A Local Homology Theory for Linearly Compact Modules
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Local Cohomology and Matlis Duality – Table of Contents 0Introduction
Local Cohomology and Matlis duality { Table of contents 0 Introduction . 2 1 Motivation and General Results . 6 1.1 Motivation . 6 1.2 Conjecture (*) on the structure of Ass (D( h (R))) . 10 R H(x1;:::;xh)R h 1.3 Regular sequences on D(HI (R)) are well-behaved in some sense . 13 1.4 Comparison of two Matlis Duals . 15 2 Associated primes { a constructive approach . 19 3 Associated primes { the characteristic-free approach . 26 3.1 Characteristic-free versions of some results . 26 dim(R)¡1 3.2 On the set AssR(D(HI (R))) . 28 4 The regular case and how to reduce to it . 35 4.1 Reductions to the regular case . 35 4.2 Results in the general case, i. e. h is arbitrary . 36 n¡2 4.3 The case h = dim(R) ¡ 2, i. e. the set AssR(D( (k[[X1;:::;Xn]]))) . 38 H(X1;:::;Xn¡2)R 5 On the meaning of a small arithmetic rank of a given ideal . 43 5.1 An Example . 43 5.2 Criteria for ara(I) · 1 and ara(I) · 2 ......................... 44 5.3 Di®erences between the local and the graded case . 48 6 Applications . 50 6.1 Hartshorne-Lichtenbaum vanishing . 50 6.2 Generalization of an example of Hartshorne . 52 6.3 A necessary condition for set-theoretic complete intersections . 54 6.4 A generalization of local duality . 55 7 Further Topics . 57 7.1 Local Cohomology of formal schemes . 57 i 7.2 D(HI (R)) has a natural D-module structure . -
Modules with Artinian Prime Factors
PROCEEDINGS of the AMERICAN MATHEMATICAL SOCIETY Volume 78, Number 3. March 1980 MODULES WITH ARTINIAN PRIME FACTORS EFRAIM P. ARMENDARIZ Abstract. An R -module M has Artinian prime factors if M/PM is an Artinian module for each prime ideal P of R. For commutative rings R it is shown that Noetherian modules with Artinian prime factors are Artinian. If R is either commutative or a von Neumann regular K-rmg then the endomorphism ring of a module with Artinian prime factors is a strongly ir-regular ring. A ring R with 1 is left ir-regular if for each a G R there is an integer n > 1 and b G R such that a" = an+lb. Right w-regular is defined in the obvious way, however a recent result of F. Dischinger [5] asserts the equivalence of the two concepts. A ring R is ir-regular if for any a G R there is an integer n > 1 and b G R such that a" = a"ba". Any left 7r-regular ring is 77-regular but not con- versely. Because of this, we say that R is strongly ir-regular if it is left (or right) w-regular. In [2, Theorem 2.5] it was established that if R is a (von Neumann) regular ring whose primitive factor rings are Artinian and if M is a finitely generated R-module then the endomorphism ring EndÄ(Af ) of M is a strongly 77-regular ring. Curiously enough, the same is not true for finitely generated modules over strongly w-regular rings, as Example 3.1 of [2] shows. -
Gsm073-Endmatter.Pdf
http://dx.doi.org/10.1090/gsm/073 Graduat e Algebra : Commutativ e Vie w This page intentionally left blank Graduat e Algebra : Commutativ e View Louis Halle Rowen Graduate Studies in Mathematics Volum e 73 KHSS^ K l|y|^| America n Mathematica l Societ y iSyiiU ^ Providence , Rhod e Islan d Contents Introduction xi List of symbols xv Chapter 0. Introduction and Prerequisites 1 Groups 2 Rings 6 Polynomials 9 Structure theories 12 Vector spaces and linear algebra 13 Bilinear forms and inner products 15 Appendix 0A: Quadratic Forms 18 Appendix OB: Ordered Monoids 23 Exercises - Chapter 0 25 Appendix 0A 28 Appendix OB 31 Part I. Modules Chapter 1. Introduction to Modules and their Structure Theory 35 Maps of modules 38 The lattice of submodules of a module 42 Appendix 1A: Categories 44 VI Contents Chapter 2. Finitely Generated Modules 51 Cyclic modules 51 Generating sets 52 Direct sums of two modules 53 The direct sum of any set of modules 54 Bases and free modules 56 Matrices over commutative rings 58 Torsion 61 The structure of finitely generated modules over a PID 62 The theory of a single linear transformation 71 Application to Abelian groups 77 Appendix 2A: Arithmetic Lattices 77 Chapter 3. Simple Modules and Composition Series 81 Simple modules 81 Composition series 82 A group-theoretic version of composition series 87 Exercises — Part I 89 Chapter 1 89 Appendix 1A 90 Chapter 2 94 Chapter 3 96 Part II. AfRne Algebras and Noetherian Rings Introduction to Part II 99 Chapter 4. Galois Theory of Fields 101 Field extensions 102 Adjoining -
Local Cohomology and Base Change
LOCAL COHOMOLOGY AND BASE CHANGE KAREN E. SMITH f Abstract. Let X −→ S be a morphism of Noetherian schemes, with S reduced. For any closed subscheme Z of X finite over S, let j denote the open immersion X \ Z ֒→ X. Then for any coherent sheaf F on X \ Z and any index r ≥ 1, the r sheaf f∗(R j∗F) is generically free on S and commutes with base change. We prove this by proving a related statement about local cohomology: Let R be Noetherian algebra over a Noetherian domain A, and let I ⊂ R be an ideal such that R/I is finitely generated as an A-module. Let M be a finitely generated R-module. Then r there exists a non-zero g ∈ A such that the local cohomology modules HI (M)⊗A Ag are free over Ag and for any ring map A → L factoring through Ag, we have r ∼ r HI (M) ⊗A L = HI⊗AL(M ⊗A L) for all r. 1. Introduction In his work on maps between local Picard groups, Koll´ar was led to investigate the behavior of certain cohomological functors under base change [Kol]. The following theorem directly answers a question he had posed: f Theorem 1.1. Let X → S be a morphism of Noetherian schemes, with S reduced. Suppose that Z ⊂ X is closed subscheme finite over S, and let j denote the open embedding of its complement U. Then for any coherent sheaf F on U, the sheaves r f∗(R j∗F) are generically free and commute with base change for all r ≥ 1. -
Lectures on Non-Commutative Rings
Lectures on Non-Commutative Rings by Frank W. Anderson Mathematics 681 University of Oregon Fall, 2002 This material is free. However, we retain the copyright. You may not charge to redistribute this material, in whole or part, without written permission from the author. Preface. This document is a somewhat extended record of the material covered in the Fall 2002 seminar Math 681 on non-commutative ring theory. This does not include material from the informal discussion of the representation theory of algebras that we had during the last couple of lectures. On the other hand this does include expanded versions of some items that were not covered explicitly in the lectures. The latter mostly deals with material that is prerequisite for the later topics and may very well have been covered in earlier courses. For the most part this is simply a cleaned up version of the notes that were prepared for the class during the term. In this we have attempted to correct all of the many mathematical errors, typos, and sloppy writing that we could nd or that have been pointed out to us. Experience has convinced us, though, that we have almost certainly not come close to catching all of the goofs. So we welcome any feedback from the readers on how this can be cleaned up even more. One aspect of these notes that you should understand is that a lot of the substantive material, particularly some of the technical stu, will be presented as exercises. Thus, to get the most from this you should probably read the statements of the exercises and at least think through what they are trying to address. -
Lectures on Local Cohomology
Contemporary Mathematics Lectures on Local Cohomology Craig Huneke and Appendix 1 by Amelia Taylor Abstract. This article is based on five lectures the author gave during the summer school, In- teractions between Homotopy Theory and Algebra, from July 26–August 6, 2004, held at the University of Chicago, organized by Lucho Avramov, Dan Christensen, Bill Dwyer, Mike Mandell, and Brooke Shipley. These notes introduce basic concepts concerning local cohomology, and use them to build a proof of a theorem Grothendieck concerning the connectedness of the spectrum of certain rings. Several applications are given, including a theorem of Fulton and Hansen concern- ing the connectedness of intersections of algebraic varieties. In an appendix written by Amelia Taylor, an another application is given to prove a theorem of Kalkbrenner and Sturmfels about the reduced initial ideals of prime ideals. Contents 1. Introduction 1 2. Local Cohomology 3 3. Injective Modules over Noetherian Rings and Matlis Duality 10 4. Cohen-Macaulay and Gorenstein rings 16 d 5. Vanishing Theorems and the Structure of Hm(R) 22 6. Vanishing Theorems II 26 7. Appendix 1: Using local cohomology to prove a result of Kalkbrenner and Sturmfels 32 8. Appendix 2: Bass numbers and Gorenstein Rings 37 References 41 1. Introduction Local cohomology was introduced by Grothendieck in the early 1960s, in part to answer a conjecture of Pierre Samuel about when certain types of commutative rings are unique factorization 2000 Mathematics Subject Classification. Primary 13C11, 13D45, 13H10. Key words and phrases. local cohomology, Gorenstein ring, initial ideal. The first author was supported in part by a grant from the National Science Foundation, DMS-0244405. -
Certain Artinian Rings Are Noetherian
Can. J. Math., Vol. XXIV, No. 4, 1972, pp. 553-556 CERTAIN ARTINIAN RINGS ARE NOETHERIAN ROBERT C. SHOCK 1. Introduction. Throughout this paper the word "ring" will mean an associative ring which need not have an identity element. There are Artinian rings which are not Noetherian, for example C(pco) with zero multiplication. These are the only such rings in that an Artinian ring R is Noetherian if and only if R contains no subgroups of type C(pœ) [1, p. 285]. However, a certain class of Artinian rings is Noetherian. A famous theorem of C. Hopkins states that an Artinian ring with an identity element is Noetherian [3, p. 69]. The proofs of these theorems involve the method of "factoring through the nilpotent Jacobson radical of the ring". In this paper we state necessary and sufficient conditions for an Artinian ring (and an Artinian module) to be Noetherian. Our proof avoids the concept of the Jacobson radical and depends primarily upon the concept of the length of a composition series. As a corollary we obtain the result of Hopkins. All conditions are on the right, that is, an Artinian ring means a right Artinian ring, etc. We say a module A is embeddable in a module B provided that A is isomorphic to some submodule of B. Our Theorem 3 states that an Artinian ring R is Noetherian if and only if a cyclic Noetherian submodule ofR is embeddable in some Noetherian factor module of R. An example in the paper shows that in an Artinian ring R which is also Noetherian, a cyclic submodule need not be isomorphic to some factor module of R. -
Artinian Modules and Modules of Which All Proper Submodules Are Finitely Generated
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 95, 201-216 (1985) Artinian Modules and Modules of Which All Proper Submodules Are Finitely Generated WILLIAM HEINZER Purdue University, West Lafayette, Indiana 47907 AND DAVID LANTZ Purdue University, West Lafayette, Indiana 47907, and Colgate University, Hamilton, New York 13346 Communicated by I. N. Herstein Received September 5, 1983 1. INTRODUCTION William D. Weakley, in [Wl], studied modules (unitary, over a com- mutative ring with unity) which are not finitely generated but all of whose proper submodules are finitely generated. Weakley called such modules “almost finitely generated” (a.f.g.). He noted that an a.f.g. module has prime annihilator and that, as a faithful module over a domain, it is either torsion or torsion-free. If torsion-free, it is isomorphic as a module to the domain’s quotient field. If torsion, it is Artinian, so Weakley was led to the tools of study of Artinian modules developed by Matlis [Ml, M23 and Vamos [V]. These tools include, for a quasilocal ring (R, M), the injective envelope E,(R/M) of the residue field R/M. The purpose of the present paper is to combine results of [Wl] and [GH2] to characterize the form of a.f.g. modules and the rings which admit such modules, and to describe the a.f.g. submodules of E,(R/M). In Section 2, we refine a result of [ Wl ] to conclude that, if R is a domain and (F’, P) is a discrete rank one valuation domain between R and its quotient field K, then K/V is an a.f.g. -
Advanced Commutative Algebra Lecture Notes
Advanced Commutative Algebra Lecture Notes Lecturer: Paul Smith; written and edited by Josh Swanson September 30, 2015 Abstract The following notes were taking during a course on Advanced Commutative Algebra at the University of Washington in Fall 2014. Please send any corrections to [email protected]. Thanks! Contents September 24th, 2014: Tensor Product Definition, Universal Property................2 September 26th, 2014: Tensor-Hom Adjunction, Right Exactness of Tensor Products, Flatness..4 September 29th, 2014: Tensors and Quotients, Support of a Module.................6 October 1st, 2014: Prime Avoidance Lemma, Associated Primes...................9 October 3rd, 2014: Associated Primes Continued, Minimal Primes, Zero-Divisors, Regular Elements 10 October 6th, 2014: Duality Theories, Injective Envelopes, and Indecomposable Injectives..... 12 October 8th, 2014: Local Cohomology Defined............................. 14 October 10th, 2014: Examples of Injectives and Injective Hulls.................... 16 October 13th, 2014: Local Cohomology and Depth through Ext; Matlis Duality........... 18 October 15th, 2014: Matlis Duality Continued............................. 20 October 17th, 2014: Local Cohomology and Injective Hulls Continued................ 22 October 20th, 2014: Auslander-Buchsbaum Formula; Nakayama's Lemma.............. 24 October 22nd, 2014: Dimension Shifting, Rees' Theorem, Depth and Regular Sequences...... 26 October 27th, 2014: Krull Dimension of Modules............................ 28 October 29th, 2014: Local Cohomology over -
On the Noetherian Dimension of Artinian Modules*
Vietnam Journal o! Mathematics3O:2 (2002) 121-130 V [,e r[rma nm _J[o,rurrrrm a l[ olP Mt,A.]f lHI]EMt,A.]f ]IC S O NCST2OO2 On the Noetherian Dimension of Artinian Modules* Nguyen T\r Cuong and Le Thanh Nhan Institute of Mathemati,cs.P. O. Bor 631, Bo Ho, Hanoi, V'ietnam ReceivedJuly L4, 2000 Abstract. Somenew resultsof Noetheriandimension of Artinian modulesare given and severalproperties of Noetherian dimension of local cohomologymodules of finitely generatedmodules are shown. After giving an exampleof an Artinian module ,4 which has Krull dimension strictly larger than its Noetherian dimension, we present some sufficient conditions on Artinian modules .A such that the both notions of dimension of ,4 are the same. 1".Introduction The concept of Krull dimension for Artinian modules was introduced by Roberts lI2]. Kirby [7] changed the terminology of Roberts and referred to Noethe- rian dimension (N-dim) to avoid any confusion with Krull dimension defined for finitely generated modules. In this note we use the terminology of Kirby [7]. Many properties of Noetherian dimension of Artinian modules have been given in [3,7, L2,l7l. The purpose of this note is to study Noetherian dimension of Artinian modules. Expecially, we prove some results on Noetherian dimension of local cohomology modules when these modules are Artinian. This paper is divided into 4 sections. In Sec.2 we will give some preliminary results on Noetherian dimension of Artinian modules. Let R be a commuta- tive Noetherian ring, A an Artinian rR-module and M a finitely generated R- module. -
(AS) 2 Lecture 2. Sheaves: a Potpourri of Algebra, Analysis and Topology (UW) 11 Lecture 3
Contents Lecture 1. Basic notions (AS) 2 Lecture 2. Sheaves: a potpourri of algebra, analysis and topology (UW) 11 Lecture 3. Resolutions and derived functors (GL) 25 Lecture 4. Direct Limits (UW) 32 Lecture 5. Dimension theory, Gr¨obner bases (AL) 49 Lecture6. Complexesfromasequenceofringelements(GL) 57 Lecture7. Localcohomology-thebasics(SI) 63 Lecture 8. Hilbert Syzygy Theorem and Auslander-Buchsbaum Theorem (GL) 71 Lecture 9. Depth and cohomological dimension (SI) 77 Lecture 10. Cohen-Macaulay rings (AS) 84 Lecture 11. Gorenstein Rings (CM) 93 Lecture12. Connectionswithsheafcohomology(GL) 103 Lecture 13. Graded modules and sheaves on the projective space(AL) 114 Lecture 14. The Hartshorne-Lichtenbaum Vanishing Theorem (CM) 119 Lecture15. Connectednessofalgebraicvarieties(SI) 122 Lecture 16. Polyhedral applications (EM) 125 Lecture 17. Computational D-module theory (AL) 134 Lecture 18. Local duality revisited, and global duality (SI) 139 Lecture 19. De Rhamcohomologyand localcohomology(UW) 148 Lecture20. Localcohomologyoversemigrouprings(EM) 164 Lecture 21. The Frobenius endomorphism (CM) 175 Lecture 22. Some curious examples (AS) 183 Lecture 23. Computing localizations and local cohomology using D-modules (AL) 191 Lecture 24. Holonomic ranks in families of hypergeometric systems 197 Appendix A. Injective Modules and Matlis Duality 205 Index 215 References 221 1 2 Lecture 1. Basic notions (AS) Definition 1.1. Let R = K[x1,...,xn] be a polynomial ring in n variables over a field K, and consider polynomials f ,...,f R. Their zero set 1 m ∈ V = (α ,...,α ) Kn f (α ,...,α )=0,...,f (α ,...,α )=0 { 1 n ∈ | 1 1 n m 1 n } is an algebraic set in Kn. These are our basic objects of study, and include many familiar examples such as those listed below. -
Commutative Algebra
Version of September 3, 2012 A Term of Commutative Algebra By Allen ALTMAN and Steven KLEIMAN Contents Preface . iii 1. Rings and Ideals ................... 1 2. Prime Ideals .................... 6 3. Radicals ...................... 10 4. Modules ...................... 14 5. Exact Sequences ................... 20 6. Direct Limits .................... 26 7. Filtered Direct Limits . 33 8. Tensor Products ................... 37 9. Flatness ...................... 43 10. Cayley{Hamilton Theorem . 49 11. Localization of Rings . 55 12. Localization of Modules . 61 13. Support ..................... 66 14. Krull{Cohen{Seidenberg Theory . 71 15. Noether Normalization . 75 Appendix: Jacobson Rings . 80 16. Chain Conditions . 82 17. Associated Primes . 87 18. Primary Decomposition . 91 19. Length ...................... 97 20. Hilbert Functions . 101 Appendix: Homogeneity . 107 21. Dimension . 109 22. Completion . 115 23. Discrete Valuation Rings . 122 24. Dedekind Domains . 127 25. Fractional Ideals . 131 26. Arbitrary Valuation Rings . 136 Solutions . 141 1. Rings and Ideals . 141 2. Prime Ideals . 143 3. Radicals . 145 4. Modules . 148 5. Exact Sequences . 149 i 6. Direct Limits . 153 7. Filtered direct limits . 156 8. Tensor Products . 158 9. Flatness . 159 10. Cayley{Hamilton Theorem . 161 11. Localization of Rings . 164 12. Localization of Modules . 167 13. Support . 168 14. Krull{Cohen{Seidenberg Theory . 171 15. Noether Normalization . 174 16. Chain Conditions . 177 17. Associated Primes . 179 18. Primary Decomposition . 180 19. Length . 183 20. Hilbert Functions . 185 21. Dimension . 188 22. Completion . 190 23. Discrete Valuation Rings . 193 24. Dedekind Domains . 197 25. Fractional Ideals . 199 26. Arbitrary Valuation Rings . 200 References . 202 Index . 203 ii Preface There is no shortage of books on Commutative Algebra, but the present book is different.