Infinitesimal and Infinite Numbers As an Approach to Quantum Mechanics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
0.999… = 1 an Infinitesimal Explanation Bryan Dawson
0 1 2 0.9999999999999999 0.999… = 1 An Infinitesimal Explanation Bryan Dawson know the proofs, but I still don’t What exactly does that mean? Just as real num- believe it.” Those words were uttered bers have decimal expansions, with one digit for each to me by a very good undergraduate integer power of 10, so do hyperreal numbers. But the mathematics major regarding hyperreals contain “infinite integers,” so there are digits This fact is possibly the most-argued- representing not just (the 237th digit past “Iabout result of arithmetic, one that can evoke great the decimal point) and (the 12,598th digit), passion. But why? but also (the Yth digit past the decimal point), According to Robert Ely [2] (see also Tall and where is a negative infinite hyperreal integer. Vinner [4]), the answer for some students lies in their We have four 0s followed by a 1 in intuition about the infinitely small: While they may the fifth decimal place, and also where understand that the difference between and 1 is represents zeros, followed by a 1 in the Yth less than any positive real number, they still perceive a decimal place. (Since we’ll see later that not all infinite nonzero but infinitely small difference—an infinitesimal hyperreal integers are equal, a more precise, but also difference—between the two. And it’s not just uglier, notation would be students; most professional mathematicians have not or formally studied infinitesimals and their larger setting, the hyperreal numbers, and as a result sometimes Confused? Perhaps a little background information wonder . -
Measuring Fractals by Infinite and Infinitesimal Numbers
MEASURING FRACTALS BY INFINITE AND INFINITESIMAL NUMBERS Yaroslav D. Sergeyev DEIS, University of Calabria, Via P. Bucci, Cubo 42-C, 87036 Rende (CS), Italy, N.I. Lobachevsky State University, Nizhni Novgorod, Russia, and Institute of High Performance Computing and Networking of the National Research Council of Italy http://wwwinfo.deis.unical.it/∼yaro e-mail: [email protected] Abstract. Traditional mathematical tools used for analysis of fractals allow one to distinguish results of self-similarity processes after a finite number of iterations. For example, the result of procedure of construction of Cantor’s set after two steps is different from that obtained after three steps. However, we are not able to make such a distinction at infinity. It is shown in this paper that infinite and infinitesimal numbers proposed recently allow one to measure results of fractal processes at different iterations at infinity too. First, the new technique is used to measure at infinity sets being results of Cantor’s proce- dure. Second, it is applied to calculate the lengths of polygonal geometric spirals at different points of infinity. 1. INTRODUCTION During last decades fractals have been intensively studied and applied in various fields (see, for instance, [4, 11, 5, 7, 12, 20]). However, their mathematical analysis (except, of course, a very well developed theory of fractal dimensions) very often continues to have mainly a qualitative character and there are no many tools for a quantitative analysis of their behavior after execution of infinitely many steps of a self-similarity process of construction. Usually, we can measure fractals in a way and can give certain numerical answers to questions regarding fractals only if a finite number of steps in the procedure of their construction has been executed. -
Do Simple Infinitesimal Parts Solve Zeno's Paradox of Measure?
Do Simple Infinitesimal Parts Solve Zeno's Paradox of Measure?∗ Lu Chen (Forthcoming in Synthese) Abstract In this paper, I develop an original view of the structure of space|called infinitesimal atomism|as a reply to Zeno's paradox of measure. According to this view, space is composed of ultimate parts with infinitesimal size, where infinitesimals are understood within the framework of Robinson's (1966) nonstandard analysis. Notably, this view satisfies a version of additivity: for every region that has a size, its size is the sum of the sizes of its disjoint parts. In particular, the size of a finite region is the sum of the sizes of its infinitesimal parts. Although this view is a coherent approach to Zeno's paradox and is preferable to Skyrms's (1983) infinitesimal approach, it faces both the main problem for the standard view (the problem of unmeasurable regions) and the main problem for finite atomism (Weyl's tile argument), leaving it with no clear advantage over these familiar alternatives. Keywords: continuum; Zeno's paradox of measure; infinitesimals; unmeasurable ∗Special thanks to Jeffrey Russell and Phillip Bricker for their extensive feedback on early drafts of the paper. Many thanks to the referees of Synthese for their very helpful comments. I'd also like to thank the participants of Umass dissertation seminar for their useful feedback on my first draft. 1 regions; Weyl's tile argument 1 Zeno's Paradox of Measure A continuum, such as the region of space you occupy, is commonly taken to be indefinitely divisible. But this view runs into Zeno's famous paradox of measure. -
Complex Numbers Sigma-Complex3-2009-1 in This Unit We Describe Formally What Is Meant by a Complex Number
Complex numbers sigma-complex3-2009-1 In this unit we describe formally what is meant by a complex number. First let us revisit the solution of a quadratic equation. Example Use the formula for solving a quadratic equation to solve x2 10x +29=0. − Solution Using the formula b √b2 4ac x = − ± − 2a with a =1, b = 10 and c = 29, we find − 10 p( 10)2 4(1)(29) x = ± − − 2 10 √100 116 x = ± − 2 10 √ 16 x = ± − 2 Now using i we can find the square root of 16 as 4i, and then write down the two solutions of the equation. − 10 4 i x = ± =5 2 i 2 ± The solutions are x = 5+2i and x =5-2i. Real and imaginary parts We have found that the solutions of the equation x2 10x +29=0 are x =5 2i. The solutions are known as complex numbers. A complex number− such as 5+2i is made up± of two parts, a real part 5, and an imaginary part 2. The imaginary part is the multiple of i. It is common practice to use the letter z to stand for a complex number and write z = a + b i where a is the real part and b is the imaginary part. Key Point If z is a complex number then we write z = a + b i where i = √ 1 − where a is the real part and b is the imaginary part. www.mathcentre.ac.uk 1 c mathcentre 2009 Example State the real and imaginary parts of 3+4i. -
Nonstandard Analysis (Math 649K) Spring 2008
Nonstandard Analysis (Math 649k) Spring 2008 David Ross, Department of Mathematics February 29, 2008 1 1 Introduction 1.1 Outline of course: 1. Introduction: motivation, history, and propoganda 2. Nonstandard models: definition, properties, some unavoidable logic 3. Very basic Calculus/Analysis 4. Applications of saturation 5. General Topology 6. Measure Theory 7. Functional Analysis 8. Probability 1.2 Some References: 1. Abraham Robinson (1966) Nonstandard Analysis North Holland, Amster- dam 2. Martin Davis and Reuben Hersh Nonstandard Analysis Scientific Ameri- can, June 1972 3. Davis, M. (1977) Applied Nonstandard Analysis Wiley, New York. 4. Sergio Albeverio, Jens Erik Fenstad, Raphael Høegh-Krohn, and Tom Lindstrøm (1986) Nonstandard Methods in Stochastic Analysis and Math- ematical Physics. Academic Press, New York. 5. Al Hurd and Peter Loeb (1985) An introduction to Nonstandard Real Anal- ysis Academic Press, New York. 6. Keith Stroyan and Wilhelminus Luxemburg (1976) Introduction to the Theory of Infinitesimals Academic Press, New York. 7. Keith Stroyan and Jose Bayod (1986) Foundations of Infinitesimal Stochas- tic Analysis North Holland, Amsterdam 8. Leif Arkeryd, Nigel Cutland, C. Ward Henson (eds) (1997) Nonstandard Analysis: Theory and Applications, Kluwer 9. Rob Goldblatt (1998) Lectures on the Hyperreals, Springer 2 1.3 Some history: • (xxxx) Archimedes • (1615) Kepler, Nova stereometria dolorium vinariorium • (1635) Cavalieri, Geometria indivisibilus • (1635) Excercitationes geometricae (”Rigor is the affair of philosophy rather -
1.1 the Real Number System
1.1 The Real Number System Types of Numbers: The following diagram shows the types of numbers that form the set of real numbers. Definitions 1. The natural numbers are the numbers used for counting. 1, 2, 3, 4, 5, . A natural number is a prime number if it is greater than 1 and its only factors are 1 and itself. A natural number is a composite number if it is greater than 1 and it is not prime. Example: 5, 7, 13,29, 31 are prime numbers. 8, 24, 33 are composite numbers. 2. The whole numbers are the natural numbers and zero. 0, 1, 2, 3, 4, 5, . 3. The integers are all the whole numbers and their additive inverses. No fractions or decimals. , -3, -2, -1, 0, 1, 2, 3, . An integer is even if it can be written in the form 2n , where n is an integer (if 2 is a factor). An integer is odd if it can be written in the form 2n −1, where n is an integer (if 2 is not a factor). Example: 2, 0, 8, -24 are even integers and 1, 57, -13 are odd integers. 4. The rational numbers are the numbers that can be written as the ratio of two integers. All rational numbers when written in their equivalent decimal form will have terminating or repeating decimals. 1 2 , 3.25, 0.8125252525 …, 0.6 , 2 ( = ) 5 1 1 5. The irrational numbers are any real numbers that can not be represented as the ratio of two integers. -
A Tutorial on Euler Angles and Quaternions
A Tutorial on Euler Angles and Quaternions Moti Ben-Ari Department of Science Teaching Weizmann Institute of Science http://www.weizmann.ac.il/sci-tea/benari/ Version 2.0.1 c 2014–17 by Moti Ben-Ari. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/ by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. Chapter 1 Introduction You sitting in an airplane at night, watching a movie displayed on the screen attached to the seat in front of you. The airplane gently banks to the left. You may feel the slight acceleration, but you won’t see any change in the position of the movie screen. Both you and the screen are in the same frame of reference, so unless you stand up or make another move, the position and orientation of the screen relative to your position and orientation won’t change. The same is not true with respect to your position and orientation relative to the frame of reference of the earth. The airplane is moving forward at a very high speed and the bank changes your orientation with respect to the earth. The transformation of coordinates (position and orientation) from one frame of reference is a fundamental operation in several areas: flight control of aircraft and rockets, move- ment of manipulators in robotics, and computer graphics. This tutorial introduces the mathematics of rotations using two formalisms: (1) Euler angles are the angles of rotation of a three-dimensional coordinate frame. -
Outline of Mathematics
Outline of mathematics The following outline is provided as an overview of and 1.2.2 Reference databases topical guide to mathematics: • Mathematical Reviews – journal and online database Mathematics is a field of study that investigates topics published by the American Mathematical Society such as number, space, structure, and change. For more (AMS) that contains brief synopses (and occasion- on the relationship between mathematics and science, re- ally evaluations) of many articles in mathematics, fer to the article on science. statistics and theoretical computer science. • Zentralblatt MATH – service providing reviews and 1 Nature of mathematics abstracts for articles in pure and applied mathemat- ics, published by Springer Science+Business Media. • Definitions of mathematics – Mathematics has no It is a major international reviewing service which generally accepted definition. Different schools of covers the entire field of mathematics. It uses the thought, particularly in philosophy, have put forth Mathematics Subject Classification codes for orga- radically different definitions, all of which are con- nizing their reviews by topic. troversial. • Philosophy of mathematics – its aim is to provide an account of the nature and methodology of math- 2 Subjects ematics and to understand the place of mathematics in people’s lives. 2.1 Quantity Quantity – 1.1 Mathematics is • an academic discipline – branch of knowledge that • Arithmetic – is taught at all levels of education and researched • Natural numbers – typically at the college or university level. Disci- plines are defined (in part), and recognized by the • Integers – academic journals in which research is published, and the learned societies and academic departments • Rational numbers – or faculties to which their practitioners belong. -
A Brief History of Numbers by Leo Corry
Reviews Osmo Pekonen, Editor A Brief History of Numbers by Leo Corry OXFORD: OXFORD UNIVERSITY PRESS, 2015, 336 PP., £24.99, ISBN: 9780198702597 REVIEWED BY JESPER LU¨TZEN he concept of number has an interesting and intriguing history and this is a highly recommendable TT book about it. When were irrational numbers (or negative numbers) introduced into mathematics? Such questions seem precise and simple, but they cannot be answered with a simple year. In fact, the years 2000 BC and AD 1872 and many years Feel like writing a review for The Mathematical in between could be a valid answer to the question about Intelligencer? Contact the column editor if you wish to irrational numbers, and many years between 1 and 1870 could be defended as an answer to the question about the submit an unsolicited review, or if you would welcome introduction of negative numbers. This is not just because modern mathematicians may consider pre-1870 notions of being assigned a book to review. numbers as nonrigorous but also because the historical actors were not in agreement about the nature and extent of the concept of number. Therefore the answer to the questions raised previously must necessarily be a long and contorted story. Many treatises and articles on the history of mathematics tell aspects of this story, and Corry’s book may be considered a synthesis of these more specialized works. Still, Corry also adds his own original viewpoints and results to the standard history. The last chapters of the book dealing with the modern foundations of the number system from the end of the 19th and the beginning of the 20th cen- turies obviously draw on Corry’s own research on the establishment of modern structural thinking that has con- tributed seminally to our understanding of the development of mathematics in this period. -
MATH 0601 Pre-College Math 1 A. COURSE DESCRIPTION 1. Credits
Common Course Outline for: MATH 0601 Pre-college Math 1 A. COURSE DESCRIPTION 1. Credits: 3 2. Class Hours per Week: 3 hours 3. Prerequisites: Placement in MATH 0601 4. Preparation for: MATH 0630, 0990, 1020, 1050, 1080 or 1100 based on the number of learning objectives mastered. 5. MnTC Goals: None MATH 0601 offers a complete review of pre-college level mathematics. Topics include polynomials, equation solving, systems of linear equations, graphing, data analysis, rational expressions and equations, radicals and radical equations, quadratic equations, functions, variation, logarithmic and exponential equations. The number of new topics that each student will study and the number of courses that each student will need in the MATH 0601, 0602, 0603 sequence will vary based on the results of an initial assessment and the pathway that the student intends to follow. B. DATE LAST REVISED: (March 2017) C. OUTLINE OF MAJOR CONTENT AREAS 1. Solving Equations and Inequalities 2. Operations on Polynomials 3. Factoring of Polynomials 4. Graphs and Equations of Lines 5. Systems of Equations 6. Rational Expressions and Equations 7. Radical Expressions and Equations 8. Quadratic Equations and Functions 9. Exponential and Logarithmic Equations and Functions D. LEARNING OUTCOMES 1. Solve linear equations and inequalities in one variable. 2. Convert verbal expressions into algebraic form; solve applied problems. 3. Determine slope of a line from its graph, equation, or two points on the line. 4. Graph linear equations given a point and the slope. 5. Apply the rules for exponents. 6. Add, subtract, multiply, and divide polynomials. 7. Factor polynomials. 8. Solve rational equations. -
Ever Heard of a Prillionaire? by Carol Castellon Do You Watch the TV Show
Ever Heard of a Prillionaire? by Carol Castellon Do you watch the TV show “Who Wants to Be a Millionaire?” hosted by Regis Philbin? Have you ever wished for a million dollars? "In today’s economy, even the millionaire doesn’t receive as much attention as the billionaire. Winners of a one-million dollar lottery find that it may not mean getting to retire, since the million is spread over 20 years (less than $3000 per month after taxes)."1 "If you count to a trillion dollars one by one at a dollar a second, you will need 31,710 years. Our government spends over three billion per day. At that rate, Washington is going through a trillion dollars in a less than one year. or about 31,708 years faster than you can count all that money!"1 I’ve heard people use names such as “zillion,” “gazillion,” “prillion,” for large numbers, and more recently I hear “Mega-Million.” It is fairly obvious that most people don’t know the correct names for large numbers. But where do we go from million? After a billion, of course, is trillion. Then comes quadrillion, quintrillion, sextillion, septillion, octillion, nonillion, and decillion. One of my favorite challenges is to have my math class continue to count by "illions" as far as they can. 6 million = 1x10 9 billion = 1x10 12 trillion = 1x10 15 quadrillion = 1x10 18 quintillion = 1x10 21 sextillion = 1x10 24 septillion = 1x10 27 octillion = 1x10 30 nonillion = 1x10 33 decillion = 1x10 36 undecillion = 1x10 39 duodecillion = 1x10 42 tredecillion = 1x10 45 quattuordecillion = 1x10 48 quindecillion = 1x10 51 -
A Brief History of Mathematics a Brief History of Mathematics
A Brief History of Mathematics A Brief History of Mathematics What is mathematics? What do mathematicians do? A Brief History of Mathematics What is mathematics? What do mathematicians do? http://www.sfu.ca/~rpyke/presentations.html A Brief History of Mathematics • Egypt; 3000B.C. – Positional number system, base 10 – Addition, multiplication, division. Fractions. – Complicated formalism; limited algebra. – Only perfect squares (no irrational numbers). – Area of circle; (8D/9)² Æ ∏=3.1605. Volume of pyramid. A Brief History of Mathematics • Babylon; 1700‐300B.C. – Positional number system (base 60; sexagesimal) – Addition, multiplication, division. Fractions. – Solved systems of equations with many unknowns – No negative numbers. No geometry. – Squares, cubes, square roots, cube roots – Solve quadratic equations (but no quadratic formula) – Uses: Building, planning, selling, astronomy (later) A Brief History of Mathematics • Greece; 600B.C. – 600A.D. Papyrus created! – Pythagoras; mathematics as abstract concepts, properties of numbers, irrationality of √2, Pythagorean Theorem a²+b²=c², geometric areas – Zeno paradoxes; infinite sum of numbers is finite! – Constructions with ruler and compass; ‘Squaring the circle’, ‘Doubling the cube’, ‘Trisecting the angle’ – Plato; plane and solid geometry A Brief History of Mathematics • Greece; 600B.C. – 600A.D. Aristotle; mathematics and the physical world (astronomy, geography, mechanics), mathematical formalism (definitions, axioms, proofs via construction) – Euclid; Elements –13 books. Geometry,