Implications for Channel Expression During B Cell +K

Total Page:16

File Type:pdf, Size:1020Kb

Implications for Channel Expression During B Cell +K K+ Channel Expression during B Cell Differentiation: Implications for Immunomodulation and Autoimmunity This information is current as Heike Wulff, Hans-Günther Knaus, Michael Pennington and of September 24, 2021. K. George Chandy J Immunol 2004; 173:776-786; ; doi: 10.4049/jimmunol.173.2.776 http://www.jimmunol.org/content/173/2/776 Downloaded from References This article cites 85 articles, 43 of which you can access for free at: http://www.jimmunol.org/content/173/2/776.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology :K؉ Channel Expression during B Cell Differentiation Implications for Immunomodulation and Autoimmunity1 Heike Wulff,2* Hans-Gu¨nther Knaus,† Michael Pennington,‡ and K. George Chandy§ Using whole-cell patch-clamp, fluorescence microscopy and flow cytometry, we demonstrate a switch in potassium channel ex- pression during differentiation of human B cells from naive to memory cells. Naive and IgD؉CD27؉ memory B cells express small -numbers of the voltage-gated Kv1.3 and the Ca2؉-activated intermediate-conductance IKCa1 channel when quiescent, and in crease IKCa1 expression 45-fold upon activation with no change in Kv1.3 levels. In contrast, quiescent class-switched memory B cells express high levels of Kv1.3 (ϳ2000 channels/cell) and maintain their Kv1.3high expression after activation. Consistent with their channel phenotypes, proliferation of naive and IgD؉CD27؉ memory B cells is suppressed by the specific IKCa1 inhibitor TRAM-34 but not by the potent Kv1.3 blocker Stichodactyla helianthus toxin, whereas the proliferation of class-switched memory B cells is suppressed by Stichodactyla helianthus toxin but not TRAM-34. These changes parallel those reported for T cells. Downloaded from Therefore, specific Kv1.3 and IKCa1 inhibitors may have use in therapeutic manipulation of selective lymphocyte subsets in immunological disorders. The Journal of Immunology, 2004, 173: 776–786. wo Kϩ channels in T lymphocytes, the voltage-gated cytosolic Ca2ϩ levels in the time frame required for optimal acti- Kv1.3 channel (also known as KCNA3 (HUGO nomen- vation. Coordinated activity of Ca2ϩ and protein kinase C-depen- clature)) and the Ca2ϩ-activated IKCa1 channel (also dent signaling pathways leads to new gene expression culminating T http://www.jimmunol.org/ known as KCNN4 (HUGO nomenclature); KCa3.1 (International in cell proliferation. The relative contributions of Kv1.3 and Union of Pharmacology nomenclature) (1)), regulate Ca2ϩ signal- IKCa1 in regulating this process depend on their expression levels ing by controlling the membrane potential of lymphocytes (2–7). in the different lymphoid subsets. During activation, inositol 1,4,5-triphosphate generation induces Kv1.3 and IKCa1 channels are expressed in T lymphocytes in a ϩ ϩ the release of Ca2 from internal stores. Depletion of these Ca2 distinct pattern that depends upon the state of activation and dif- 3 stores causes calcium-release-activated calcium (CRAC) chan- ferentiation. In the quiescent state, naive, central memory (TCM) 2ϩ ϳ ϳ nels to open in the membrane, and the resulting Ca influx sus- and effector memory (TEM) T cells express 250 Kv1.3 and 20 ϩ ϩ tains elevated levels of cytosolic Ca2 (8–11). Ca2 influx IKCa1 channels per cell. The potent Kv1.3 blocker Stichodactyla through CRAC channels is reduced at depolarized potentials, and helianthus toxin (ShK) suppresses the proliferation of these cells, by guest on September 24, 2021 ϩ consequently, membrane depolarization attenuates the Ca2 signal whereas the selective IKCa1 blocker TRAM-34 is ineffective (14). ϩ (10–13). The driving force for Ca2 entry is restored by a coun- Activation induces differential expression of Kϩ channels in the ϩ terbalancing efflux of K ions and membrane hyperpolarization three T cell subsets, leading to an altered channel phenotype and brought about by the opening of Kv1.3 channels in response to consequently to altered responsiveness to Kv1.3 and IKCa1 block- ϳ membrane depolarization, and of IKCa1 channels as a conse- ers. Naive and TCM cells up-regulate IKCa1 to 500/cell upon ϩ quence of elevated cytosolic Ca2 . The tightly coupled interplay activation via transcriptional mechanisms, and as a consequence, ϩ between the K channels and CRAC channels maintains enhanced these subsets escape further Kv1.3 inhibition and become sensitive to IKCa1 blockade (14, 15). TEM cells, in contrast, up-regulate Kv1.3, and their proliferation is sensitive to Kv1.3 blockers (15). *Department of Medical Pharmacology and Toxicology, University of California, Davis, CA 95616; †Institute for Biochemical Pharmacology, Medical University Inns- The discovery that the majority of myelin-reactive T cells in pa- bruck, Innsbruck, Austria; ‡Bachem Bioscience, Inc., King of Prussia, PA 19406; and tients with multiple sclerosis (MS), an autoimmune disease of the §Department of Physiology and Biophysics, University of California, Irvine, CA CNS, are Kv1.3high T cells that can be suppressed by Kv1.3 92697 EM blockers (15), has raised interest in the therapeutic potential of Received for publication February 6, 2004. Accepted for publication May 10, 2004. Kv1.3 blockers in autoimmune disorders. This idea has been suc- The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance cessfully tested in experimental autoimmune encephalomyelitis, an with 18 U.S.C. Section 1734 solely to indicate this fact. animal model for the disease (16). 1 This work was supported by grants from the National Multiple Sclerosis Society (to An increasing body of evidence emphasizes the importance of K.G.C.), the Juvenile Diabetes Research Foundation (to K.G.C.), National Institutes memory B cells in the pathogenesis of autoimmune disorders (17– of Health (MH59222; to K.G.C.), Rockefeller Brothers Fund (to K.G.C.), Fonds zur Fo¨rderung der Wissenschaftlichen Forschung (Fonds zur Fo¨rderung der Wissen- 19). As in the T lineage, ion channels may play functionally impor- schaftlichen Forschung P14954-PHA; to H.-G.K.), and the Cancer Research Coordi- tant roles in B cells and may serve as therapeutic targets for autoim- nating Committee of the University of California (to H.W.). mune disorders. Four human B cell subsets can be distinguished by 2 Address correspondence and reprint requests to Dr. Heike Wulff, Department of the expression of IgD and CD27, a member of the TNFR family Medical Pharmacology and Toxicology, School of Medicine, University of Califor- (20–22). Mature naive B cells express IgD but not CD27. Acquisition nia, Davis, One Shields Avenue, Tupper Hall Room 1311, Davis, CA 95616. E-mail ϩ ϩ address: hwulff@ucdavis.edu of CD27 following somatic hypermutation results in a CD27 IgD 3 Abbreviations used in this paper: CRAC, calcium-release-activated calcium; TCM, memory B cell subset, and then during Ig class switching, replace- ϩ Ϫ central memory T; TEM, effector memory T; ShK, Stichodactyla helianthus toxin; ment of surface IgD with other Ig isotypes yields CD27 IgD mem- 2ϩ ϩ MS, multiple sclerosis; PB, peripheral blood; KCa,Ca -activated K current; KV, voltage-gated Kϩ channel; GC, germinal center; MZ, marginal zone; DTH, delayed- ory B cells. These class-switched memory B cells are a major source type hypersensitivity. of pathogenic IgG autoantibodies that contribute to tissue damage in Copyright © 2004 by The American Association of Immunologists, Inc. 0022-1767/04/$02.00 The Journal of Immunology 777 MS (17, 19), type-1 diabetes (23), and rheumatoid arthritis (24). A T271) and PE-conjugated mouse anti-human IgD mAb (IA6-2; both BD minor population of IgDϪCD27Ϫ B cells exists in most donors, but Pharmingen). Cells were washed, put on poly-L-lysine-coated coverslips, their functional role has yet to be defined (21). kept in the dark at 4°C for 10–30 min to attach, visualized by fluorescence microscopy, and patch-clamped in the whole-cell configuration. For ex- Mature naive B cells were reported over a decade ago to express periments on CD27ϩIgAϩ and CD27ϩIgGϩ class-switched B cells, we ϩ KV and KCa currents with properties resembling those of Kv1.3 stained CD19 cells with PE-conjugated mouse anti-human CD27 mAb ϩ Ј and IKCa1. Studies with nonspecificK channel inhibitors sug- (M-T271; BD Pharmingen) and FITC-conjugated F(ab )2 of rabbit anti- gested a functional role for these channels in B cell mitogenesis human IgA or anti-human IgG (both DakoCytomation, Carpinteria, CA). ϩ Kv1.3 currents were elicited by repeated 200-ms pulses from a holding (25–29). Because the changes in K channel phenotype are func- potential of Ϫ80 to 40 mV applied every 30 s unless otherwise stated. tionally important in the T cell lineage, we were interested in de- Kv1.3 currents were recorded in normal Ringer solution with a Ca2ϩ-free ϩ termining whether a parallel switch in K channel expression ac- pipette solution containing 145 mM KF, 10 mM HEPES, 10 mM EGTA, companies differentiation from naive to memory cells in the B cell and 2 mM MgCl2 (pH 7.2; 300 mOsm).
Recommended publications
  • Characterization of Functional Effects of Two New Active Fractions
    Basic and Clinical January, February 2019, Volume 10, Number 1 Research Paper: Characterization of Functional Effects of Two New Active Fractions Isolated From Scorpion Venom on Neuronal Ca2+ Spikes: A Possible Action on Ca2+- Dependent Dependent K+ Channels Hanieh Tamadon1, Zahra Ghasemi2 , Fatemeh Ghasemi1, Narges Hosseinmardi1, Hossein Vatanpour3, Mahyar Janahmadi1* 1. Department of Physiology, Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 2. Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran. 3. Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Use your device to scan and read the article online Citation Tamadon, H., Ghasemi, Z., Ghasemi, F., Hosseinmardi, N., Vatanpour, H., & Janahmadi, M. (2019). Characterization of Functional Effects of Two New Active Fractions Isolated From Scorpion Venom on Neuronal Ca2+ Spikes: A Possible Action on Ca2+-Dependent Dependent K+ Channels. Basic and Clinical Neuroscience, 10(1), 49-58. http://dx.doi.org/10.32598/bcn.9.10.350 : http://dx.doi.org/10.32598/bcn.9.10.352 A B S T R A C T Introduction: It is a long time that natural toxin research is conducted to unlock the medical potential of toxins. Although venoms-toxins cause pathophysiological conditions, they may Article info: be effective to treat several diseases. Since toxins including scorpion toxins target voltage- Received: 26 Oct 2017 gated ion channels, they may have profound effects on excitable cells. Therefore, elucidating First Revision:10 Nov 2017 the cellular and electrophysiological impacts of toxins, particularly scorpion toxins would be Accepted: 30 Apr 2018 helpful in future drug development opportunities.
    [Show full text]
  • Topology of the Pore-Region of a K + Channel Revealed by the NMR-Derived Structures of Scorpion Toxins
    Neuron, Vol. 15, 1169-1181, November, 1995, Copyright © 1995 by Cell Press Topology of the Pore-Region of a K + Channel Revealed by the NMR-Derived Structures of Scorpion Toxins Jayashree Aiyar,* Jane M. Withka,~ James P. Rizzi,~ cal for binding to the channel pore (Goldstein et at., 1994). David H. Singteton,~ Gtenn C. Andrews,$ Wen Lin,t Subsequent studies using a complementary mutagenesis James Boyd,t Douglas C. Hanson,t Mariella Simon,* strategy, coupled with quantitative methods such as elec- Brent Dethlefs,* Chao-lin Lee,* James E, Hall,* trostatic compliance (Stocker and Miller, 1994) and ther- George A. Gutman,t K. George Chandy* modynamic mutant cycle analysis (Hidalgo and MacKin- * Department of Physiology and Biophysics non, 1995), revealed single or dual pairs of interacting University of California toxin-channel residues. Irvine, California 92717 A detailed topological map of the P-region could be ob- tDepartment of Microbiology and Molecular Genetics tained by a process of triangulation if multiple toxin-chan- University of California nel pairs were defined. To achieve this goal, we studied Irvine, California 92717 a mammalian channel, Kvl.3, which is blocked at high- tPfizer Central Research affinity by four related scorpion toxins. This channel regu- Croton, Connecticut 06340 lates the membrane potential in T-lymphocytes (Lewis and Cahalan, 1995), and Kvl.3 blockers, including scorpion toxins, suppress T-cell activation (DeCoursey et al., 1984; Summary Price et al., 1989; Leonard et al., 1992; Lin et al., 1993). To use these toxins as molecular calipers, we solved the The architecture of the pore-region of a voltage-gated structures of kaliotoxin (KTX) and margatoxin (MgTX), cre- K* channel, Kv1.3, was probed using four high affinity ated a homology model of noxiustoxin (NTX), and used scorpion toxins as molecular calipers.
    [Show full text]
  • “Kv1.3 Inhibitors in the Treatment of Glioma and Melanoma”
    “Kv1.3 inhibitors in the treatment of glioma and melanoma” Inaugural-Dissertation Zur Erlangung des Doktorgrades Dr. rer. Nat. der Fakultät für Biologie an der Universität Duisburg-Essen Vorgelegt von Elisa Venturini Aus Vicenza, Italy August 2015 Die der vorliegenden Arbeit zugrunde liegenden Experimente wurden am Institut für Molekularbiologie am Universitätsklinikum Essen durchgeführt. 1. Gutachter: Prof. Dr. Erich Gulbins 2. Gutachter: Prof. Dr. Shirley Knauer Vorsitzender des Prüfungsausschusses: Prof. Dr. Herbert de Groot Tag der mündlichen Prüfung: 25.11.2015 _______________________________ I E se avessi il dono della profezia e conoscessi tutti i misteri e tutta la scienza, e possedessi la pienezza della fede così da trasportare le montagne, ma non avessi l'amore, non sarei nulla. (Corinzi 13:2) II INDEX LIST OF FIGURES ABBREVIATIONS ................................................................................................................... I 1. INTRODUCTION .......................................................................................................... 1 1.1 Apoptosis ..................................................................................................................... 1 1.1.1 The extrinsic or ‘death receptor-mediated’ pathway ............................................ 1 1.1.2 The intrinsic or ‘mitochondrial’ pathway ............................................................. 2 1.2 Kv1.3 ...........................................................................................................................
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0018530 A1 Miao Et Al
    US 201500 18530A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0018530 A1 Miao et al. (43) Pub. Date: Jan. 15, 2015 (54) NOVEL PRODRUG CONTAINING Related U.S. Application Data MOLECULE COMPOSITIONS AND THEIR (60) Provisional application No. 61/605,072, filed on Feb. USES 29, 2012, provisional application No. 61/656,981, (71) Applicant: Ambrx, Inc., La Jolla, CA (US) filed on Jun. 7, 2012. (72) Inventors: Zhenwei Miao, San Diego, CA (US); Publication Classification Ho Sung Cho, San Diego, CA (US); Bruce E. Kimmel, Leesburg, VA (US) (51) Int. Cl. A647/48 (2006.01) (73) Assignee: AMBRX, INC., La Jolla, CA (US) C07K 6/28 (2006.01) (52) U.S. Cl. (21) Appl. No.: 14/381,196 CPC ....... A6IK 47/48715 (2013.01); C07K 16/2896 (2013.01); A61K 47/48215 (2013.01); A61 K (22) PCT Fled: Feb. 28, 2013 47/48284 (2013.01); A61K 47/48384 (2013.01) USPC ....................................................... 530/387.3 (86) PCT NO.: PCT/US2O13/028332 S371 (c)(1), (57) ABSTRACT (2) Date: Aug. 26, 2014 Novel prodrug compositions and uses thereof are provided. Patent Application Publication Jan. 15, 2015 Sheet 1 of 21 US 201S/0018530 A1 FIGURE 1. Antigen recognition site Hinge Peptide Patent Application Publication Jan. 15, 2015 Sheet 2 of 21 US 2015/0018530 A1 FIGURE 2 M C7 leader VH(108) (GGGGS)4 VL(108) Y96xs His A. ( +PEG ) His 144 Tyr190 Lys248 Ser136am (+PEG) Leu156 B. 6X His VH(108) (GGGGS)4 VL(108) H, is Leu156 g3 ST lear VL (108) Ck(hu) VH(108) CH1(hu) 6X His - SD L I (AA SP re A Lys 142 am Thr204 am Lys219 am Patent Application Publication Jan.
    [Show full text]
  • UK-78282, a Novel Piperidine Compound That Potently
    British Journal of Pharmacology (1999) 126, 1707 ± 1716 ã 1999 Stockton Press All rights reserved 0007 ± 1188/99 $12.00 http://www.stockton-press.co.uk/bjp UK-78,282, a novel piperidine compound that potently blocks the Kv1.3 voltage-gated potassium channel and inhibits human T cell activation 1Douglas C. Hanson, 2Angela Nguyen, 1Robert J. Mather, 2Heiko Rauer, 3Kevin Koch, 3Laurence E. Burgess 3James P. Rizzi, 1Carol B. Donovan, 1Matthew J. Bruns, 1Paul C. Canni 1Ann C. Cunningham, 1Kimberly A. Verdries, 1Edward Mena, 1John C. Kath, 4George A. Gutman, 2Michael D. Cahalan, 5Stephan Grissmer & *,2,4K. George Chandy 1P®zer Inc., Central Research Division, Groton, Connecticut 06340, U.S.A; 2Department of Physiology and Biophysics, University of California, Irvine, California 92697, U.S.A.; 3Amgen Inc., 3200 Walnut Street, Boulder, Colorado 80301, U.S.A.; 4Department of Microbiology and Molecular Genetics, University of California Irvine, California, 92697, U.S.A; 5Department of Applied Physiology, University of Ulm, D-89081, Ulm, Germany 1 UK-78,282, a novel piperidine blocker of the T lymphocyte voltage-gated K+ channel, Kv1.3, was discovered by screening a large compound ®le using a high-throughput 86Rb eux assay. This compound blocks Kv1.3 with a IC50 of *200 nM and 1 : 1 stoichiometry. A closely related compound, CP-190,325, containing a benzyl moiety in place of the benzhydryl in UK-78,282, is signi®cantly less potent. 2 Three lines of evidence indicate that UK-78,282 inhibits Kv1.3 in a use-dependent manner by preferentially blocking and binding to the C-type inactivated state of the channel.
    [Show full text]
  • Masarykova Univerzita V Brně
    MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA Katedra fyziky, chemie a odborného vzdělávání Biologické jedy v ţivočišné říši Bakalářská práce Brno 2015 Vedoucí práce: Autor práce: Mgr. Petr Ptáček, Ph.D. Markéta Seborská Prohlášení Prohlašuji, že jsem předloženou bakalářskou práci vypracovala samostatně, s využitím pouze citovaných literárních pramenů, dalších informací a zdrojů v souladu s Disciplinárním řádem pro studenty Pedagogické fakulty Masarykovy univerzity a se zákonem č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů. …………………………………. V Brně dne 31. března 2015 Markéta Seborská Poděkování Na tomto místě bych ráda poděkovala panu Mgr. Petru Ptáčkovi Ph.D., vedoucímu mé bakalářské práce, za trpělivé vedení a odbornou pomoc mé bakalářské práce. Anotace Bakalářská práce se zaměřuje na toxiny produkované ţivočichy. Věnuje se popisu mechanického účinku toxinů, příznaků intoxikace a terapie otravy. V práci jsou zahrnuty poznatky z toxikologie jako vědního oboru. Jedna kapitola je věnována i historii jedů. Tato práce bude výchozím materiálem pro diplomovou práci. Annotation The bachelor thesis focuses on the toxins produced by animals. It describes the mechanical effect of venoms, symptoms of intoxication and poisoning therapy. This bachelor thesis also includes knowledge of toxicology as a discipline. One chapter is devoted to the history of toxins. This work will be the starting material for a diploma thesis. Klíčová slova Toxikologie,
    [Show full text]
  • Selective Blockade of T Lymphocyte K Channels Ameliorates Experimental Autoimmune Encephalomyelitis, a Model for Multiple Sclero
    Selective blockade of T lymphocyte K؉ channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis Christine Beeton*†, Heike Wulff†‡, Jocelyne Barbaria*, Olivier Clot-Faybesse*, Michael Pennington§, Dominique Bernard*, Michael D. Cahalan‡¶, K. George Chandy‡, and Evelyne Be´ raud* *Laboratoire d’Immunologie, Faculte´deMe´ decine, 13385 Marseille, France; ‡Department of Physiology and Biophysics, University of California, Irvine, CA 92697; and §Bachem Bioscience, King of Prussia, PA 19406 Communicated by Clay M. Armstrong, University of Pennsylvania School of Medicine, Philadelphia, PA, September 18, 2001 (received for review June 6, 2001) Adoptive transfer experimental autoimmune encephalomyelitis Kv1.3 is found in the hematopoietic lineage, including T and B (AT-EAE), a disease resembling multiple sclerosis, is induced in rats lymphocytes, platelets and megakaryocytes, and microglia, by myelin basic protein (MBP)-activated CD4؉ T lymphocytes. By whereas the distribution of IKCa1 is broader, including a variety patch-clamp analysis, encephalitogenic rat T cells stimulated re- of peripheral tissues and cell types (9, 12, 13). Kv1.3 is the peatedly in vitro expressed a unique channel phenotype (‘‘chron- primary regulator of Ca2ϩ signaling in human quiescent T cells. ically activated’’) with large numbers of Kv1.3 voltage-gated chan- Selective blockade of Kv1.3, but not IKCa1, suppresses mitogen- ؉ ؉ nels (Ϸ1500 per cell) and small numbers of IKCa1 Ca2 -activated K stimulated cytokine production and proliferation of these cells in channels (Ϸ50–120 per cell). In contrast, resting T cells displayed vitro (14–17) and the delayed type hypersensitivity response in 0–10 Kv1.3 and 10–20 IKCa1 channels per cell (‘‘quiescent’’ phe- vivo (6, 18, 19).
    [Show full text]
  • Potassium Channels: from Scorpion Venoms to High-Resolution Structure
    Toxicon 39 (2001) 739±748 Review www.elsevier.com/locate/toxicon Potassium channels: from scorpion venoms to high-resolution structure M.L. Garciaa,*, Ying-Duo Gaob, O.B. McManusa, G.J. Kaczorowskia aDepartment of Membrane Biochemistry and Biophysics, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065, USA bDepartment of Molecular Systems, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065, USA Received 8 June 2000; accepted 5 July 2000 1. Introduction the efforts of the many research laboratories that have focused on the study of K1 channels: (1) the extensive clon- In 1998, the ®eld of ion channel research entered a new ing and functional expression of these proteins; and (2) the era when the ®rst, high-resolution crystal structure of one of existence of a large number of high af®nity peptidyl inhibi- these proteins was solved (Doyle et al., 1998). For the ®rst tors of these proteins, isolated from different scorpion and time, it was possible to understand, at a molecular level, the spider venoms (Tytgat et al., 1999). In fact, the use of pep- mechanisms that control ion selectivity and conduction in tidyl inhibitors derived from scorpion venoms provided the potassium channels. The protein whose structure had been ®rst indirect information concerning K1 channel structure. determined, the KcsA K1 channel, is a two transmembrane For instance, both identi®cation of the pore region of the spanning domain, potassium selective channel from Strepto- channel (MacKinnon and Miller, 1989b), and determination myces lividans that gates in response to H1 when reconsti- of the tetrameric composition of K1 channels (MacKinnon, tuted in arti®cial lipid bilayers (Cuello et al., 1998; 1991) were made possible with the use of scorpion toxins.
    [Show full text]
  • Toxins Targeting the KV1.3 Channel: Potential Immunomodulators for Autoimmune Diseases
    Toxins 2015, 7, 1749-1764; doi:10.3390/toxins7051749 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Toxins Targeting the KV1.3 Channel: Potential Immunomodulators for Autoimmune Diseases Yipeng Zhao 1, Jie Huang 1, Xiaolu Yuan 1, Biwen Peng 2, Wanhong Liu 3, Song Han 1,* and Xiaohua He 1,* 1 Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China; E-Mails: zhaoyipeng@whu.edu.cn (Y.Z.); jiehuang@whu.edu.cn (J.H.); yuanxiaolu@whu.edu.cn (X.Y.) 2 Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China; E-Mail: pengbiwen@whu.edu.cn 3 Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China; E-Mail: liuwanhong@whu.edu.cn * Authors to whom correspondence should be addressed; E-Mails: songhan@whu.edu.cn (S.H.); hexiaohua@whu.edu.cn (X.H.); Tel./Fax: +86-27-6875-9991. Academic Editor: Azzam A. Maghazachi Received: 10 April 2015 / Accepted: 5 May 2015 / Published: 19 May 2015 Abstract: Autoimmune diseases are usually accompanied by tissue injury caused by autoantigen-specific T-cells. KV1.3 channels participate in modulating calcium signaling to induce T-cell proliferation, immune activation and cytokine production. Effector memory T (TEM)-cells, which play major roles in many autoimmune diseases, are controlled by blocking KV1.3 channels on the membrane. Toxins derived from animal venoms have been found to selectively target a variety of ion channels, including KV1.3. By blocking the KV1.3 channel, these toxins are able to suppress the activation and proliferation of TEM cells and may improve TEM cell-mediated autoimmune diseases, such as multiple sclerosis and type I diabetes mellitus.
    [Show full text]
  • Alkoxypsoralens, Novel Nonpeptide Blockers of Shaker-Type K Channels
    4542 J. Med. Chem. 1998, 41, 4542-4549 Alkoxypsoralens, Novel Nonpeptide Blockers of Shaker-Type K+ Channels: Synthesis and Photoreactivity Heike Wulff,* Heiko Rauer,† Tim Du¨ ring,‡ Christine Hanselmann,† Katharina Ruff,† Anja Wrisch,† Stephan Grissmer,† and Wolfram Ha¨nsel* Pharmaceutical Institute and Physiological Institute, University of Kiel, 24118 Kiel, Germany, and Department of Applied Physiology, University of Ulm, 89081 Ulm, Germany Received May 5, 1998 A series of psoralens and structurally related 5,7-disubstituted coumarins was synthesized and investigated for their K+ channel blocking activity as well as for their phototoxicity to Artemia salina and their ability to generate singlet oxygen and to photomodify DNA. After screening the compounds on Ranvier nodes of the toad Xenopus laevis, the affinities of the most promising compounds, which proved to be psoralens bearing alkoxy substituents in the 5-position or alkoxymethyl substituents in the neighboring 4- or 4′-position, to a number of homomeric K+ channels were characterized. All compounds exhibited the highest affinity to Kv1.2. 5,8-Diethoxypsoralen (10d) was found to be an equally potent inhibitor of Kv1.2 and Kv1.3, while lacking the phototoxicity normally inherent in psoralens. The reported compounds represent a novel series of nonpeptide blockers of Shaker-type K+ channels that could be further developed into selective inhibitors of Kv1.2 or Kv1.3. Introduction ings.14,15 Recently MgTX has been shown to suppress Voltage-gated K+ channels play a cardinal role in the delayed-type hypersensitivity and allogenic-antibody 16 regulation of physiological functions in excitable as well responses in miniswine, providing in vivo evidence as nonexcitable cells.1,2 In demyelinating diseases such that Kv1.3 is a novel pharmacological target for immu- 17,18 as multiple sclerosis (MS), destruction of the myelin nosuppressive therapy.
    [Show full text]
  • Secretin-Modulated Potassium Channel Trafficking As a Novel Mechanism for Regulating Cerebellar Synapses Michael Williams University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2013 Secretin-Modulated Potassium Channel Trafficking as a Novel Mechanism for Regulating Cerebellar Synapses Michael Williams University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Recommended Citation Williams, Michael, "Secretin-Modulated Potassium Channel Trafficking as a Novel Mechanism for Regulating Cerebellar Synapses " (2013). Graduate College Dissertations and Theses. 241. https://scholarworks.uvm.edu/graddis/241 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact donna.omalley@uvm.edu. SECRETIN-MODULATED POTASSIUM CHANNEL TRAFFICKING AS A NOVEL MECHANISM FOR REGULATING CEREBELLAR SYNAPSES A Dissertation Presented by Michael R. Williams to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Neuroscience October, 2012 Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, specializing in Neuroscience. Dissertation Examination Committee: ____________________________________ Advisor Anthony Morielli, Ph.D. ____________________________________ Alan Howe, Ph.D ____________________________________ Victor May, Ph.D ____________________________________ Chairperson John Green, Ph. D ____________________________________ Dean, Graduate College Domenico Grasso, Ph.D Date: August 24, 2012 ABSTRACT The voltage-gated potassium channel Kv1.2 is a critical modulator of neuronal physiology, including dendritic excitability, action potential propagation, and neurotransmitter release. However, mechanisms by which Kv1.2 may be regulated in the brain are poorly understood.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.248,185 B2 Rubin Et Al
    USOO9248185B2 (12) United States Patent (10) Patent No.: US 9.248,185 B2 Rubin et al. (45) Date of Patent: Feb. 2, 2016 (54) METHODS OF INCREASING SATELLITE (2013.01); A61 K3I/485 (2013.01); A61 K CELL PROLIFERATION 3 I/553 (2013.01); A61 K3I/58 (2013.01); A61K3I/7076 (2013.01); G0IN33/5044 (75) Inventors: Lee L. Rubin, Wellesley, MA (US); (2013.01); C07D498/22 (2013.01) Amanda Gee, Alexandria, VA (US); (58) Field of Classification Search Amy J. Wagers, Cambridge, MA (US) None (73) Assignee: President and Fellows of Harvard See application file for complete search history. College, Cambridge, MA (US) (56) References Cited (*) Notice: Subject to any disclaimer, the term of this U.S. PATENT DOCUMENTS patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. 2003/018151.0 A1* 9, 2003 Baker et al. ................... 514,432 2005/0281788 A1 12/2005 de Bari et al. (21) Appl. No.: 14/126,716 2010.0048534 A1 2/2010 Dziki et al. .............. 514, 21108 (22) PCT Filed: Jun. 18, 2012 FOREIGN PATENT DOCUMENTS (86). PCT No.: PCT/US2O12/042964 RU 2368398 9, 2009 S371 (c)(1), OTHER PUBLICATIONS (2), (4) Date: Jun. 13, 2014 Shea et al (2010. Cell Stem Cell. 6: 117-129).* Strocket al., 2003. Cancer Research. 63:5559-5563.* (87) PCT Pub. No.: WO2012/174537 Mulligan et al., 2004. Nature Reviews: Cancer, 14: 173-186.* PCT Pub. Date: Dec. 20, 2012 Carlson, et al. “Relative roles of TGF-B1 and Wnt in the systemic regulation and aging of Satellite cell responses'.
    [Show full text]