Solutions to Exercise 2

Total Page:16

File Type:pdf, Size:1020Kb

Solutions to Exercise 2 Computational Complexity, 2012{13 1 Solutions to Exercise 2 1. Question: Prove that if NL = L, then NSPACE(n) = DSPACE(n). HINT: Use padding, but there will be an obstruction to doing this straigh- forwardly that you will need to get around. Solution: Assume that NL = L. Let L be a language in NSPACE(n), and let M be a non-deterministic machine using linear space which decides L. We will use the assumption to show that L 2 DSPACE(n). We do this by defining an auxiliary padded language L0 2 NL and then showing that L0 2 L implies L 2 DSPACE(n). L0 is defined as follows: a string x0 belongs to L0 iff x0 = x02jxj−|xj, where x 2 L. We first show L0 2 NL. We define a non-deterministic machine M 0 deciding L0 in logarithmic space. Given an input x0, M 0 first checks if the input length m is a power of 2, and if so, whether the last m − log(m) bits of the input are all 0. If either of these conditions is not satisfied, it rejects. This can be done in deterministic log-space. If the conditions are both satisfied, M 0 writes the first log(m) bits of the input onto a separate read/write tape and simulates M on the contents of this tape. It accepts if and only if M accepts. Clearly M 0 decides L0 and uses logarithmic space. Now, since NL = L, we have that L0 2 L. Thus, there is a deterministic log-space machine N 0 deciding L0. We will show how to use N to decide L in deterministic linear space. The idea is that, given an input x, N will pad its input with 2jxj − jxj 0's and then simulate N 0 on the padded input. The most direct implementation of this idea doesn't work, since writing all the 0's down takes exponential space. The key point is that N doesn't actually need to write the 0's down - it can just pretend that they're there! Namely, N simulates N 0 on the input x02jxj−|xj without writing the input down, and at each point of the simulation it keeps track of which input bit N 0 is reading. Either this input bit is part of x, in which case N knows which bit it is by looking at its input, or its not, in which case it's 0. The simulation takes space logarithmic in the size of the input of N 0, and hence is linear space as a function of jxj. By definition of L0, N accepts exactly those inputs in L. 2. Question: The graph reachability language REACH consists of all < G; s; t >, where G is a directed acyclic graph (in adjacency matrix representation) and s and t are vertices of the graph such that there is a path from s to t in G. Prove that REACH is complete for NL under log-space m-reductions. Solution: First we show that REACH is in NL. We define a non-deterministic log-space machine M deciding REACH. M first guesses a successor u1 to s and then verifies using access to the adjacency matrix of G, that u1 is indeed a successor of s. It then guesses a successor u2 of u1, again verifying Computational Complexity, 2012{13 2 that u2 is a successor. It continues this process iteratively for jGj steps. It maintains in a counter information about how many times it's guessed a successor. If all the successor verifications succeed and there is some ui which is equal to t, it accepts, otherwise it rejects. The key point in seeing the correctness of this is that if there is a path from s to t in G, then there is one which has length at most the size of the vertex set of G. Next we show that REACH is NL-complete. Let M be a non-deterministic machine operating in logarithmic space. We consider the configuration graph of M. This graph is polynomial-size since there are at most polyno- mially many configurations of a log-space machine. The question of whether M accepts x can be reduced to the question of whether < G; s; t > is in REACH, where G is the configuration graph of M on x, s is the starting configuration and t is the accepting configuration (which can be assumed to be unique without loss of generality). The adjacency matrix of G can be computed in logarithmic space given M and x, implying that this is a log-space reduction. The above solution is not strictly accurate since we also require G to be acyclic, and the configuration graph of a non-deterministic Turing machine is not necessarily acyclic (specifically, there might be cycles in some compo- nent not containing the accepting configuration). This was an unintended subtlety in my statement of the problem, and so I'm not going to debit you if you didn't deal with it. One way of dealing with this subtlety is to con- sider the timed configuration graph G for which the vertex set is f< C; t >g where C is a configuration and t < nc, where c is a constant such that nc is an upper bound on the number of configurations, and only allow edges between < C; t > and < C0; t + 1 > where C0 is a successor of C in the (untimed) configuration graph. 3. Question: Prove that there is a language L that can be decided by circuits of size n3 but not by circuits of size n2. HINT: Use a counting argument, together with the fact that any Boolean function for which a small number of inputs map to 1 has circuits of small size. n 3=2 Solution: Let Sn ⊆ f0; 1g be such that jSj = bn c. Any such Sn can be represented by a DNF of size n5=2 and hence is recognized by a circuit n 3=2 n3=2 n9=4 of that size. On the other hand, there are at least (2 =n ) > 2 such subsets S while there are at most nO(n2) circuits with n2 gates. For n9=4 O(n2) large enough n, 2 > n , therefore there is some such subset Sn not recognized by any circuit of size n2. Now take L to be the set of x for which 3 2 x 2 Sjxj. L has circuits of size n but not circuits of size n . 4. Question: The BIT SORTING problem is as follows. The input is a binary Computational Complexity, 2012{13 3 string x, and the output is 0m1jx|−m, where m is the number of 0's in x. Show that the BIT SORTING function can be computed in NC. Solution: Assume without loss of generality that jxj is a power of 2. If not, we can just bit-sort 02dlog(jxj)e−|xjx and ignore the first 02dlog(jxj)e bits of the output (i.e., not include them among the designated outputs). We construct NC circuits for BIT SORTING iteratively. At level i of the iteration, the substring xjxj+1 : : : xj+2i−1 of the input will be bit-sorted for each j = 1; 2i; 2 ∗ 2i; 3 ∗ 2i :::. At level i + 1, we will show how to \merge" the bit-sorts of consecutive pairs of blocks from the previous stage. Level log(n) of the iteration will give the desired output for the BIT SORTING problem on the entire input. The base case is easy - the input is itself a bit-sort at level 0. We now show how to construct poly-size log-depth circuits that take in the output at level i and produce the output at level i + 1. Let y0; y2 : : : ym and z0; z2 : : : zm be bit-sorted inputs. We show how to produce a bit sort of the string y0y1 : : : ymz0z1 : : : zm. The basic idea is simple. Bit j of the output (counting starting at zero from the least significant bit) will be 1 if and only if there is an r 6 j such that yr = 1 and zj−r = 1. This can be checked using an OR of ANDs of polynomial size, where each AND has two inputs. Such an OR of ANDs can be implemented as a logarithmic-depth circuit. It is not hard to see that the structure of the circuit is regular enough that we can produce a description of it in logarithmic space. Since the circuit is polynomial size and O(log2(n)) depth, this implies BIT SORTING is in NC. 5. Question: Show that NC1 ⊆ L. Build on this to prove unconditionally that TQBF is not in NC. Solution: Let L 2 NC1. This means that there is a log-space machine which, for each n, computes the description of a circuit Cn of logarithmic depth solving Ln. We show L 2 L by simulating Cn in logarithmic space. The simulation is recursive. At any gate, we ask for the values of the two inputs to that gate. We obtain this values recursively by evaluting the circuit at a lower level. The depth of recursion is logarithmic and we only need to store a constant amount of information (namely at most one input value to a gate, as well as information about which input value we are currently considering) at each level of recursion. Thus, the simulation can be done in logarithmic space. TQBF is PSPACE-complete. The proof that NC1 ⊆ L can be generalized to show that NC ⊆ POLYLOG, where POLYLOG is the class of problems solv- able in poly-logarithmic space.
Recommended publications
  • Database Theory
    DATABASE THEORY Lecture 4: Complexity of FO Query Answering Markus Krotzsch¨ TU Dresden, 21 April 2016 Overview 1. Introduction | Relational data model 2. First-order queries 3. Complexity of query answering 4. Complexity of FO query answering 5. Conjunctive queries 6. Tree-like conjunctive queries 7. Query optimisation 8. Conjunctive Query Optimisation / First-Order Expressiveness 9. First-Order Expressiveness / Introduction to Datalog 10. Expressive Power and Complexity of Datalog 11. Optimisation and Evaluation of Datalog 12. Evaluation of Datalog (2) 13. Graph Databases and Path Queries 14. Outlook: database theory in practice See course homepage [) link] for more information and materials Markus Krötzsch, 21 April 2016 Database Theory slide 2 of 41 How to Measure Query Answering Complexity Query answering as decision problem { consider Boolean queries Various notions of complexity: • Combined complexity (complexity w.r.t. size of query and database instance) • Data complexity (worst case complexity for any fixed query) • Query complexity (worst case complexity for any fixed database instance) Various common complexity classes: L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime Markus Krötzsch, 21 April 2016 Database Theory slide 3 of 41 An Algorithm for Evaluating FO Queries function Eval(', I) 01 switch (') f I 02 case p(c1, ::: , cn): return hc1, ::: , cni 2 p 03 case : : return :Eval( , I) 04 case 1 ^ 2 : return Eval( 1, I) ^ Eval( 2, I) 05 case 9x. : 06 for c 2 ∆I f 07 if Eval( [x 7! c], I) then return true 08 g 09 return false 10 g Markus Krötzsch, 21 April 2016 Database Theory slide 4 of 41 FO Algorithm Worst-Case Runtime Let m be the size of ', and let n = jIj (total table sizes) • How many recursive calls of Eval are there? { one per subexpression: at most m • Maximum depth of recursion? { bounded by total number of calls: at most m • Maximum number of iterations of for loop? { j∆Ij ≤ n per recursion level { at most nm iterations I • Checking hc1, ::: , cni 2 p can be done in linear time w.r.t.
    [Show full text]
  • CS601 DTIME and DSPACE Lecture 5 Time and Space Functions: T, S
    CS601 DTIME and DSPACE Lecture 5 Time and Space functions: t, s : N → N+ Definition 5.1 A set A ⊆ U is in DTIME[t(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M) ≡ w ∈ U M(w)=1 , and 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps. Definition 5.2 A set A ⊆ U is in DSPACE[s(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M), and 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells. (Input tape is “read-only” and not counted as space used.) Example: PALINDROMES ∈ DTIME[n], DSPACE[n]. In fact, PALINDROMES ∈ DSPACE[log n]. [Exercise] 1 CS601 F(DTIME) and F(DSPACE) Lecture 5 Definition 5.3 f : U → U is in F (DTIME[t(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. Definition 5.4 f : U → U is in F (DSPACE[s(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. (Input tape is “read-only”; Output tape is “write-only”.
    [Show full text]
  • Interactive Proof Systems and Alternating Time-Space Complexity
    Theoretical Computer Science 113 (1993) 55-73 55 Elsevier Interactive proof systems and alternating time-space complexity Lance Fortnow” and Carsten Lund** Department of Computer Science, Unicersity of Chicago. 1100 E. 58th Street, Chicago, IL 40637, USA Abstract Fortnow, L. and C. Lund, Interactive proof systems and alternating time-space complexity, Theoretical Computer Science 113 (1993) 55-73. We show a rough equivalence between alternating time-space complexity and a public-coin interactive proof system with the verifier having a polynomial-related time-space complexity. Special cases include the following: . All of NC has interactive proofs, with a log-space polynomial-time public-coin verifier vastly improving the best previous lower bound of LOGCFL for this model (Fortnow and Sipser, 1988). All languages in P have interactive proofs with a polynomial-time public-coin verifier using o(log’ n) space. l All exponential-time languages have interactive proof systems with public-coin polynomial-space exponential-time verifiers. To achieve better bounds, we show how to reduce a k-tape alternating Turing machine to a l-tape alternating Turing machine with only a constant factor increase in time and space. 1. Introduction In 1981, Chandra et al. [4] introduced alternating Turing machines, an extension of nondeterministic computation where the Turing machine can make both existential and universal moves. In 1985, Goldwasser et al. [lo] and Babai [l] introduced interactive proof systems, an extension of nondeterministic computation consisting of two players, an infinitely powerful prover and a probabilistic polynomial-time verifier. The prover will try to convince the verifier of the validity of some statement.
    [Show full text]
  • Lecture 11 1 Non-Uniform Complexity
    Notes on Complexity Theory Last updated: October, 2011 Lecture 11 Jonathan Katz 1 Non-Uniform Complexity 1.1 Circuit Lower Bounds for a Language in §2 \ ¦2 We have seen that there exist \very hard" languages (i.e., languages that require circuits of size (1 ¡ ")2n=n). If we can show that there exists a language in NP that is even \moderately hard" (i.e., requires circuits of super-polynomial size) then we will have proved P 6= NP. (In some sense, it would be even nicer to show some concrete language in NP that requires circuits of super-polynomial size. But mere existence of such a language is enough.) c Here we show that for every c there is a language in §2 \ ¦2 that is not in size(n ). Note that this does not prove §2 \ ¦2 6⊆ P=poly since, for every c, the language we obtain is di®erent. (Indeed, using the time hierarchy theorem, we have that for every c there is a language in P that is not in time(nc).) What is particularly interesting here is that (1) we prove a non-uniform lower bound and (2) the proof is, in some sense, rather simple. c Theorem 1 For every c, there is a language in §4 \ ¦4 that is not in size(n ). Proof Fix some c. For each n, let Cn be the lexicographically ¯rst circuit on n inputs such c that (the function computed by) Cn cannot be computed by any circuit of size at most n . By the c+1 non-uniform hierarchy theorem (see [1]), there exists such a Cn of size at most n (for n large c enough).
    [Show full text]
  • Simple Doubly-Efficient Interactive Proof Systems for Locally
    Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 18 (2017) Simple doubly-efficient interactive proof systems for locally-characterizable sets Oded Goldreich∗ Guy N. Rothblumy September 8, 2017 Abstract A proof system is called doubly-efficient if the prescribed prover strategy can be implemented in polynomial-time and the verifier’s strategy can be implemented in almost-linear-time. We present direct constructions of doubly-efficient interactive proof systems for problems in P that are believed to have relatively high complexity. Specifically, such constructions are presented for t-CLIQUE and t-SUM. In addition, we present a generic construction of such proof systems for a natural class that contains both problems and is in NC (and also in SC). The proof systems presented by us are significantly simpler than the proof systems presented by Goldwasser, Kalai and Rothblum (JACM, 2015), let alone those presented by Reingold, Roth- blum, and Rothblum (STOC, 2016), and can be implemented using a smaller number of rounds. Contents 1 Introduction 1 1.1 The current work . 1 1.2 Relation to prior work . 3 1.3 Organization and conventions . 4 2 Preliminaries: The sum-check protocol 5 3 The case of t-CLIQUE 5 4 The general result 7 4.1 A natural class: locally-characterizable sets . 7 4.2 Proof of Theorem 1 . 8 4.3 Generalization: round versus computation trade-off . 9 4.4 Extension to a wider class . 10 5 The case of t-SUM 13 References 15 Appendix: An MA proof system for locally-chracterizable sets 18 ∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
    [Show full text]
  • Lecture 10: Space Complexity III
    Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Lecture 10: Space Complexity III Arijit Bishnu 27.03.2010 Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Outline 1 Space Complexity Classes: NL and L 2 Reductions 3 NL-completeness 4 The Relation between NL and coNL 5 A Relation Among the Complexity Classes Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Outline 1 Space Complexity Classes: NL and L 2 Reductions 3 NL-completeness 4 The Relation between NL and coNL 5 A Relation Among the Complexity Classes Definition for Recapitulation S c NPSPACE = c>0 NSPACE(n ). The class NPSPACE is an analog of the class NP. Definition L = SPACE(log n). Definition NL = NSPACE(log n). Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Space Complexity Classes Definition for Recapitulation S c PSPACE = c>0 SPACE(n ). The class PSPACE is an analog of the class P. Definition L = SPACE(log n). Definition NL = NSPACE(log n). Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Space Complexity Classes Definition for Recapitulation S c PSPACE = c>0 SPACE(n ). The class PSPACE is an analog of the class P. Definition for Recapitulation S c NPSPACE = c>0 NSPACE(n ).
    [Show full text]
  • Multiparty Communication Complexity and Threshold Circuit Size of AC^0
    2009 50th Annual IEEE Symposium on Foundations of Computer Science Multiparty Communication Complexity and Threshold Circuit Size of AC0 Paul Beame∗ Dang-Trinh Huynh-Ngoc∗y Computer Science and Engineering Computer Science and Engineering University of Washington University of Washington Seattle, WA 98195-2350 Seattle, WA 98195-2350 [email protected] [email protected] Abstract— We prove an nΩ(1)=4k lower bound on the random- that the Generalized Inner Product function in ACC0 requires ized k-party communication complexity of depth 4 AC0 functions k-party NOF communication complexity Ω(n=4k) which is in the number-on-forehead (NOF) model for up to Θ(log n) polynomial in n for k up to Θ(log n). players. These are the first non-trivial lower bounds for general 0 NOF multiparty communication complexity for any AC0 function However, for AC functions much less has been known. for !(log log n) players. For non-constant k the bounds are larger For the communication complexity of the set disjointness than all previous lower bounds for any AC0 function even for function with k players (which is in AC0) there are lower simultaneous communication complexity. bounds of the form Ω(n1=(k−1)=(k−1)) in the simultaneous Our lower bounds imply the first superpolynomial lower bounds NOF [24], [5] and nΩ(1=k)=kO(k) in the one-way NOF for the simulation of AC0 by MAJ ◦ SYMM ◦ AND circuits, showing that the well-known quasipolynomial simulations of AC0 model [26]. These are sub-polynomial lower bounds for all by such circuits are qualitatively optimal, even for formulas of non-constant values of k and, at best, polylogarithmic when small constant depth.
    [Show full text]
  • Lecture 13: NP-Completeness
    Lecture 13: NP-completeness Valentine Kabanets November 3, 2016 1 Polytime mapping-reductions We say that A is polytime reducible to B if there is a polytime computable function f (a reduction) such that, for every string x, x 2 A iff f(x) 2 B. We use the notation \A ≤p B." (This is the same as a notion of mapping reduction from Computability we saw earlier, with the only change being that the reduction f be polytime computable.) It is easy to see Theorem 1. If A ≤p B and B 2 P, then A 2 P. 2 NP-completeness 2.1 Definitions A language B is NP-complete if 1. B is in NP, and 2. every language A in NP is polytime reducible to B (i.e., A ≤p B). In words, an NP-complete problem is the \hardest" problem in the class NP. It is easy to see the following: Theorem 2. If B is NP-complete and B is in P, then NP = P. It is also possible to show (Exercise!) that Theorem 3. If B is NP-complete and B ≤p C for some C in NP, then C is NP-complete. 2.2 \Trivial" NP-complete problem The following \scaled down version of ANTM " is NP-complete. p t ANTM = fhM; w; 1 i j NTM M accepts w within t stepsg p Theorem 4. The language ANTM defined above is NP-complete. 1 p Proof. First, ANTM is in NP, as we can always simulate a given nondeterministic TM M on a given input w for t steps, so that our simulation takes time poly(jhMij; jwj; t) (polynomial in the input size).
    [Show full text]
  • Lecture 13: Circuit Complexity 1 Binary Addition
    CS 810: Introduction to Complexity Theory 3/4/2003 Lecture 13: Circuit Complexity Instructor: Jin-Yi Cai Scribe: David Koop, Martin Hock For the next few lectures, we will deal with circuit complexity. We will concentrate on small depth circuits. These capture parallel computation. Our main goal will be proving circuit lower bounds. These lower bounds show what cannot be computed by small depth circuits. To gain appreciation for these lower bound results, it is essential to first learn about what can be done by these circuits. In next two lectures, we will exhibit the computational power of these circuits. We start with one of the simplest computations: integer addition. 1 Binary Addition Given two binary numbers, a = a1a2 : : : an−1an and b = b1b2 : : : bn−1bn, we can add the two using the elementary school method { adding each column and carrying to the next. In other words, r = a + b, an an−1 : : : a1 a0 + bn bn−1 : : : b1 b0 rn+1 rn rn−1 : : : r1 r0 can be accomplished by first computing r0 = a0 ⊕ b0 (⊕ is exclusive or) and computing a carry bit, c1 = a0 ^ b0. Now, we can compute r1 = a1 ⊕ b1 ⊕ c1 and c2 = (c1 ^ (a1 _ b1)) _ (a1 ^ b1), and in general we have rk = ak ⊕ bk ⊕ ck ck = (ck−1 ^ (ak _ bk)) _ (ak ^ bk) Certainly, the above operation can be done in polynomial time. The main question is, can we do it in parallel faster? The computation expressed above is sequential. Before computing rk, one needs to compute all the previous output bits.
    [Show full text]
  • Computational Complexity
    Computational Complexity The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Vadhan, Salil P. 2011. Computational complexity. In Encyclopedia of Cryptography and Security, second edition, ed. Henk C.A. van Tilborg and Sushil Jajodia. New York: Springer. Published Version http://refworks.springer.com/mrw/index.php?id=2703 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33907951 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Computational Complexity Salil Vadhan School of Engineering & Applied Sciences Harvard University Synonyms Complexity theory Related concepts and keywords Exponential time; O-notation; One-way function; Polynomial time; Security (Computational, Unconditional); Sub-exponential time; Definition Computational complexity theory is the study of the minimal resources needed to solve computational problems. In particular, it aims to distinguish be- tween those problems that possess efficient algorithms (the \easy" problems) and those that are inherently intractable (the \hard" problems). Thus com- putational complexity provides a foundation for most of modern cryptogra- phy, where the aim is to design cryptosystems that are \easy to use" but \hard to break". (See security (computational, unconditional).) Theory Running Time. The most basic resource studied in computational com- plexity is running time | the number of basic \steps" taken by an algorithm. (Other resources, such as space (i.e., memory usage), are also studied, but they will not be discussed them here.) To make this precise, one needs to fix a model of computation (such as the Turing machine), but here it suffices to informally think of it as the number of \bit operations" when the input is given as a string of 0's and 1's.
    [Show full text]
  • Computational Complexity
    Computational complexity Plan Complexity of a computation. Complexity classes DTIME(T (n)). Relations between complexity classes. Complete problems. Domino problems. NP-completeness. Complete problems for other classes Alternating machines. – p.1/17 Complexity of a computation A machine M is T (n) time bounded if for every n and word w of size n, every computation of M has length at most T (n). A machine M is S(n) space bounded if for every n and word w of size n, every computation of M uses at most S(n) cells of the working tape. Fact: If M is time or space bounded then L(M) is recursive. If L is recursive then there is a time and space bounded machine recognizing L. DTIME(T (n)) = fL(M) : M is det. and T (n) time boundedg NTIME(T (n)) = fL(M) : M is T (n) time boundedg DSPACE(S(n)) = fL(M) : M is det. and S(n) space boundedg NSPACE(S(n)) = fL(M) : M is S(n) space boundedg . – p.2/17 Hierarchy theorems A function S(n) is space constructible iff there is S(n)-bounded machine that given w writes aS(jwj) on the tape and stops. A function T (n) is time constructible iff there is a machine that on a word of size n makes exactly T (n) steps. Thm: Let S2(n) be a space-constructible function and let S1(n) ≥ log(n). If S1(n) lim infn!1 = 0 S2(n) then DSPACE(S2(n)) − DSPACE(S1(n)) is nonempty. Thm: Let T2(n) be a time-constructible function and let T1(n) log(T1(n)) lim infn!1 = 0 T2(n) then DTIME(T2(n)) − DTIME(T1(n)) is nonempty.
    [Show full text]
  • NC Hierarchy
    Umans Complexity Theory Lectures Boolean Circuits & NP: - Uniformity and Advice - NC hierarchy 1 Outline • Boolean circuits and formulas • uniformity and advice • the NC hierarchy and parallel computation • the quest for circuit lower bounds • a lower bound for formulas 2 1 Boolean circuits Ù • circuit C – directed acyclic graph Ú Ù – nodes: AND (Ù); OR (Ú); Ù Ú ¬ NOT (¬); variaBles xi x1 x2 x3 … xn • C computes function f:{0,1}n ® {0,1}. – identify C with function f it computes 3 Boolean circuits • size = # gates • depth = longest path from input to output • formula (or expression): graph is a tree • Every function f:{0,1}n ® {0,1} is computable by a circuit of size at most O(n2n) – AND of n literals for each x such that f(x) = 1 – OR of up to 2n such terms 4 2 Circuit families • Circuit works only for all inputs of a specific input length n. • Given function f: ∑*→ {0,1} • Circuit family : a circuit for each input length: C1, C2, C3, … = “{Cn}” * • “{Cn} computes f” iff for all x in ∑ C|x|(x) = f(x) • “{Cn} decides L”, where L is the language associated with f: For all x in ∑* , x in L iff C|x|(x) = f(x) = 1 5 Connection to TMs • given TM M running in time T(n) decides language L • can build circuit family {Cn} that decides L 2 – size of Cn = O(T(n) ) – Proof: CVAL construction used for polytime- completeness proof • Conclude: L Î P implies family of polynomial-size circuits that decides L 6 3 Uniformity • Strange aspect of circuit families: – can “encode” (potentially uncomputaBle) information in family specification • solution: uniformity – require specification is simple to compute Definition: circuit family {Cn} is logspace uniform iff there is a TM M that outputs Cn on input 1n and runs in O(log n) space.
    [Show full text]