WO 2014/055801 Al 10 April 2014 (10.04.2014) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2014/055801 Al 10 April 2014 (10.04.2014) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/055801 Al 10 April 2014 (10.04.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/522 (2006.01) A61K 31/401 (2006.01) kind of national protection available): AE, AG, AL, AM, A61P 27/00 (2006.01) A61K 31/416 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 31/4375 (2006.01) A61K 31/44 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61K 31/52 (2006.01) A61K 31/352 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 31/519 (2006.01) A61K 31/473 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, A61K 31/444' (2006.01) A61K 31/4985 (2006.01) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, A61K 31/4704 (2006.01) A61K 31/506 (2006.01) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, A61K 31/472 (2006.01) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (21) International Application Number: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, PCT/US2013/06333 1 ZW. (22) International Filing Date: (84) Designated States (unless otherwise indicated, for every 3 October 2013 (03. 10.2013) kind of regional protection available): ARIPO (BW, GH, (25) Filing Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (26) Publication Language: English TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (30) Priority Data: EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 61/710,674 5 October 2012 (05. 10.2012) US MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, 61/802,074 15 March 2013 (15.03.2013) US TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). (72) Inventor; and (71) Applicant : HENKIN, Robert, I. [US/US]; 6601 Published: Broxburn Drive, Bethesda, MD 20817 (US). — with international search report (Art. 21(3)) (74) Agents: VAN GOOR, David, W. et al; Wilson Sonsini Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA 94304-1050 (US). © 00 o o (54) Title: PHOSPHODIESTERASE INHIBITORS FOR TREATING TASTE AND SMELL DISORDERS (57) Abstract: Methods and compositions are disclosed for the treatment of taste and smell disorders. The compositions comprise phosphodiesterase inhibitors and are formulated for intranasal administration. PHOSPHODIESTERASE INHIBITORS FOR TREATING TASTE AND SMELL DISORDERS CROSS-REFERENCE [0001] This application claims the benefit of U.S. Provisional Application Nos. 61/710,674, filed October 5, 2012, and 61/802,074, filed March 15, 2013, each of which application is incorporated herein by reference in its entirety. BACKGROUND OF THE INVENTION [0002] Phosphodiesterases (PDE) are a diverse family of enzymes that hydrolyze cyclic nucleotides resulting in the modulation of intracellular levels of the second messengers cAMP and cGMP, and hence, cell function. Numerous diseases and conditions result from low levels of cyclic nucleotides. The use of PDE inhibitors to raise cellular levels of cyclic nucleotides offers the ability to prevent, treat, or ameliorate diseases, conditions or their symptoms, however, systemic administration may not achieve therapeutically effective concentrations due to unacceptable side effects or to inability to obtain therapeutic levels in clinically responsive tissues. There is a need for suitable compositions and methods of delivery to achieve medically relevant concentrations of PDE inhibitors without unacceptable side effects. The present invention addresses these unmet needs. SUMMARY OF INVENTION [0003] The inventive embodiments provided in this Summary of Invention are meant to be illustrative only and to provide an overview of selective embodiments disclosed herein. The Summary of Invention, being illustrative and selective, does not limit the scope of any claim, does not provide the entire scope of inventive embodiments disclosed or contemplated herein, and should not be construed as limiting or constraining the scope of this disclosure or any claimed inventive embodiment. [0004] In a first aspect, disclosed herein are multi-dose nasal spray devices for delivery of theophylline to a human's nasal epithelium that delivers a dosage unit in a plume upon actuation, wherein the dosage unit comprises, for example, from 10 µg to 200 µg of theophylline in a pharmaceutically acceptable carrier comprising one or more excipients; and wherein the plume is characterized by: (a) a total volume of, for example, from 25 to 200 µ and (b) a droplet size distribution characterized by one or more of the following: (i) less than 5 % of the droplets in the µιη µιη plume having a size of less than 10 , (ii) a D 10 of greater than 12.5 , wherein 10% of the µιη droplets in the plume have a size less than the D 10 , (iii) a D 0 of from 30 to 70 , wherein 50% µιη of the droplets in the plume have a size less than the D 0 , (iv) a D 0 of less than 200 , wherein 90% of the droplets in the plume have a size less than the D90, and (v) a span of from 1 to 6, (D90 wherein the span is calculated according to: - D 10 )/D50 . [0005] In some embodiments, the dosage unit comprises from 15 µg to 150 µg of theophylline. In some embodiments, the dosage unit comprises from 20 µg to 100 µg of theophylline. In some embodiments, the dosage unit comprises about 100 µg theophylline. In some embodiments, the dosage unit comprises about 75 µg theophylline. In some embodiments, the dosage unit comprises about 50 µg of theophylline. In some embodiments, the dosage unit comprises about 20 µg of theophylline. [0006] Also disclosed are multi-dose nasal spray devices for delivery of theophylline to a human's nasal epithelium that delivers a dosage unit in a plume upon actuation, wherein the dosage unit comprises, for example, from 0.17 µg/kg to 3.4 µg/kg of theophylline in a pharmaceutically acceptable carrier comprising one or more excipients; and wherein the plume is characterized by: (a) a total volume, for example, of from 25 µ to 200 µ and (b) a droplet size distribution characterized by one or more of the following: (i) less than 5% of the droplets in the µιη µιη plume having a size of less than 10 , (ii) a D 10 of greater than 12.5 , wherein 10% of the µιη 50%> droplets in the plume have a size less than the D 10 , (iii) a D 0 of from 30 to 70 , wherein of the droplets in the plume have a size less than the D o, (iv) a D 0 of less than 200 µιη, wherein 90% of the droplets in the plume have a size less than the D90, and (v) a span of from 1 to 6, o. wherein the span is calculated according to: (D90 - D 10 )/D [0007] In some embodiments, the dosage unit comprises from 0.25 µg/kg to 2.6 µg/kg of theophylline. In some embodiments, the dosage unit comprises from 0.33 µg/kg to 1.7 µg/kg of theophylline. In some embodiments, the dosage unit comprises about 1.7 µg/kg theophylline. In some embodiments, the dosage unit comprises about 1.3 µg/kg theophylline. In some embodiments, the dosage unit comprises about 0.85 µg/kg of theophylline. In some embodiments, the dosage unit comprises about 0.33 µg/kg of theophylline. [0008] In some embodiments, the dosage unit is a steroid-free dosage unit. [0009] In some embodiments, the pharmaceutically acceptable carrier has a pH that is greater than 7.0. In some embodiments, the pharmaceutically acceptable carrier has a pH that is from 7.1 to 8.5. In some embodiments, the pharmaceutically acceptable carrier has a pH that is from 7.1 to 7.4. In some embodiments, the pharmaceutically acceptable carrier has a pH that is about: 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8, 8.1, 8.2, 8.3, 8.4, or 8.5. In some embodiments, the pharmaceutically acceptable carrier has a pH that is at least 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8, 8.1, 8.2, 8.3, 8.4, or 8.5. [0010] In some embodiments, the plume is characterized by the total volume of the plume that is from 50 to 150 µ . In some embodiments, the plume is characterized by the total volume of the plume that is from 75 to 125 µ . In some embodiments, the plume is characterized by the total volume of the plume that is from 90 µ to 110 µ . In some embodiments, the plume is characterized by the total volume of the plume that is about: 25 µ , 30 µΐ , 35 µΐ , 40 µΐ , 45 µΐ , 50 µΐ , 55 µΐ , 60 µΐ , 65 µΐ , 70 µΐ , 75 µΐ , 80 µΐ , 85 µΐ , 90 µΐ , 100 µΐ , 110 µΐ , 120 µΐ , 130 µΐ , 140 µΐ , 150 µΐ , 160 µΐ , 170 µΐ , 180 µΐ , 190 µΐ , or 200 µ .
Recommended publications
  • Phosphodiesterase Type 5 Inhibitor Sildenafil Decreases the Proinflammatory Chemokine CXCL10 in Human Cardiomyocytes and in Subjects with Diabetic Cardiomyopathy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio della ricerca- Università di Roma La Sapienza Inflammation, Vol. 39, No. 3, June 2016 (# 2016) DOI: 10.1007/s10753-016-0359-6 ORIGINAL ARTICLE Phosphodiesterase Type 5 Inhibitor Sildenafil Decreases the Proinflammatory Chemokine CXCL10 in Human Cardiomyocytes and in Subjects with Diabetic Cardiomyopathy Luigi Di Luigi,1 Clarissa Corinaldesi,1 Marta Colletti,1 Sabino Scolletta,2 Cristina Antinozzi,1 Gabriella B. Vannelli,3 Elisa Giannetta,4 Daniele Gianfrilli,4 Andrea M. Isidori,4 Silvia Migliaccio,1 Noemi Poerio,5 Maurizio Fraziano,5 Andrea Lenzi,4 and Clara Crescioli1,6 Abstract—T helper 1 (Th1) type cytokines and chemokines are bioactive mediators in inflammation underling several diseases and co-morbid conditions, such as cardiovascular and metabolic disorders. Th1 chemokine CXCL10 participates in heart damage initiation/progression; cardioprotection has been recently associated with sildenafil, a type 5 phosphodiesterase inhibitor. We aimed to evaluate the effect of sildenafil on CXCL10 in inflammatory conditions associated with diabetic cardiomyopathy. We analyzed: CXCL10 gene and protein in human cardiac, endothelial, and immune cells challenged by pro-inflammatory stimuli with and without sildenafil; serum CXCL10 in diabetic subjects at cardiomy- opathy onset, before and after 3 months of treatment with sildenafil vs. placebo. Sildenafil significantly −7 decreased CXCL10 protein secretion (IC50 =2.6×10 ) and gene expression in human cardiomyocytes and significantly decreased circulating CXCL10 in subjects with chemokine basal level ≥ 930 pg/ml, the cut-off value as assessed by ROC analysis. In conclusion, sildenafil could be a pharmacologic tool to control CXCL10-associated inflammation in diabetic cardiomyopathy.
    [Show full text]
  • Effects of Phosphodiesterase Inhibitors on Human Lung Mast Cell and Basophil Function
    British Journal of Pharmacology (1997) 121, 287 ± 295 1997 Stockton Press All rights reserved 0007 ± 1188/97 $12.00 Eects of phosphodiesterase inhibitors on human lung mast cell and basophil function Marie C. Weston, Nicola Anderson & 1Peter T. Peachell Department of Medicine & Pharmacology, University of Sheeld, Royal Hallamshire Hospital (Floor L), Glossop Road, Sheeld S10 2JF 1 The non-hydrolysable cyclic AMP analogue, dibutyryl (Bu2)-cyclic AMP, inhibited the stimulated release of histamine from both basophils and human lung mast cells (HLMC) in a dose-dependent manner. The concentrations required to inhibit histamine release by 50% (IC50) were 0.8 and 0.7 mM in basophils and HLMC, respectively. The cyclic GMP analogue, Bu2-cyclic GMP, was ineective as an inhibitor of histamine release in basophils and HLMC. 2 The non-selective phosphodiesterase (PDE) inhibitors, theophylline and isobutyl-methylxanthine (IBMX) inhibited the IgE-mediated release of histamine from both human basophils and HLMC in a dose-dependent fashion. IBMX and theophylline were more potent inhibitors in basophils than HLMC. IC50 values for the inhibition of histamine release were, 0.05 and 0.2 mM for IBMX and theophylline, respectively, in basophils and 0.25 and 1.2 mM for IBMX and theophylline in HLMC. 3 The PDE 4 inhibitor, rolipram, attenuated the release of both histamine and the generation of sulphopeptidoleukotrienes (sLT) from activated basophils at sub-micromolar concentrations but was ineective at inhibiting the release of histamine and the generation of both sLT and prostaglandin D2 (PGD2) in HLMC. Additional PDE 4 inhibitors, denbufylline, Ro 20-1724, RP 73401 and nitraquazone, were all found to be eective inhibitors of mediator release in basophils but were ineective in HLMC unless high concentrations (1 mM) were employed.
    [Show full text]
  • PDE4-Inhibitors: a Novel, Targeted Therapy for Obstructive Airways Disease Zuzana Diamant, Domenico Spina
    PDE4-inhibitors: A novel, targeted therapy for obstructive airways disease Zuzana Diamant, Domenico Spina To cite this version: Zuzana Diamant, Domenico Spina. PDE4-inhibitors: A novel, targeted therapy for obstructive airways disease. Pulmonary Pharmacology & Therapeutics, 2011, 24 (4), pp.353. 10.1016/j.pupt.2010.12.011. hal-00753954 HAL Id: hal-00753954 https://hal.archives-ouvertes.fr/hal-00753954 Submitted on 20 Nov 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: PDE4-inhibitors: A novel, targeted therapy for obstructive airways disease Authors: Zuzana Diamant, Domenico Spina PII: S1094-5539(11)00006-X DOI: 10.1016/j.pupt.2010.12.011 Reference: YPUPT 1071 To appear in: Pulmonary Pharmacology & Therapeutics Received Date: 2 October 2010 Revised Date: 5 December 2010 Accepted Date: 24 December 2010 Please cite this article as: Diamant Z, Spina D. PDE4-inhibitors: A novel, targeted therapy for obstructive airways disease, Pulmonary Pharmacology & Therapeutics (2011), doi: 10.1016/j.pupt.2010.12.011 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript.
    [Show full text]
  • The Single Cyclic Nucleotide-Specific Phosphodiesterase of the Intestinal Parasite Giardia Lamblia Represents a Potential Drug Target
    RESEARCH ARTICLE The single cyclic nucleotide-specific phosphodiesterase of the intestinal parasite Giardia lamblia represents a potential drug target Stefan Kunz1,2*, Vreni Balmer1, Geert Jan Sterk2, Michael P. Pollastri3, Rob Leurs2, Norbert MuÈ ller1, Andrew Hemphill1, Cornelia Spycher1¤ a1111111111 1 Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland, 2 Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije a1111111111 Universiteit Amsterdam, Amsterdam, The Netherlands, 3 Department of Chemistry and Chemical Biology, a1111111111 Northeastern University, Boston, Massachusetts, United States of America a1111111111 a1111111111 ¤ Current address: Euresearch, Head Office Bern, Bern, Switzerland * [email protected] Abstract OPEN ACCESS Citation: Kunz S, Balmer V, Sterk GJ, Pollastri MP, Leurs R, MuÈller N, et al. (2017) The single cyclic Background nucleotide-specific phosphodiesterase of the Giardiasis is an intestinal infection correlated with poverty and poor drinking water quality, intestinal parasite Giardia lamblia represents a potential drug target. PLoS Negl Trop Dis 11(9): and treatment options are limited. According to the Center for Disease Control and Preven- e0005891. https://doi.org/10.1371/journal. tion, Giardia infections afflict nearly 33% of people in developing countries, and 2% of the pntd.0005891 adult population in the developed world. This study describes the single cyclic nucleotide- Editor: Aaron R. Jex, University of Melbourne, specific phosphodiesterase (PDE) of G. lamblia and assesses PDE inhibitors as a new gen- AUSTRALIA eration of anti-giardial drugs. Received: December 5, 2016 Accepted: August 21, 2017 Methods Published: September 15, 2017 An extensive search of the Giardia genome database identified a single gene coding for a class I PDE, GlPDE.
    [Show full text]
  • Signal Transduction Guide
    Signal Transduction Product Guide | 2007 NEW! Selective T-type Ca2+ channel blockers, NNC 55-0396 and Mibefradil ZM 447439 – Novel Aurora Kinase Inhibitor NEW! Antibodies for Cancer Research EGFR-Kinase Selective Inhibitors – BIBX 1382 and BIBU 1361 DRIVING RESEARCH FURTHER Calcium Signaling Agents ...................................2 G Protein Reagents ...........................................12 Cell Cycle and Apoptosis Reagents .....................3 Ion Channel Modulators ...................................13 Cyclic Nucleotide Related Tools ...........................7 Lipid Signaling Agents ......................................17 Cytokine Signaling Agents ..................................9 Nitric Oxide Tools .............................................19 Enzyme Inhibitors/Substrates/Activators ..............9 Protein Kinase Reagents....................................22 Glycobiology Agents .........................................12 Protein Phosphatase Reagents ..........................33 Neurochemicals | Signal Transduction Agents | Peptides | Biochemicals Signal Transduction Product Guide Calcium Signaling Agents ......................................................................................................................2 Calcium Binding Protein Modulators ...................................................................................................2 Calcium ATPase Modulators .................................................................................................................2 Calcium Sensitive Protease
    [Show full text]
  • Phosphodiesterase (PDE)
    Phosphodiesterase (PDE) Phosphodiesterase (PDE) is any enzyme that breaks a phosphodiester bond. Usually, people speaking of phosphodiesterase are referring to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many other families of phosphodiesterases, including phospholipases C and D, autotaxin, sphingomyelin phosphodiesterase, DNases, RNases, and restriction endonucleases, as well as numerous less-well-characterized small-molecule phosphodiesterases. The cyclic nucleotide phosphodiesterases comprise a group of enzymes that degrade the phosphodiester bond in the second messenger molecules cAMP and cGMP. They regulate the localization, duration, and amplitude of cyclic nucleotide signaling within subcellular domains. PDEs are therefore important regulators ofsignal transduction mediated by these second messenger molecules. www.MedChemExpress.com 1 Phosphodiesterase (PDE) Inhibitors, Activators & Modulators (+)-Medioresinol Di-O-β-D-glucopyranoside (R)-(-)-Rolipram Cat. No.: HY-N8209 ((R)-Rolipram; (-)-Rolipram) Cat. No.: HY-16900A (+)-Medioresinol Di-O-β-D-glucopyranoside is a (R)-(-)-Rolipram is the R-enantiomer of Rolipram. lignan glucoside with strong inhibitory activity Rolipram is a selective inhibitor of of 3', 5'-cyclic monophosphate (cyclic AMP) phosphodiesterases PDE4 with IC50 of 3 nM, 130 nM phosphodiesterase. and 240 nM for PDE4A, PDE4B, and PDE4D, respectively. Purity: >98% Purity: 99.91% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 1 mg, 5 mg Size: 10 mM × 1 mL, 10 mg, 50 mg (R)-DNMDP (S)-(+)-Rolipram Cat. No.: HY-122751 ((+)-Rolipram; (S)-Rolipram) Cat. No.: HY-B0392 (R)-DNMDP is a potent and selective cancer cell (S)-(+)-Rolipram ((+)-Rolipram) is a cyclic cytotoxic agent. (R)-DNMDP, the R-form of DNMDP, AMP(cAMP)-specific phosphodiesterase (PDE) binds PDE3A directly.
    [Show full text]
  • PDE1B KO Confers Resilience to Acute Stress-Induced Depression-Like Behavior
    PDE1B KO confers resilience to acute stress-induced depression-like behavior A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Molecular and Developmental Biology Program of the College of Medicine by Jillian R. Hufgard B.S. Rose-Hulman Institute of Technology April 2017 Committee Chair: Charles V. Vorhees, Ph.D. ABSTRACT Phosphodiesterases (PDE) regulate secondary messengers such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) by hydrolyzing the phosphodiester bond. There are over 100 PDE proteins that are categorized into 11 families. Each protein family has a unique tissue distribution and binding affinity for cAMP and/or cGMP. The modulation of different PDEs has been used to treat several disorders: inflammation, erectile dysfunction, and neurological disorders. Recently, PDE inhibitors were implicated for therapeutic benefits in Alzheimer’s disease, depression, Huntington’s disease, Parkinson’s disease, schizophrenia, and substance abuse. PDE1B is found in the caudate-putamen, nucleus accumbens, dentate gyrus, and substantia nigra–areas linked to depression. PDE1B expression is also increased after acute and chronic stress. Two ubiquitous Pde1b knockout (KO) mouse models, both removing part of the catalytic region, decreased immobility on two acute stress tests associated with depression-like behavior; tail suspension test (TST) and forced swim test (FST). The decreases in immobility suggest resistance to depression-like behavior, and these effects were additive when combined with two current antidepressants, fluoxetine and bupropion. The resistance to induced immobility was seen when PDE1B was knocked down during adolescence or earlier.
    [Show full text]
  • Inhibitors of Cyclic Nucleotide Phosphodiesterase Isozymes Type-III and Type-IV Suppress Mitogenesis of Rat Mesangial Cells
    Inhibitors of cyclic nucleotide phosphodiesterase isozymes type-III and type-IV suppress mitogenesis of rat mesangial cells. K Matousovic, … , E N Chini, T P Dousa J Clin Invest. 1995;96(1):401-410. https://doi.org/10.1172/JCI118049. Research Article We studied interactions between the mitogen-activated protein kinase (MAPK) signalling pathway and cAMP-protein kinase (PKA) signaling pathway in regulation of mitogenesis of mesangial cells (MC) determined by [3H]thymidine incorporation, with or without added EGF. Forskolin or dibutyryl cAMP strongly (by 60-70%) inhibited [3H]thymidine incorporation into MC. Cilostamide, lixazinone or cilostazol selective inhibitors of cAMP-phosphodiesterase (PDE) isozyme PDE-III, inhibited mitogenesis to similar extent as forskolin and DBcAMP and activated in situ PKA, but without detectable increase in cAMP levels. Cilostamide and cilostazol were more than three times more effective at inhibiting mesangial mitogenesis than rolipram and denbufylline, inhibitors of isozyme PDE-IV, even though PDE-IV was two times more abundant in MC than was PDE-III. On the other hand, when incubated with forskolin, rolipram-enhanced cAMP accumulation was far greater (10-100x) than with cilostamide. EGF increased MAPK activity (+300%); PDE isozyme inhibitors which suppressed mitogenesis also inhibited MAPK. PDE isozyme inhibitors also suppressed PDGF-stimulated MC proliferation. We conclude that cAMP inhibits the mitogen-dependent MAPK-signaling pathway probably by decreasing the activity of Raf-1 due to PKA-catalyzed phosphorylation. Further, we surmise that minor increase in the cAMP pool metabolized by PDE-III is intimately related to regulation of mesangial proliferation. Thus, PDE isozyme inhibitors have the potential to suppress MC proliferation by a focused effect upon signaling pathways.
    [Show full text]
  • Rolipram, but Not Siguazodan Or Zaprinast, Inhibits the Excitatory Noncholinergic Neurotransmission in Guinea-Pig Bronchi
    Eur Respir J, 1994, 7, 306–310 Copyright ERS Journals Ltd 1994 DOI: 10.1183/09031936.94.07020306 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 Rolipram, but not siguazodan or zaprinast, inhibits the excitatory noncholinergic neurotransmission in guinea-pig bronchi Y. Qian, V. Girard, C.A.E. Martin, M. Molimard, C. Advenier Rolipram, but not siguazodan or zaprinast, inhibits the excitatory noncholinergic neuro- Faculté de Médecine Paris-Ouest Labora- transmission in guinea-pig bronchi. Y. Qian, V. Girard C.A.E. Martin, M. Molimard, toire de Pharmacologie, Paris, France. C. Advenier. ERS Journals Ltd 1994. ABSTRACT: Theophylline has been reported to inhibit excitatory noncholinergic Correspondence: C. Advenier Faculté de Médecine Paris-Ouest but not cholinergic-neurotransmission in guinea-pig bronchi. As theophylline might Laboratoire de Pharmacologie exert this effect through an inhibition of phosphodiesterases (PDE), and since many 15, Rue de l'Ecole de Médecine types of PDE have now been described, the aim of this study was to investigate the F-75270 Paris Cedex 06 effects of three specific inhibitors of PDE on the electrical field stimulation (EFS) France of the guinea-pig isolated main bronchus in vitro. The drugs used were siguazo- dan, rolipram and zaprinast, which specifically inhibit PDE types, III, IV and V, Keywords: C-fibres respectively. neuropeptides Guinea-pig bronchi were stimulated transmurally with biphasic pulses (16 Hz, 1 phosphodiesterase inhibitors ms, 320 mA for 10 s) in the presence of indomethacin 10-6 M and propranolol 10-6 Received: March 11 1993 M. Two successive contractile responses were observed: a rapid cholinergic con- Accepted after revision August 8 1993 traction, followed by a long-lasting contraction due to a local release of neuropep- tides from C-fibre endings.
    [Show full text]
  • Effects of Various Selective Phosphodiesterase Inhibitors on Relaxation and Cyclic Nucleotide Contents in Porcine Iris Sphincter
    FULL PAPER Pharmacology Effects of Various Selective Phosphodiesterase Inhibitors on Relaxation and Cyclic Nucleotide Contents in Porcine Iris Sphincter Takuya YOGO1), Takeharu KANEDA2), Yoshinori NEZU1), Yasuji HARADA1), Yasushi HARA1), Masahiro TAGAWA1), Norimoto URAKAWA2) and Kazumasa SHIMIZU2) 1)Laboratories of Veterinary Surgery and 2)Veterinary Pharmacology, Nippon Veterinary and Life Science University, 7–1 Kyonan-cho 1– chome, Musashino, Tokyo 180–8602, Japan (Received 26 March 2009/Accepted 1 July 2009) ABSTRACT. The effects of various selective phosphodiesterase (PDE) inhibitors on muscle contractility and cyclic nucleotide contents in porcine iris sphincter were investigated. Forskolin and sodium nitroprusside inhibited carbachol (CCh)-induced contraction in a concen- tration-dependent manner. Various selective PDE inhibitors, vinpocetine (type 1), erythro -9-(2-hydroxy-3-nonyl)adenine (EHNA, type 2), milrinone (type 3), Ro20–1724 (type 4) and zaprinast (type 5), also inhibited CCh-induced contraction in a concentration-dependent manner. The rank order of potency of IC50 was zaprinast > Ro20–1724 > EHNA milrinone > vinpocetine. In the presence of CCh (0.3 M), vinpocetine, milrinone and Ro20–1724 increased cAMP, but not cGMP, contents. In contrast, zaprinast and EHNA both increased cGMP, but not cAMP, contents. This indicates that vinpocetine-, milrinone- and Ro20–1724-induced relaxation is correlated with cAMP, while EHNA- and zaprinast- induced relaxation is correlated with cGMP in porcine iris sphincter. KEY WORDS: cAMP, cGMP, iris sphincter, PDE inhibitor, smooth muscle. J. Vet. Med. Sci. 71(11): 1449–1453, 2009 Cyclic nucleotides are important secondary messengers, chol (CCh)-induced contraction of porcine iris sphincter and are associated with smooth muscle relaxation [7]. induced by selective PDE (type1–5) inhibitors.
    [Show full text]
  • WO 2015/195228 Al 23 December 2015 (23.12.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/195228 Al 23 December 2015 (23.12.2015) P O P C T (51) International Patent Classification: 02215 (US). ZHANG, Yun [CN/US]; 6 Sawmill Road, C07D 403/14 (2006.01) C07D 473/16 (2006.01) Acton, MA 0 1720 (US). ZHOU, Tianjun [US/US]; 55 Home Road, Belmont, MA 02478 (US). (21) International Application Number: PCT/US2015/030576 (74) Agents: PETERSON, Gretchen, S. et al; Ariad Pharma ceuticals, INC., 26 Landsdowne Street, Cambridge, MA (22) International Filing Date: 02139 (US). 13 May 2015 (13.05.2015) (81) Designated States (unless otherwise indicated, for every (25) Language: English Filing kind of national protection available): AE, AG, AL, AM, (26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (30) Priority Data: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 62/014,500 19 June 2014 (19.06.2014) US HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (71) Applicant: ARIAD PHARMACEUTICALS, INC. KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, [US/US]; 26 Landsdowne Street, Cambridge, MA 02139 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (US). PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (72) Inventors; and TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • General Pharmacology
    GENERAL PHARMACOLOGY Winners of “Nobel” prize for their contribution to pharmacology Year Name Contribution 1923 Frederick Banting Discovery of insulin John McLeod 1939 Gerhard Domagk Discovery of antibacterial effects of prontosil 1945 Sir Alexander Fleming Discovery of penicillin & its purification Ernst Boris Chain Sir Howard Walter Florey 1952 Selman Abraham Waksman Discovery of streptomycin 1982 Sir John R.Vane Discovery of prostaglandins 1999 Alfred G.Gilman Discovery of G proteins & their role in signal transduction in cells Martin Rodbell 1999 Arvid Carlson Discovery that dopamine is neurotransmitter in the brain whose depletion leads to symptoms of Parkinson’s disease Drug nomenclature: i. Chemical name ii. Non-proprietary name iii. Proprietary (Brand) name Source of drugs: Natural – plant /animal derivatives Synthetic/semisynthetic Plant Part Drug obtained Pilocarpus microphyllus Leaflets Pilocarpine Atropa belladonna Atropine Datura stramonium Physostigma venenosum dried, ripe seed Physostigmine Ephedra vulgaris Ephedrine Digitalis lanata Digoxin Strychnos toxifera Curare group of drugs Chondrodendron tomentosum Cannabis indica (Marijuana) Various parts are used ∆9Tetrahydrocannabinol (THC) Bhang - the dried leaves Ganja - the dried female inflorescence Charas- is the dried resinous extract from the flowering tops & leaves Papaver somniferum, P album Poppy seed pod/ Capsule Natural opiates such as morphine, codeine, thebaine Cinchona bark Quinine Vinca rosea periwinkle plant Vinca alkaloids Podophyllum peltatum the mayapple
    [Show full text]