Plasmapause Surface Wave Oscillates the Magnetosphere and Diffuse Aurora
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Geomagnetic Storms in South Atlantic Magnetic Anomaly (SAMA)
Analysis of geomagnetic storms in South Atlantic Magnetic Anomaly (SAMA) Júlia Maria Soja Sampaio, Elder Yokoyama, Luciana Figueiredo Prado Copyright 2019, SBGf - Sociedade Brasileira de Geofísica Moreover, Dst and AE indices may vary according to the This paper was prepared for presentation during the 16th International Congress of the geomagnetic field geometry, such as polar to intermediate Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 19-22 August 2019. latitudinal field variations. In this framework, fluctuations Contents of this paper were reviewed by the Technical Committee of the 16th in the geomagnetic field can occur under the influence of International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or the South Atlantic Magnetic Anomaly (SAMA). The SAMA storage of any part of this paper for commercial purposes without the written consent is a region of minimum geomagnetic field intensity values of the Brazilian Geophysical Society is prohibited. ____________________________________________________________________ at the Earth’s surface (Figure 1), and its dipole intensity is decreasing along the past 1000 years (Terra-Nova et. al., Abstract 2017). Geomagnetic storm is a major disturbance of Earth’s In this study we will compare the behavior of the types of magnetosphere resulted from the interaction of solar wind geomagnetic storms basis on AE and Dst indices. and the Earth’s magnetic field. This disturbance depends of the Earth magnetic field geometry, and varies in terms of intensity from the Poles to the Equator. This disturbance is quantified through geomagnetic indices, such as the Dst and the AE indices. -
On Magnetic Storms and Substorms
ILWS WORKSHOP 2006, GOA, FEBRUARY 19-24, 2006 On magnetic storms and substorms G. S. Lakhina, S. Alex, S. Mukherjee and G. Vichare Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai-410218, India Abstract. Magnetospheric substorms and storms are indicators of geomagnetic activity. Whereas the geomagnetic index AE (auroral electrojet) is used to study substorms, it is common to characterize the magnetic storms by the Dst (disturbance storm time) index of geomagnetic activity. This talk discusses briefly the storm-substorms relationship, and highlights some of the characteristics of intense magnetic storms, including the events of 29-31 October and 20-21 November 2003. The adverse effects of these intense geomagnetic storms on telecommunication, navigation, and on spacecraft functioning will be discussed. Index Terms. Geomagnetic activity, geomagnetic storms, space weather, substorms. _____________________________________________________________________________________________________ 1. Introduction latitude magnetic fields are significantly depressed over a Magnetospheric storms and substorms are indicators of time span of one to a few hours followed by its recovery geomagnetic activity. Where as the magnetic storms are which may extend over several days (Rostoker, 1997). driven directly by solar drivers like Coronal mass ejections, solar flares, fast streams etc., the substorms, in simplest terms, are the disturbances occurring within the magnetosphere that are ultimately caused by the solar wind. The magnetic storms are characterized by the Dst (disturbance storm time) index of geomagnetic activity. The substorms, on the other hand, are characterized by geomagnetic AE (auroral electrojet) index. Magnetic reconnection plays an important role in energy transfer from solar wind to the magnetosphere. Magnetic reconnection is very effective when the interplanetary magnetic field is directed southwards leading to strong plasma injection from the tail towards the inner magnetosphere causing intense auroras at high-latitude nightside regions. -
Planetary Magnetospheres
CLBE001-ESS2E November 9, 2006 17:4 100-C 25-C 50-C 75-C C+M 50-C+M C+Y 50-C+Y M+Y 50-M+Y 100-M 25-M 50-M 75-M 100-Y 25-Y 50-Y 75-Y 100-K 25-K 25-19-19 50-K 50-40-40 75-K 75-64-64 Planetary Magnetospheres Margaret Galland Kivelson University of California Los Angeles, California Fran Bagenal University of Colorado, Boulder Boulder, Colorado CHAPTER 28 1. What is a Magnetosphere? 5. Dynamics 2. Types of Magnetospheres 6. Interaction with Moons 3. Planetary Magnetic Fields 7. Conclusions 4. Magnetospheric Plasmas 1. What is a Magnetosphere? planet’s magnetic field. Moreover, unmagnetized planets in the flowing solar wind carve out cavities whose properties The term magnetosphere was coined by T. Gold in 1959 are sufficiently similar to those of true magnetospheres to al- to describe the region above the ionosphere in which the low us to include them in this discussion. Moons embedded magnetic field of the Earth controls the motions of charged in the flowing plasma of a planetary magnetosphere create particles. The magnetic field traps low-energy plasma and interaction regions resembling those that surround unmag- forms the Van Allen belts, torus-shaped regions in which netized planets. If a moon is sufficiently strongly magne- high-energy ions and electrons (tens of keV and higher) tized, it may carve out a true magnetosphere completely drift around the Earth. The control of charged particles by contained within the magnetosphere of the planet. -
Plasmasphere Last Time We Started Talking About
Plasmasphere Last time we started talking about: Why does the plasmashere corotate? Review hot, cold drifts Discuss Alfven Shielding Layer Put it all together Then introduce Ionosphere subjects Plasma density 100 or 1000 times higher than outer magnetosphere Field Aligned Currents Region 1 (inner) Region 2 (outer) Ijima&Potemera Now, lets put it together • How do we explain Region 1 and Region 2 field aligned currents? • Region 1 is driven by magnetopause charge separation • Region 2 is driven by partial ring current • Next: what about aurora? Partial Ring Current: energetic particles Grad- B drift but don’t make it all the way around the earth Equatorial Plane View Plasmasphere corotates with Earth once a day Equatorial Plane View Plasmasphere corotates with Earth once a day Magnetic activity index Very High Density Moving from magnetosphere to ionosphere • Field aligned currents • Ionosphere structure • Ionosphere currents, What is σ? – 1. below 85 km altitude σ is isotropic – 2. 85 to 150 km (D and E regions) σ is tensor – 3. above 150 km σ is just σ|| • Then: put it all together Three views of ionosphere structure • Electron density • Thermal structure • Ion density and source Free electrons e- Negative ions Ionsopheric currents • J = σ E Ohms Law • We know there are large scale E fields (why), so what is σ in the ionosphere? What is Conductivity? • The scalar conductivity σ is defined as the ratio of the current density to the electric field strength σ = J/E. For a resistive medium this is just the Spitzer conductivity: • To get the components look at • So, σ can have many components: (Another way to derive scalar conductivity) Conductivity when particles gyrate σ becomes a matrix . -