Dermatophyte Morphology: a Scanning Electron Microscopy Study

Total Page:16

File Type:pdf, Size:1020Kb

Dermatophyte Morphology: a Scanning Electron Microscopy Study Scanning Microscopy Volume 4 Number 2 Article 15 4-5-1990 Dermatophyte Morphology: A Scanning Electron Microscopy Study R. Vazquez University of Salamanca J. M. Riesco University of Salamanca A. Martin Pascual University of Salamanca Follow this and additional works at: https://digitalcommons.usu.edu/microscopy Part of the Life Sciences Commons Recommended Citation Vazquez, R.; Riesco, J. M.; and Pascual, A. Martin (1990) "Dermatophyte Morphology: A Scanning Electron Microscopy Study," Scanning Microscopy: Vol. 4 : No. 2 , Article 15. Available at: https://digitalcommons.usu.edu/microscopy/vol4/iss2/15 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Scanning Microscopy, Vol. 4, No. 2, 1990 (Pages 363-374) 0891-7035/90$3.00+.00 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA DERMATOPHYTE MORPHOLOGY: A SCANNING ELECTRON MICROSCOPY STUDY R. Vazquezl,2*, J.M. Riescol, and A. Martin Pascual3 Departments of Morphological Sciences!, Electron Microscopy2, and Dermatology3 University of Salamanca, University Hospital, Faculty of Medicine, Salamanca, Spain (Received for publication November 28, 1989, and in revised form April 5, 1990) Abstract Introduction The Dermatophytes are a broad group of fungi The Dermatophytes belong to a broad group of belonging to the class Fungii imperfecti that are the fungi with pathogenic capacity in man and diverse causative agents of dermophytos1s (rmgworm infec - animal species. They are keratinophilic agents; that tions). The present work offers an overview of the is, they only parasitize keratin or keratinized struc - morphology of these fungi found in cultures accord­ tures (the horny layer, skin, and nails) causing der­ ing to the scanning electron microscope. The fungi matological lesions encompassed within the term der­ were obtained from cultures left to develop over matophytosis (ringworm infections). Speculations variable periods of time that would be sufficient for have been made about the possibility of Dermato­ growth. The morphological features of some derma­ phytes having been derived from a large family of tophytes obtained in artificial cultures are detailed: perfect soil fungi (ascomycetes). With the hair bait M. canis, M. gypseum, M. audouini, M. cookei, T. technique, it has been possible to isolate fungi with mentagrophytes, T. schoulemu, T. verrucosuin, T. morphological features similar to those of the Der­ aJello1, T. prohferans, and E. floccosum. In all cases matophytes but that do not induce pathological states an analysis of the morphology of the reproductive in man or in animals. mycelium developed in the culture was made: hyphae, Al though they belong to the class Fungii im - macroconidia, microconidia, and chlamydospores; de­ perfecti (asexual), some species are also able to tails that serve to distinguish one fungus from an­ develop a perfect state (sexual) when grown on hairs other. In the perfect forms, the morphology of the on the surface of soil . peridial hyphae and of the ascocarps (cleistotethia) Asexual reproduction is achieved through the are described. formation of spores. Upon finding a suitable me­ dium, a spore germinates and emits one or several tubes that grow distally and branch in the form of filaments known as hyphae. The branchings of the hyphae constitute the mycelium which shows two dif­ ferentiated portions: the vegetative mycelium, res­ ponsible for the maintenance and growth of the fun - gus, and the reproductor mycelium that contains spore-bearing hyphae (sporophores). The spores are mainly located on lateral projections of the hyphae and have a bud or finger-like aspect; these are the conidia. When the largest axis of the conidium is less than 5 micrometers and is formed of a single cell it is known as a microconidium. If the evagin­ ation is larger and is composed of two or more cells, the term macroconidium is used. Morphological varieties within the hyphae are the chlamydospores and the pectinate hyphae. The Key Words: Dermatophytes, Scanning Electron former are globose bulges surrounded by a strong Microscopy, Mycosis, Fungus, Tineas, M. canis, M. wall and localized on the distal portion of the hypha gypseum, M. audouini, M. cookei, T. mentagrophytes, or intercalated on its trajectory. Pectinate hyphae T. schouleinii, T. verrucosum, T. ajelloi, T. have a comb-like morphology. proliferans, E. floccosum. In the perfect state, the reproduction of Der­ matophytes is sexual and is characterized in that the * Address for correspondence: spores, in this case called ascospores, are the pro­ Ricardo Vazquez duct of fusion of two gametes of opposite sign (con­ Hospital Clinico Universitario ventionally gamete + and gamete - ) . Out of this Servicio de Microscopia Electronica union arise more or less spherical formations - the Paseo de San Vicente sin ascocarps (cleistotethia) - surrounded by thick and 37007 Salamanca, Spain claw-like hyphae called peridial. In turn, each as­ Phone No.: (923) 263450 cocarp is formed by sacs (asci) in whose interior the 363 R. Vazquez, J.M. Riesco, and A. Martin Pascual ascospores are located. Essentially, two genera have Results been described: Mannizzia as the perfect state of the genus Microsporum and Arthroderma as the perfect In artificial cultures, the Dermatophytes de­ state of the genus Trichophyton. veloped a reproductive mycelium with an enormously The Dermatophytes exhibit different morpholo­ rich structure; this permitted their differentiation gies according to whether they are viewed: a) as into three genera: Mycrosporum (M); Trichophyton pathogens, obtained directly from lesions (they would (t); and Epidermophyton (E). The former two genera be seen simply as unicellular and sporulated forms), include several species that are pathogenic for man b) in artificial culture media (where they develop a and animals. reproductor mycelium formed of macro- and micro­ Since a study of all the species would be be­ conidia, special hyphae, etc., which have served as yond the scope of the present work, we selected the basis for their taxonomic classification), and c) only some of those most commonly present in our when they are grown with the hair bait technique, environment (M. canis, M. gypseum, M. audouini, M. where some of them are able to develop a perfect cookei, T. menTagropfiytes, T. schoulemu, T. verru­ stage (for more details, see 1, 2, 5, 6, 9-12, 16, 17, cosum, E-:- floccosum) together with those exhibiting 20, 21, 37, 43, 45, 46, 53). strikmgcharacteristics ( M. audouini), new features The present work offers a scanning electron (T. proliferans), or representing the three epidemio­ microscope (SEM) analysis of the morphological char­ logical groups. acteristics of some Dermatophytes belonging to the Genus Microsporum three existing epidemiological groups (anthropophilic, M. Canis: This is a zoophilic fungus, mainly zoophilic, and geophilic). The morphology described harbored by the cat and, to a lesser extent, the dog. relates to that found in cultures, not in infected Its perfect or sexual state is unknown. It is the integument and/or its appendices. most important causative agent of tinea capitis in our environment ( Salamanca, Spain). It has been Materials and Methods studied by several authors with light, transmission, and scanning electron microscopes (26, 27, 37, 42, 46, The Dermatophytes analyzed were from three and 50). sources: a) clinical lesions of patients attending the Upon examination with the scanning electron University Hospital ( University of Salamanca, Spain); microscope a mycelium with the following character­ b) from lesions (ringworm) in several animal species istics was observed: when the colony was young (rabbits, calves, rats, etc.); c) from different soil (after a short period of time, about eight days of samples, according to the techniques proposed by growth), the hyphae were thin (Figs. 1 and 2), with Dwivedi et al. (13) and Vanbreuseghem (44). some swellings, occasionally showing formations re­ The Dermatophytes were cultured in agar con­ sembling smooth surfaced buds (Fig. 1). The macro­ taining glucose and neopeptone (Saboureaud's me­ conidia were elongate, spindle-shaped, with a sharp dium); in order to prevent contamination and the distal end (Figs. 1, 2, 3); their surface, in the case presence of saprophytic mold, chloramphenicol and of young colonies, was almost smooth (Fig. 1), with a cycloheximide were added (14, 37, and 39). Identification of Trichophyton verrucosum was carried out by the nutritional tests (addmg nutrient substances such as thiamine and inositol) proposed by Fig. 1. Macroconidium (ma) of M. can is belonging to Georg (18). For differentiating Trichophyton menta­ a young colony of short evoluno~ It is fairly grophytes from '!:..:_ rubrum the perforating hair tests smooth and only exhibits a fine granulation. The re­ of Ajello and Georg (3) and the urease test of lief of a septum can be seen (arrow). The hyphae Philpot (34) were used. (hy) shows bud formations with a smooth surface Perfect forms were obtained by crossing iso­ (arrowheads). lated strains with two other strains of different Fig. 2. Macroconidium (ma) belonging to an older signs (37) of the corresponding perfect form, pro­ colony; note that the whole surface is covered with vided by Doctors Ajello (at Communicable Disease buds. Center, Atlanta,
Recommended publications
  • Virulence of Two Entomophthoralean Fungi, Pandora Neoaphidis
    Article Virulence of Two Entomophthoralean Fungi, Pandora neoaphidis and Entomophthora planchoniana, to Their Conspecific (Sitobion avenae) and Heterospecific (Rhopalosiphum padi) Aphid Hosts Ibtissem Ben Fekih 1,2,3,*, Annette Bruun Jensen 2, Sonia Boukhris-Bouhachem 1, Gabor Pozsgai 4,5,*, Salah Rezgui 6, Christopher Rensing 3 and Jørgen Eilenberg 2 1 Plant Protection Laboratory, National Institute of Agricultural Research of Tunisia, Rue Hédi Karray, Ariana 2049, Tunisia; [email protected] 2 Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 3rd floor, 1871 Frederiksberg C, Denmark; [email protected] (A.B.J.); [email protected] (J.E.) 3 Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] 4 State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China 5 Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China 6 Department of ABV, National Agronomic Institute of Tunisia, 43 Avenue Charles Nicolle, 1082 EL Menzah, Tunisia; [email protected] * Correspondence: [email protected] (I.B.F.); [email protected] (G.P.) Received: 03 December 2018; Accepted: 02 February 2019; Published: 13 February 2019 Abstract: Pandora neoaphidis and Entomophthora planchoniana (phylum Entomophthoromycota) are important fungal pathogens on cereal aphids, Sitobion avenae and Rhopalosiphum padi. Here, we evaluated and compared for the first time the virulence of these two fungi, both produced in S. avenae cadavers, against the two aphid species subjected to the same exposure. Two laboratory bioassays were carried out using a method imitating entomophthoralean transmission in the field.
    [Show full text]
  • Stress Adaptation in a Pathogenic Fungus
    © 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 144-155 doi:10.1242/jeb.088930 REVIEW Stress adaptation in a pathogenic fungus Alistair J. P. Brown*, Susan Budge, Despoina Kaloriti, Anna Tillmann, Mette D. Jacobsen, Zhikang Yin, Iuliana V. Ene‡, Iryna Bohovych§, Doblin Sandai¶, Stavroula Kastora, Joanna Potrykus, Elizabeth R. Ballou, Delma S. Childers, Shahida Shahana and Michelle D. Leach** ABSTRACT normally exists as a harmless commensal organism in the microflora Candida albicans is a major fungal pathogen of humans. This yeast of the skin, oral cavity, and gastrointestinal and urogenital tracts of is carried by many individuals as a harmless commensal, but when most healthy individuals (Odds, 1988; Calderone, 2002; Calderone immune defences are perturbed it causes mucosal infections and Clancy, 2012). However, C. albicans frequently causes oral and (thrush). Additionally, when the immune system becomes severely vaginal infections (thrush) when the microflora is disturbed by compromised, C. albicans often causes life-threatening systemic antibiotic usage or when immune defences are perturbed, for infections. A battery of virulence factors and fitness attributes promote example in HIV patients (Sobel, 2007; Revankar and Sobel, 2012). the pathogenicity of C. albicans. Fitness attributes include robust In individuals whose immune systems are severely compromised responses to local environmental stresses, the inactivation of which (such as neutropenic patients undergoing chemotherapy or transplant attenuates virulence. Stress signalling pathways in C. albicans surgery), the fungus can survive in the bloodstream, leading to the include evolutionarily conserved modules. However, there has been colonisation of internal organs such as the kidney, liver, spleen and rewiring of some stress regulatory circuitry such that the roles of a brain (Pfaller and Diekema, 2007; Calderone and Clancy, 2012).
    [Show full text]
  • Effect of Rutaceae Plant's Essential Oils and Leaf Extracts on Dermatophytic Fungal Cell Morphology
    Effect of Rutaceae plant’s essential oils and leaf extracts on dermatophytic fungal cell morphology: a hope for the development of an effective antifungal from natural origin Submitted in fulfillment of the academic requirements for the degree of DOCTOR OF PHILOSOPHY By OLUFUNKE OMOWUMI FAJINMI Research Centre for Plant Growth and Development School of Life Sciences College of Agriculture, Engineering and Science University of KwaZulu-Natal, Pietermaritzburg May 2016 Pictures sourced from google A healthy, glowing, beautiful skin….the pride of every woman i . Table of Contents STUDENT DECLARATION ................................................................................................... v DECLARATION BY SUPERVISORS ....................................................................................... vi COLLEGE OF AGRICULTURE ENGINEERING & SCIENCE DECLARATION 1- PLAGIARISM ........ vii ACKNOWLEDGEMENTS .................................................................................................. viii COLLEGE OF AGRICULTURE ENGINEERING & SCIENCE DECLARATION 2- PUBLICATIONS ....... x LIST OF FIGURES .............................................................................................................. xi LIST OF TABLES ............................................................................................................... xii LIST OF ABBREVIATIONS ................................................................................................ xiv ABSTRACT .....................................................................................................................
    [Show full text]
  • Candida Albicans Virulence Factors and Its Pathogenicity
    microorganisms Editorial Candida Albicans Virulence Factors and Its Pathogenicity Mariana Henriques * and Sónia Silva CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; [email protected] * Correspondence: [email protected] Candida albicans lives as commensal on the skin and mucosal surfaces of the genital, intestinal, vaginal, urinary, and oral tracts of 80% of healthy individuals. An imbalance between the host immunity and this opportunistic fungus may trigger mucosal infections followed by dissemination via the bloodstream and infection of the internal organs. Candida albicans is considered the most common opportunistic pathogenic fungus in humans and a causative agent of 60% of mucosal infections and 40% of candidemia cases [1,2]. Several virulence factors are known to be responsible for C. albicans infections, such as adherence to host and abiotic medical surfaces, biofilm formation as well as secretion of hydrolytic enzymes. Moreover, C. albicans resistance to traditional antimicrobial agents, especially azoles, is well known, especially when Candida cells are in biofilm form. This Special Issue covers different aspects related to C. albicans pathogenicity, virulence factors, the mechanisms of antifungal resistance and the molecular pathways of host interactions. The review by Ciurea et al. [3] presents the virulence factors of the most important Candida species, namely C. albicans, contributing to a better understanding of the onset of candidiasis and raising awareness of the overly complex interspecies interactions that can change the outcome of the disease. The article by Yoo et al. [4] provides a comprehensive review about the association between C. albicans and the cases of persistent or refractory root canal infections.
    [Show full text]
  • Diversity of Geophilic Dermatophytes Species in the Soils of Iran; the Significant Preponderance of Nannizzia Fulva
    Journal of Fungi Article Diversity of Geophilic Dermatophytes Species in the Soils of Iran; The Significant Preponderance of Nannizzia fulva Simin Taghipour 1, Mahdi Abastabar 2, Fahimeh Piri 3, Elham Aboualigalehdari 4, Mohammad Reza Jabbari 2, Hossein Zarrinfar 5 , Sadegh Nouripour-Sisakht 6, Rasoul Mohammadi 7, Bahram Ahmadi 8, Saham Ansari 9, Farzad Katiraee 10 , Farhad Niknejad 11 , Mojtaba Didehdar 12, Mehdi Nazeri 13, Koichi Makimura 14 and Ali Rezaei-Matehkolaei 3,4,* 1 Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord 88157-13471, Iran; [email protected] 2 Invasive Fungi Research Center, Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran; [email protected] (M.A.); [email protected] (M.R.J.) 3 Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran; [email protected] 4 Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran; [email protected] 5 Allergy Research Center, Mashhad University of Medical Sciences, Mashhad 91766-99199, Iran; [email protected] 6 Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 75919-94799, Iran; [email protected] Citation: Taghipour, S.; Abastabar, M.; 7 Department of Medical Parasitology and Mycology, School of Medicine, Infectious Diseases and Tropical Piri, F.; Aboualigalehdari, E.; Jabbari, Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; M.R.; Zarrinfar, H.; Nouripour-Sisakht, [email protected] 8 S.; Mohammadi, R.; Ahmadi, B.; Department of Medical Laboratory Sciences, Faculty of Paramedical, Bushehr University of Medical Sciences, Bushehr 75187-59577, Iran; [email protected] Ansari, S.; et al.
    [Show full text]
  • Geophilic Dermatophytes and Other Keratinophilic Fungi in the Nests of Wetland Birds
    ACTA MyCoLoGICA Vol. 46 (1): 83–107 2011 Geophilic dermatophytes and other keratinophilic fungi in the nests of wetland birds Teresa KoRnIŁŁoWICz-Kowalska1, IGnacy KIToWSKI2 and HELEnA IGLIK1 1Department of Environmental Microbiology, Mycological Laboratory University of Life Sciences in Lublin Leszczyńskiego 7, PL-20-069 Lublin, [email protected] 2Department of zoology, University of Life Sciences in Lublin, Akademicka 13 PL-20-950 Lublin, [email protected] Korniłłowicz-Kowalska T., Kitowski I., Iglik H.: Geophilic dermatophytes and other keratinophilic fungi in the nests of wetland birds. Acta Mycol. 46 (1): 83–107, 2011. The frequency and species diversity of keratinophilic fungi in 38 nests of nine species of wetland birds were examined. nine species of geophilic dermatophytes and 13 Chrysosporium species were recorded. Ch. keratinophilum, which together with its teleomorph (Aphanoascus fulvescens) represented 53% of the keratinolytic mycobiota of the nests, was the most frequently observed species. Chrysosporium tropicum, Trichophyton terrestre and Microsporum gypseum populations were less widespread. The distribution of individual populations was not uniform and depended on physical and chemical properties of the nests (humidity, pH). Key words: Ascomycota, mitosporic fungi, Chrysosporium, occurrence, distribution INTRODUCTION Geophilic dermatophytes and species representing the Chrysosporium group (an arbitrary term) related to them are ecologically classified as keratinophilic fungi. Ke- ratinophilic fungi colonise keratin matter (feathers, hair, etc., animal remains) in the soil, on soil surface and in other natural environments. They are keratinolytic fungi physiologically specialised in decomposing native keratin. They fully solubilise na- tive keratin (chicken feathers) used as the only source of carbon and energy in liquid cultures after 70 to 126 days of growth (20°C) (Korniłłowicz-Kowalska 1997).
    [Show full text]
  • Environmental Factors That Contribute to the Maintenance of Cryptococcus Neoformans Pathogenesis
    microorganisms Review Environmental Factors That Contribute to the Maintenance of Cryptococcus neoformans Pathogenesis Maphori Maliehe, Mathope A. Ntoi, Shayanki Lahiri, Olufemi S. Folorunso , Adepemi O. Ogundeji , Carolina H. Pohl and Olihile M. Sebolai * Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9301, Free State, South Africa; [email protected] (M.M.); [email protected] (M.A.N.); [email protected] (S.L.); [email protected] (O.S.F.); [email protected] (A.O.O.); [email protected] (C.H.P.) * Correspondence: [email protected]; Tel.: +27-(0)51-401-2004 Received: 15 November 2019; Accepted: 11 December 2019; Published: 28 January 2020 Abstract: The ability of microorganisms to colonise and display an intracellular lifestyle within a host body increases their fitness to survive and avoid extinction. This host–pathogen association drives microbial evolution, as such organisms are under selective pressure and can become more pathogenic. Some of these microorganisms can quickly spread through the environment via transmission. The non-transmittable fungal pathogens, such as Cryptococcus, probably return into the environment upon decomposition of the infected host. This review analyses whether re-entry of the pathogen into the environment causes restoration of its non-pathogenic state or whether environmental factors and parameters assist them in maintaining pathogenesis. Cryptococcus (C.) neoformans is therefore used as a model organism to evaluate the impact of environmental stress factors that aid the survival and pathogenesis of C. neoformans intracellularly and extracellularly. Keywords: Cryptococcus; environmental factors; pathogenesis; survival; virulence factors; transcriptional factors; signalling factors 1. Introduction The genus Cryptococcus is defined by basidiomycetous fungi that can transform into a yeast state [1].
    [Show full text]
  • Mucormycosis
    1 The epidemic of "Black fungus" (mucormycosis) in Covid19 patients in India - a perfect synergy between immuno-suppressive drugs and supportive oxygen that promotes the bio-syntheses of ergosterol (a key component of fungal cell membranes)? Letter The \black fungus" (mucormycosis) epidemic in India in April-May 2021 [1] has exacerbated the Covid19 problem, and has been ascribed to over-usage of immuno-suppressive drugs (steroids) and uncontrolled diabetes [2]. This however does not answer the whole question, since these steroids are regularly prescribed for many diseases like RA, and even in the previous year (2020) in India for Covid19 patients. So what changed? Another (troubling) feature of the 2021 Covid19 wave in India has been the requirement (and often un- fortunately lack) of supportive oxygen. However, hypoxia (lack of oxygen) is a double-edged sword during pathogenesis [3], as hypoxia at infection sites creates a stressful environment for many host and pathogens. It has been realized that `manipulation of oxygen levels and/or oxygen-mediated signaling pathways in vivo may have both positive and negative effects on the outcome of' fungal infections [4]. For example, Mucor irregularis has ways to circumvent the hypoxic environment, and thrives in skin where oxygen is minimal [5]. The treatment Amphotericin provides the link - Ergosterol `Amphotericin primarily kills yeast by simply binding ergosterol' [6]. Ergosterol is an essential component of cell membranes of fungi and protozoa, analogous to cholesterol in animal cells [7]. Ergosterol biosynthesis requires oxygen [8]. And in low oxygen, cells that cannot make ergosterol absorb it from the external culture environment [9].
    [Show full text]
  • Antifungal Susceptibility of Japanese Isolates of Nannizia Fulva (Formerly Microsporum Fulvum)
    Med. Mycol. J. Vol.Med. 60, Mycol.23-25, 2019 J. Vol. 60 (No. 1) , 2019 23 ISSN 2185-6486 Short Report Antifungal Susceptibility of Japanese Isolates of Nannizia fulva (Formerly Microsporum fulvum) Rui Kano1, Karin Oshimo1, Teru Fukutomi2 and Hiroshi Kamata1 1 Department of Veterinary Pathobiology, Nihon University College of Bioresouce Sciences School of Veterinary Medicine 2 Bright Pet Clinic ABSTRACT Human and animal dermatophytoses are most commonly treated with systemic antifungal drugs such as itraconazole (ITZ) and terbinafine (TRF). The antifungal susceptibility of Nannizia fulva, however, remains poorly documented. In the present study, we investigated the in vitro susceptibility of N. fulva to ITZ and TRFusing the CLSI M38-A2 test. The mean MICs for the 12 tested strains were 0.6542 mg/L (range: 0.0625-1 mg/L) for ITZ and 0.15625 mg/L (range: < 0.003125-0.5 mg/L) for TRF. These results indicate that ITZ and TRFat standard veterinary doses should be efficacious against N. fulva. Key words : Antifungal susceptibility, geophilic dermatophyte, itraconazole, Nannizia fulva, terbinafine Members of the Microsporum gypseum complex are (Table 1). geophilic dermatophytes with worldwide distribution and The isolates of N. fulva examined in this study are listed in occasionally have been isolated as infectious agents in humans Table 1. These isolates were obtained from normal rabbit hair and animals1-3). The teleomorphs of the complex consist of and soils in rabbit hutches in public primary schools in Nannizia fulva (formerly Microsporum fulvum and Yokohama, Japan6). Arthroderma fulvum), N. gypsea,andNannizia. incurvata1, 4). The isolates were maintained on diluted Sabouraud’s In 1982, Hironaga et al.
    [Show full text]
  • Introduction to Plant Pathogenic Fungi Spring 2021
    Syllabus- PLP6262 Fungal Plant Pathogens/PLP4260 Introduction to Plant Pathogenic Fungi Spring 2021 Instructor: Dr. Jeffrey Rollins Office: 1419 Fifield Hall Phone: 352-273-4620 e-mail: [email protected] Lab Coordinator: Dr. Morgan Byron ([email protected]) Teaching Assistant: Josh Konkol ([email protected]) : Andrew Gitto ([email protected]) : Matt Cullen ([email protected]) Class Location: 2306 Fifield Hall and online via Zoom https://ufl.zoom.us/j/97977735639?pwd=RDh6ZDVySEFKU0xaL3d3akJZbzVmQT09 Class Times: 7 week module : Jan 11 to March 3, 2021 Lectures: MF period 5 (11:45-12:35 pm); W period 5-6 (11:45- 1:40 pm) Labs: TR period 5-6 (11:45- 1:40 pm) Class Website: http://elearning.ufl.edu/ (e-Learning in Canvas) Office Hours: By appointment via Zoom Class Recordings: https://mediasite.video.ufl.edu/Mediasite/Channel/plp6262-spring-2021 Course Description: This course is an introduction to the biology and diversity of fungal plant pathogens. Fungi and their allies are a diverse group of organisms that comprise the majority of plant pathogens. Their members are found in every fungal order, as well as among numerous orders outside the Kingdom Fungi but traditionally studied as fungi, e.g., the Stramenopiles. This course will include a survey of taxonomic groups of fungal and fungal-like plant pathogens, an overview of common fungal pathogens in various types of plant culture systems, and discussion of general plant pathology principles as they relate to fungal pathogens. Lectures and labs are co-taught with PLP4260C: Introduction to Plant Pathogenic Fungi. Students enrolled in the graduate course will have a course project and more rigorous Exams and Quizzes relative to their undergraduate classmates.
    [Show full text]
  • The New Species Concept in Dermatophytes—A Polyphasic Approach
    Mycopathologia DOI 10.1007/s11046-008-9099-y The New Species Concept in Dermatophytes—a Polyphasic Approach Yvonne Gra¨ser Æ James Scott Æ Richard Summerbell Received: 15 October 2007 / Accepted: 30 January 2008 Ó Springer Science+Business Media B.V. 2008 Abstract The dermatophytes are among the most among these are the cosmopolitan bane of nails and frequently observed organisms in biomedicine, yet feet, Trichophyton rubrum, and the endemic African there has never been stability in the taxonomy, agent of childhood tinea capitis, Trichophyton identification and naming of the approximately 25 soudanense, which are effectively inseparable in all pathogenic species involved. Since the identification analyses. The molecular data require some reinter- of these species is often epidemiologically and pretation of results seen in conventional phenotypic ethically important, the difficulties in dermatophyte tests, but in most cases, phylogenetic insight is identification are a fruitful topic for modern molec- readily integrated with current laboratory testing ular biological investigation, done in tandem with procedures. renewed investigation of phenotypic characters. Molecular phylogenetic analyses such as multilocus Keywords Dermatophytes Á Taxonomy Á sequence typing have had to be tailored to accom- Molecular identification Á modate differing the mechanisms of speciation that Morphological identification Á Species concept have produced the dermatophytes that are commonly seen today. Even so, some biotypes that were unambiguously considered species in the past, based Introduction: Why Dermatophyte Biosystematics on profound differences in morphology and pattern of and Identification are Important (Medical infection, appear consistently not to be distinct and Scientific Aspects) species in modern molecular analyses. Most notable The dermatophytes belong to the small category of disease organisms that almost every human alive will Y.
    [Show full text]
  • Mortierellaceae Phylogenomics and Tripartite Plant-Fungal-Bacterial Symbiosis of Mortierella Elongata
    MORTIERELLACEAE PHYLOGENOMICS AND TRIPARTITE PLANT-FUNGAL-BACTERIAL SYMBIOSIS OF MORTIERELLA ELONGATA By Natalie Vandepol A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Microbiology & Molecular Genetics – Doctor of Philosophy 2020 ABSTRACT MORTIERELLACEAE PHYLOGENOMICS AND TRIPARTITE PLANT-FUNGAL-BACTERIAL SYMBIOSIS OF MORTIERELLA ELONGATA By Natalie Vandepol Microbial promotion of plant growth has great potential to improve agricultural yields and protect plants against pathogens and/or abiotic stresses. Soil fungi in Mortierellaceae are non- mycorrhizal plant associates that frequently harbor bacterial endosymbionts. My research focused on resolving the Mortierellaceae phylogeny and on characterizing the effect of Mortierella elongata and its bacterial symbionts on Arabidopsis thaliana growth and molecular functioning. Early efforts to classify Mortierellaceae were based on morphology, but phylogenetic studies with ribosomal DNA (rDNA) markers have demonstrated conflicting taxonomic groupings and polyphyletic genera. In this study, I applied two approaches: low coverage genome (LCG) sequencing and high-throughput targeted amplicon sequencing to generate multi-locus sequence data. I combined these datasets to generate a well-supported genome-based phylogeny having broad sampling depth from the amplicon dataset. Resolving the Mortierellaceae phylogeny into monophyletic groups led to the definition of 14 genera, 7 of which are newly proposed. Mortierellaceae are broadly considered plant associates, but the underlying mechanisms of association are not well understood. In this study, I focused on the symbiosis between M. elongata, its endobacteria, and A. thaliana. I measured aerial plant growth and seed production and used transcriptomics to characterize differentially expressed plant genes (DEGs) while varying fungal treatments. M. elongata was shown to promote aerial plant growth and affect seed production independent of endobacteria.
    [Show full text]