of the magnetization (dM /dH vs H) of 1 ……………….…………7 Figure S5 A series of magnetic susceptibility curves of 1 measured at different dc fields.…...8 Figure S6 Frequency dependence of χ' and χ" of the ac susceptibility for 1 at different temperatures at 0 or 2200 Oe dc fields.
    [Show full text]
  • Anomalous Metamagnetism in the Low Carrier Density Kondo Lattice Ybrh3si7
    PHYSICAL REVIEW X 8, 041047 (2018) Anomalous Metamagnetism in the Low Carrier Density Kondo Lattice YbRh3Si7 Binod K. Rai,1 S. Chikara,2 Xiaxin Ding,2 Iain W. H. Oswald,3 R. Schönemann,4 V. Loganathan,1 A. M. Hallas,1 H. B. Cao,5 Macy Stavinoha,6 T. Chen,1 Haoran Man,1 Scott Carr,1 John Singleton,2 Vivien Zapf,2 Katherine A. Benavides,3 Julia Y. Chan,3 Q. R. Zhang,4 D. Rhodes,4 Y. C. Chiu,4 Luis Balicas,4 A. A. Aczel,5 Q. Huang,7 Jeffrey W. Lynn,7 J. Gaudet,8 D. A. Sokolov,9 H. C. Walker,10 D. T. Adroja,10 Pengcheng Dai,1 Andriy H. Nevidomskyy,1 C.-L. Huang,1,* and E. Morosan1 1Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA 2National High Magnetic Field Laboratory, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 3Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, USA 4National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA 5Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 6Department of Chemistry, Rice University, Houston, Texas 77005, USA 7NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA 8Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada 9Max Planck Institute for Chemical Physics of Solids, Dresden, 01187 Germany 10ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, United Kingdom (Received 10 March 2018; revised manuscript received 26 September 2018; published 13 December 2018) We report complex metamagnetic transitions in single crystals of the new low carrier Kondo anti- ferromagnet YbRh3Si7.
    [Show full text]
  • Chapter One Introduction
    Chapter One Introduction 1.1 Prelude All materials exhibit magnetism, but magnetic behavior depends on the electron configuration of the atoms and the temperature. The electron configuration can cause magnetic moments to cancel each other out (making the material less magnetic) or align (making it more magnetic). Increasing temperature increases random thermal motion, making it harder for electrons to align, and typically decreasing the strength of a magnet. Magnetism may be classified according to its cause and behavior. The main types of magnetism are (chiba et al., 2005): Diamagnetism: All materials display diamagnetism, which is the tendency to be repelled by a magnetic field. However, other types of magnetism can be stronger than diamagnetism, so it is only observed in materials that contain no unpaired electrons. When electrons pairs are present, their "spin" magnetic moments cancel each other out. In a magnetic field, diamagnetic materials are weakly magnetized in the opposite direction of the applied field. Examples of diamagnetic materials include gold, quartz, water, copper, and air. Paramagnetism: In a paramagnetic material, there are unpaired electrons. The unpaired electrons are free to align their magnetic moments. In a magnetic field, the magnetic moments align and are magnetized in the direction of the applied field, reinforcing it. Examples of paramagnetic materials include magnesium, molybdenum, lithium, and tantalum. Ferromagnetism: Ferromagnetic materials can form permanent magnets and are attracted to magnets. Ferromagnets have unpaired electrons, plus 1 the magnetic moment of the electrons tends to remain aligned even when removed from a magnetic field. Examples of ferromagnetic materials include iron, cobalt, nickel, alloys of these metals, some rare earth alloys, and some manganese alloys.
    [Show full text]
  • Magnetic Transitions Under High Magnetic Fields
    1 Magnetic transitions under high magnetic fields V. Simonet Institut Néel, CNRS/UJF, Grenoble, France X-ray Spectroscopy in High Magnetic Field, SOLEIL 2010 17/11/10 2 Outline of the lecture Introduction: effect of external magnetic field Magnetization processes and frustration Metamagnetism in metals Competing degrees of freedom Level crossing Quantum magnetism Conclusion X-ray Spectroscopy in High Magnetic Field, SOLEIL 2010 17/11/10 3 Outline of the lecture Introduction: effect of external magnetic field Magnetization processes and frustration Metamagnetism in metals Competing degrees of freedom Level crossing Quantum magnetism Conclusion X-ray Spectroscopy in High Magnetic Field, SOLEIL 2010 17/11/10 4 Introduction: effect of external magnetic field Zeeman term: competition with other terms in energy Metamagnetism: phase transition (1st or 2nd order) towards new magnetic state (≠ moments orientation and/or magnitude) Most often AFM towards FM 1st order 2nd order Magnetization plateaus: constant magnetization M at M=0 or at finite M before saturation X-ray Spectroscopy in High Magnetic Field, SOLEIL 2010 17/11/10 5 Introduction: effect of external magnetic field Zeeman term: competition with: Exchange interactions molecular field up to 1000 T and magnetocrystalline anisotropy 100s of T : high fields needed quantitative information on interactions, energy levels, etc… + new model systems Tools : NMR, neutron scattering, magnetic susceptibility, magnetization, Torque, specific heat, IR/optical spectroscopy, ESR, ultra-sound… and of
    [Show full text]
  • Metamagnetism of Weakly-Coupled Antiferromagnetic Topological
    Metamagnetism of weakly-coupled antiferromagnetic topological insulators Aoyu Tan, Valentin Labracherie, Narayan Kunchur, Anja Wolter, Joaquin Cornejo, Joseph Dufouleur, Bernd Büchner, Anna Isaeva, Romain Giraud To cite this version: Aoyu Tan, Valentin Labracherie, Narayan Kunchur, Anja Wolter, Joaquin Cornejo, et al.. Metamag- netism of weakly-coupled antiferromagnetic topological insulators. Physical Review Letters, American Physical Society, 2020, 124 (197201). hal-02457539 HAL Id: hal-02457539 https://hal.archives-ouvertes.fr/hal-02457539 Submitted on 28 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Metamagnetism of weakly-coupled antiferromagnetic topological insulators Aoyu Tan1,2, Valentin Labracherie1,2, Narayan Kunchur2, Anja U.B. Wolter2, Joaquin Cornejo2, Joseph Dufouleur2,3, Bernd B¨uchner2,4, Anna Isaeva2,4, and Romain Giraud1,2 1Univ. Grenoble Alpes, CNRS, CEA, Spintec, F-38000 Grenoble, France 2Institute for Solid State Physics, Leibniz IFW Dresden, D-01069 Dresden, Germany 3Center for Transport and Devices, TU Dresden, D-01069 Dresden, Germany 4Faculty of Physics, TU Dresden, D-01062 Dresden, Germany (Dated: 9th January 2020) Abstract The magnetic properties of the van der Waals magnetic topological insulators MnBi2Te4 and MnBi4Te7 are investigated by magneto-transport measurements.
    [Show full text]
  • Yttrium Barium Copper Oxide 15 Liquid Nitrogen 20
    Wiki Book Mounir Gmati Wiki Book Mounir Gmati Lévitation Quantique: Les ingrédients et la recette PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Mon, 14 Nov 2011 01:54:04 UTC Wiki Book Mounir Gmati Contents Articles Superconductivity 1 Superconductivity 1 Type-I superconductor 14 Yttrium barium copper oxide 15 Liquid nitrogen 20 Magnetism 23 Magnetism 23 Magnetic field 33 Flux pinning 54 Magnetic levitation 55 References Article Sources and Contributors 63 Image Sources, Licenses and Contributors 65 Article Licenses License 66 Wiki Book Mounir Gmati 1 Superconductivity Superconductivity Superconductivity is a phenomenon of exactly zero electrical resistance occurring in certain materials below a characteristic temperature. It was discovered by Heike Kamerlingh Onnes on April 8, 1911 in Leiden. Like ferromagnetism and atomic spectral lines, superconductivity is a quantum mechanical phenomenon. It is characterized by the Meissner effect, the complete ejection of magnetic field lines from the interior of the superconductor as it transitions into the superconducting state. The occurrence of the Meissner effect indicates that superconductivity cannot be understood simply as the A magnet levitating above a high-temperature idealization of perfect conductivity in classical physics. superconductor, cooled with liquid nitrogen. Persistent electric current flows on the surface of The electrical resistivity of a metallic conductor decreases gradually as the superconductor, acting to exclude the temperature is lowered. In ordinary conductors, such as copper or magnetic field of the magnet (Faraday's law of silver, this decrease is limited by impurities and other defects. Even induction). This current effectively forms an electromagnet that repels the magnet.
    [Show full text]
  • Springer Theses
    Springer Theses Recognizing Outstanding Ph.D. Research Aims and Scope The series “Springer Theses” brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent field of research. For greater accessibility to non-specialists, the published versions include an extended introduction, as well as a foreword by the student’s supervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on special questions. Finally, it provides an accredited documentation of the valuable contributions made by today’s younger generation of scientists. Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria • They must be written in good English. • The topic should fall within the confines of Chemistry, Physics, Earth Sciences, Engineering and related interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics. • The work reported in the thesis must represent a significant scientific advance. • If the thesis includes previously published material, permission to reproduce this must be gained from the respective copyright holder. • They must have been examined and passed during the 12 months prior to nomination. • Each thesis should include a foreword by the supervisor outlining the significance of its content. • The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field.
    [Show full text]