Surface Gravity As a Diagnostic of Stellar Youth
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Astronomy from Darkness to Blazing Glory
Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice: -
Stellar Magnetic Activity – Star-Planet Interactions
EPJ Web of Conferences 101, 005 02 (2015) DOI: 10.1051/epjconf/2015101005 02 C Owned by the authors, published by EDP Sciences, 2015 Stellar magnetic activity – Star-Planet Interactions Poppenhaeger, K.1,2,a 1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambrigde, MA 02138, USA 2 NASA Sagan Fellow Abstract. Stellar magnetic activity is an important factor in the formation and evolution of exoplanets. Magnetic phenomena like stellar flares, coronal mass ejections, and high- energy emission affect the exoplanetary atmosphere and its mass loss over time. One major question is whether the magnetic evolution of exoplanet host stars is the same as for stars without planets; tidal and magnetic interactions of a star and its close-in planets may play a role in this. Stellar magnetic activity also shapes our ability to detect exoplanets with different methods in the first place, and therefore we need to understand it properly to derive an accurate estimate of the existing exoplanet population. I will review recent theoretical and observational results, as well as outline some avenues for future progress. 1 Introduction Stellar magnetic activity is an ubiquitous phenomenon in cool stars. These stars operate a magnetic dynamo that is fueled by stellar rotation and produces highly structured magnetic fields; in the case of stars with a radiative core and a convective outer envelope (spectral type mid-F to early-M), this is an αΩ dynamo, while fully convective stars (mid-M and later) operate a different kind of dynamo, possibly a turbulent or α2 dynamo. These magnetic fields manifest themselves observationally in a variety of phenomena. -
1. Two Objects Attract Each Other Gravitationally. If the Distance Between Their Centers Is Cut in Half, the Gravitational Force A) Is Cut to One Fourth
MULTIPLE CHOICE REVIEW – GRAVITATION (Dynamics Part 3) 1. Two objects attract each other gravitationally. If the distance between their centers is cut in half, the gravitational force A) is cut to one fourth. B) is cut in half. C) doubles. D) quadruples 2. Two objects, with masses m1 and m2, are originally a distance r apart. The magnitude of the gravitational force between them is F. The masses are changed to 2m1 and 2m2, and the distance is changed to 4r. What is the magnitude of the new gravitational force? A) F/16 B) F/4 C) 16F D) 4F 3. As a rocket moves away from the Earth's surface, the rocket's weight A) increases. B) decreases. C) remains the same. D) depends on how fast it is moving. 4. A hypothetical planet has a mass of half that of the Earth and a radius of twice that of the Earth. What is the acceleration due to gravity on the planet in terms of g, the acceleration due to gravity at the Earth? A) g B) g/2 C) g/4 D) g/8 5. Two planets have the same surface gravity, but planet B has twice the mass of planet A. If planet A has radius r, what is the radius of planet B? A) 0.707r B) r C) 1.41r D) 4r 6. A planet is discovered to orbit around a star in the galaxy Andromeda, with the same orbital diameter as the Earth around our Sun. If that star has 4 times the mass of our Sun, what will the period of revolution of that new planet be, compared to the Earth's orbital period? A) one-fourth as much B) one-half as much C) twice as much D) four times as much 7. -
Chapter 11 SOLAR RADIO EMISSION W
Chapter 11 SOLAR RADIO EMISSION W. R. Barron E. W. Cliver J. P. Cronin D. A. Guidice Since the first detection of solar radio noise in 1942, If the frequency f is in cycles per second, the wavelength radio observations of the sun have contributed significantly X in meters, the temperature T in degrees Kelvin, the ve- to our evolving understanding of solar structure and pro- locity of light c in meters per second, and Boltzmann's cesses. The now classic texts of Zheleznyakov [1964] and constant k in joules per degree Kelvin, then Bf is in W Kundu [1965] summarized the first two decades of solar m 2Hz 1sr1. Values of temperatures Tb calculated from radio observations. Recent monographs have been presented Equation (1 1. 1)are referred to as equivalent blackbody tem- by Kruger [1979] and Kundu and Gergely [1980]. perature or as brightness temperature defined as the tem- In Chapter I the basic phenomenological aspects of the perature of a blackbody that would produce the observed sun, its active regions, and solar flares are presented. This radiance at the specified frequency. chapter will focus on the three components of solar radio The radiant power received per unit area in a given emission: the basic (or minimum) component, the slowly frequency band is called the power flux density (irradiance varying component from active regions, and the transient per bandwidth) and is strictly defined as the integral of Bf,d component from flare bursts. between the limits f and f + Af, where Qs is the solid angle Different regions of the sun are observed at different subtended by the source. -
Tidal Tomography to Probe the Moon's Mantle Structure Using
Tidal Tomography to Probe the Moon’s Mantle Structure Using Lunar Surface Gravimetry Kieran A. Carroll1, Harriet Lau2, 1: Gedex Systems Inc., [email protected] 2: Department of Earth and Planetary Sciences, Harvard University, [email protected] Lunar Tides Gravimetry of the Lunar Interior VEGA Instrument through the Moon's PulSE • Gedex has developed a low cost compact space gravimeter instrument , VEGA (Vector (GLIMPSE) Investigation Gravimeter/Accelerometer) Moon • Currently this is the only available gravimeter that is suitable for use in space Earth GLIMPSE Investigation: • Proposed under NASA’s Lunar Surface Instrument and Technology Payloads • ca. 1972 MIT developed a space gravimeter (LSITP) program. instrument for use on the Moon, for Apollo 17. That instrument is long-ago out of • To fly a VEGA instrument to the Moon on a commercial lunar lander, via NASA’s production and obsolete. Commercial Lunar Payload Services (CLPS) program. VEGA under test in thermal- GLIMPSE Objectives: VEGA Space Gravimeter Information vacuum chamber at Gedex • Prove the principle of measuring time-varying lunar surface gravity to probe the lunar • Measures absolute gravity vector, with no • Just as the Moon and the Sun exert tidal forces on the Earth, the Earth exerts tidal deep interior using the Tidal Tomography technique. bias forces on the Moon. • Determine constraints on parameters defining the Lunar mantle structure using time- • Accuracy on the Moon: • Tidal stresses in the Moon are proportional to the gravity gradient tensor field at the varying gravity measurements at a location on the surface of the Moon, over the • Magnitude: Effective noise of 8 micro- Moon’s centre, multiplies by the distance from the Moon’s centre. -
Stellar Atmospheres I – Overview
Indo-German Winter School on Astrophysics Stellar atmospheres I { overview Hans-G. Ludwig ZAH { Landessternwarte, Heidelberg ZAH { Landessternwarte 0.1 Overview What is the stellar atmosphere? • observational view Where are stellar atmosphere models needed today? • ::: or why do we do this to us? How do we model stellar atmospheres? • admittedly sketchy presentation • which physical processes? which approximations? • shocking? Next step: using model atmospheres as \background" to calculate the formation of spectral lines •! exercises associated with the lecture ! Linux users? Overview . TOC . FIN 1.1 What is the atmosphere? Light emitting surface layers of a star • directly accessible to (remote) observations • photosphere (dominant radiation source) • chromosphere • corona • wind (mass outflow, e.g. solar wind) Transition zone from stellar interior to interstellar medium • connects the star to the 'outside world' All energy generated in a star has to pass through the atmosphere Atmosphere itself usually does not produce additional energy! What? . TOC . FIN 2.1 The photosphere Most light emitted by photosphere • stellar model atmospheres often focus on this layer • also focus of these lectures ! chemical abundances Thickness ∆h, some numbers: • Sun: ∆h ≈ 1000 km ? Sun appears to have a sharp limb ? curvature effects on the photospheric properties small solar surface almost ’flat’ • white dwarf: ∆h ≤ 100 m • red super giant: ∆h=R ≈ 1 Stellar evolution, often: atmosphere = photosphere = R(T = Teff) What? . TOC . FIN 2.2 Solar photosphere: rather homogeneous but ::: What? . TOC . FIN 2.3 Magnetically active region, optical spectral range, T≈ 6000 K c Royal Swedish Academy of Science (1000 km=tick) What? . TOC . FIN 2.4 Corona, ultraviolet spectral range, T≈ 106 K (Fe IX) c Solar and Heliospheric Observatory, ESA & NASA (EIT 171 A˚ ) What? . -
What Do We See on the Face of the Sun? Lecture 3: the Solar Atmosphere the Sun’S Atmosphere
What do we see on the face of the Sun? Lecture 3: The solar atmosphere The Sun’s atmosphere Solar atmosphere is generally subdivided into multiple layers. From bottom to top: photosphere, chromosphere, transition region, corona, heliosphere In its simplest form it is modelled as a single component, plane-parallel atmosphere Density drops exponentially: (for isothermal atmosphere). T=6000K Hρ≈ 100km Density of Sun’s atmosphere is rather low – Mass of the solar atmosphere ≈ mass of the Indian ocean (≈ mass of the photosphere) – Mass of the chromosphere ≈ mass of the Earth’s atmosphere Stratification of average quiet solar atmosphere: 1-D model Typical values of physical parameters Temperature Number Pressure K Density dyne/cm2 cm-3 Photosphere 4000 - 6000 1015 – 1017 103 – 105 Chromosphere 6000 – 50000 1011 – 1015 10-1 – 103 Transition 50000-106 109 – 1011 0.1 region Corona 106 – 5 106 107 – 109 <0.1 How good is the 1-D approximation? 1-D models reproduce extremely well large parts of the spectrum obtained at low spatial resolution However, high resolution images of the Sun at basically all wavelengths show that its atmosphere has a complex structure Therefore: 1-D models may well describe averaged quantities relatively well, although they probably do not describe any particular part of the real Sun The following images illustrate inhomogeneity of the Sun and how the structures change with the wavelength and source of radiation Photosphere Lower chromosphere Upper chromosphere Corona Cartoon of quiet Sun atmosphere Photosphere The photosphere Photosphere extends between solar surface and temperature minimum (400-600 km) It is the source of most of the solar radiation. -
First Firm Spectral Classification of an Early-B Pre-Main-Sequence Star: B275 in M
A&A 536, L1 (2011) Astronomy DOI: 10.1051/0004-6361/201118089 & c ESO 2011 Astrophysics Letter to the Editor First firm spectral classification of an early-B pre-main-sequence star: B275 in M 17 B. B. Ochsendorf1, L. E. Ellerbroek1, R. Chini2,3,O.E.Hartoog1,V.Hoffmeister2,L.B.F.M.Waters4,1, and L. Kaper1 1 Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904, PO Box 94249, 1090 GE Amsterdam, The Netherlands e-mail: [email protected]; [email protected] 2 Astronomisches Institut, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany 3 Instituto de Astronomía, Universidad Católica del Norte, Antofagasta, Chile 4 SRON, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands Received 14 September 2011 / Accepted 25 October 2011 ABSTRACT The optical to near-infrared (300−2500 nm) spectrum of the candidate massive young stellar object (YSO) B275, embedded in the star-forming region M 17, has been observed with X-shooter on the ESO Very Large Telescope. The spectrum includes both photospheric absorption lines and emission features (H and Ca ii triplet emission lines, 1st and 2nd overtone CO bandhead emission), as well as an infrared excess indicating the presence of a (flaring) circumstellar disk. The strongest emission lines are double-peaked with a peak separation ranging between 70 and 105 km s−1, and they provide information on the physical structure of the disk. The underlying photospheric spectrum is classified as B6−B7, which is significantly cooler than a previous estimate based on modeling of the spectral energy distribution. This discrepancy is solved by allowing for a larger stellar radius (i.e. -
Resolving the Radio Photospheres of Main Sequence Stars
Astro2020 Science White Paper Resolving the Radio Photospheres of Main Sequence Stars Thematic Areas: Resolved Stellar Populations and their Environments Principal Author: Name: Chris Carilli Institution: NRAO, Socorro, NM, 87801 Email: [email protected] Phone: 1-575-835-7306 Co-authors: B. Butler, K. Golap (NRAO), M.T. Carilli (U. Colorado), S.M. White (AFRL) Abstract We discuss the need for spatially resolved observations of the radio photospheres of main sequence stars. Such studies are fundamental to determining the structure of stars in the key transition region from the cooler optical photosphere to the hot chromosphere – the regions powering exo-space weather phenomena. Future large area radio facilities operating in the tens to 100 GHz range will be able to image directly the larger main sequence stars within 10 pc or so, possibly resolving the large surface structures, as might occur on eg. active M-dwarf stars. For more distant main sequence stars, measurements of sizes and brightnesses can be made using disk model fitting to the uv data down to stellar diameters of ∼ 0:4 mas. This size would include M0 V stars to a distance of 15 pc, A0 V stars to 60 pc, and Red Giants to 2.4 kpc. Based on the Hipparcos catalog, we estimate that there are at least 10,000 stars that will be resolved by the ngVLA. While the vast majority of these (95%) are giants or supergiants, there are still over 500 main sequence stars that can be resolved, with ∼ 50 to 150 in each spectral type (besides O stars). 1 Main Sequence Stars: Radio Photospheres The field of stellar atmospheres, and atmospheric activity, has taken on new relevance in the context of the search for habitable planets, due to the realization of the dramatic effect ’space weather’ can have on the development of life (Osten et al. -
Chapter 2: the Structure of The
SOLAR PHYSICS AND TERRESTRIAL EFFECTS 2+ Chapter 2 4= Chapter 2 The Structure of the Sun Astrophysicists classify the Sun as a star of average size, temperature, and brightness—a typical dwarf star just past middle age. It has a power output of about 1026 watts and is expected to continue producing energy at that rate for another 5 billion years. The Sun is said to have a diameter of 1.4 million kilometers, about 109 times the diameter of Earth, but this is a slightly misleading statement because the Sun has no true “surface.” There is nothing hard, or definite, about the solar disk that we see; in fact, the matter that makes up the apparent surface is so rarified that we would consider it to be a vacuum here on Earth. It is more accurate to think of the Sun’s boundary as extending far out into the solar system, well beyond Earth. In studying the structure of the Sun, solar physicists divide it into four domains: the interior, the surface atmospheres, the inner corona, and the outer corona. Section 1.—The Interior The Sun’s interior domain includes the core, the radiative layer, and the convective layer (Figure 2–1). The core is the source of the Sun’s energy, the site of thermonuclear fusion. At a temperature of about 15,000,000 K, matter is in the state known as a plasma: atomic nuclei (principally protons) and electrons moving at very high speeds. Under these conditions two protons can collide, overcome their electrical repulsion, and become cemented together by the strong nuclear force. -
Chapter 3 Projects Test Monday Gravity
Chapter 3 Celestial Sphere Movie Gravity and Motion Projects Test Monday Preview • I moved due-date for Part 1 to 10/21 Ch 1 Ch 2 • I added a descriptive webpage about the Galileo Movie projects. Essay 1: Backyard Astronomy Ch. 3 (just beginning) Northern Hemisphere sky: Big Dipper Little Dipper Cassiopeia Orion Polaris Gravity The Problem of Astronomical Motion • Gravity gives the Universe its structure • Astronomers of antiquity did – It is a universal force that not connect gravity and causes all objects to pull on astronomical motion all other objects • Galileo investigated this everywhere connection with experiments – It holds objects together using projectiles and balls – It is responsible for holding rolling down planks the Earth in its orbit around • He put science on a course to the Sun, the Sun in its orbit determine laws of motion and around the Milky Way, and to develop the scientific the Milky Way in its path method within the Local Group Inertia and Newton’s First Law Inertia • This concept was • Galileo established the idea of inertia incorporated in – A body at rest tends to remain at rest Newton’s First Law – A body in motion tends to remain in motion of Motion: – Through experiments with inclined planes, Galileo demonstrated the idea of inertia and the A body continues in a importance of forces (friction) state of rest or uniform motion in a straight line unless made to change that state by forces acting on it Newton’s First Law Astronomical Motion • As seen earlier, planets • Must there be a force at move along curved work? • Important ideas of (elliptical) paths, or Newton’s First Law – The law implies that if • Yes! an object is not moving orbits. -
The Mass of the Moon Is 1/81 of the Mass of the Earth. Q14.1 Compared to the Gravitational Force That the Earth Exerts on the Mo
Q14.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 812 = 6561 times greater. B. 81 times greater . C. equally strong. D1/81D. 1/81 as great. E. (1/81)2 = 1/6561 as great. © 2012 Pearson Education, Inc. A14.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 812 = 6561 times greater. B. 81 times greater . C. equally strong. D1/81D. 1/81 as great. E. (1/81)2 = 1/6561 as great. © 2012 Pearson Education, Inc. Q14.2 The planet Saturn has 100 times the mass of the Earth and is 10 times more distant from the Sun than the Earth is. Compared to the Earth’s acceleration as it orbits the Sun, the accelileration of fS Saturn as ibihSiit orbits the Sun is A. 100 times greater. B. 10 times greater . C. the same. D1/10D. 1/10 as great. E. 1/100 as great. © 2012 Pearson Education, Inc. A14.2 The planet Saturn has 100 times the mass of the Earth and is 10 times more distant from the Sun than the Earth is. Compared to the Earth’s acceleration as it orbits the Sun, the accelileration of fS Saturn as ibihSiit orbits the Sun is A.