Combining Metabarcoding and Morphological Approaches to Identify Phytoplankton Taxa Associated with Harmful Algal Blooms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fmicb-11-542372 September 28, 2020 Time: 18:7 # 1
UvA-DARE (Digital Academic Repository) Seasonal and Geographical Transitions in Eukaryotic Phytoplankton Community Structure in the Atlantic and Pacific Oceans Choi, C.J.; Jimenez, V.; Needham, D.M.; Poirier, C.; Bachy, C.; Alexander, H.; Wilken, S.; Chavez, F.P.; Sudek, S.; Giovannoni, S.J.; Worden, A.Z. DOI 10.3389/fmicb.2020.542372 Publication date 2020 Document Version Final published version Published in Frontiers in Microbiology License CC BY Link to publication Citation for published version (APA): Choi, C. J., Jimenez, V., Needham, D. M., Poirier, C., Bachy, C., Alexander, H., Wilken, S., Chavez, F. P., Sudek, S., Giovannoni, S. J., & Worden, A. Z. (2020). Seasonal and Geographical Transitions in Eukaryotic Phytoplankton Community Structure in the Atlantic and Pacific Oceans. Frontiers in Microbiology, 11, [542372]. https://doi.org/10.3389/fmicb.2020.542372 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. -
Akashiwo Sanguinea
Ocean ORIGINAL ARTICLE and Coastal http://doi.org/10.1590/2675-2824069.20-004hmdja Research ISSN 2675-2824 Phytoplankton community in a tropical estuarine gradient after an exceptional harmful bloom of Akashiwo sanguinea (Dinophyceae) in the Todos os Santos Bay Helen Michelle de Jesus Affe1,2,* , Lorena Pedreira Conceição3,4 , Diogo Souza Bezerra Rocha5 , Luis Antônio de Oliveira Proença6 , José Marcos de Castro Nunes3,4 1 Universidade do Estado do Rio de Janeiro - Faculdade de Oceanografia (Bloco E - 900, Pavilhão João Lyra Filho, 4º andar, sala 4018, R. São Francisco Xavier, 524 - Maracanã - 20550-000 - Rio de Janeiro - RJ - Brazil) 2 Instituto Nacional de Pesquisas Espaciais/INPE - Rede Clima - Sub-rede Oceanos (Av. dos Astronautas, 1758. Jd. da Granja -12227-010 - São José dos Campos - SP - Brazil) 3 Universidade Estadual de Feira de Santana - Departamento de Ciências Biológicas - Programa de Pós-graduação em Botânica (Av. Transnordestina s/n - Novo Horizonte - 44036-900 - Feira de Santana - BA - Brazil) 4 Universidade Federal da Bahia - Instituto de Biologia - Laboratório de Algas Marinhas (Rua Barão de Jeremoabo, 668 - Campus de Ondina 40170-115 - Salvador - BA - Brazil) 5 Instituto Internacional para Sustentabilidade - (Estr. Dona Castorina, 124 - Jardim Botânico - 22460-320 - Rio de Janeiro - RJ - Brazil) 6 Instituto Federal de Santa Catarina (Av. Ver. Abrahão João Francisco, 3899 - Ressacada, Itajaí - 88307-303 - SC - Brazil) * Corresponding author: [email protected] ABSTRAct The objective of this study was to evaluate variations in the composition and abundance of the phytoplankton community after an exceptional harmful bloom of Akashiwo sanguinea that occurred in Todos os Santos Bay (BTS) in early March, 2007. -
Certified Calibration Solution for Yessotoxin
CRM-YTX-c (Lot # 20151125) Certified Calibration Solution for Yessotoxin The yessotoxins (YTXs) are a group of polycyclic ether compounds produced by various dinoflagellate algae including Protoceratium reticulatum, Lingulodinium polyedrum and Gonyaulax spinifera [1]. The maximum allowable levels of certain YTXs in shellfish for human consumption is regulated [2]. CRM-YTX-c is a certified calibration solution of YTX in methanol and is a replacement for CRM-YTX-b, which was released in 2012. Table 1: Certified concentration value for CRM-YTX-c Compound µmol/L (at +20 °C) Yessotoxin (protonated form) 4.3 ± 0.2 NaO3SO HO H O H H O NaO3SO H H O H H O O H H O H H H H H O O H O O H OH H H O Yessotoxin (protonated form) CAS registry No.: 112514-54-2 Molecular formula: C55H82O21S2 Molecular weight: 1143.4 g/mol [M-H]- : m/z 1141.4717 [M-2H]2- : m/z 570.2322 Yessotoxin (sodium salt form) Molecular formula: C55H80O21S2Na2 Molecular weight: 1187.3 g/mol Period of validity: 1 year from date of sale Storage conditions: -12 °C or below Biotoxin CRMs CRM-YTX-c 2/8 Intended Use CRM-YTX-c is a certified calibration solution designed for analytical method development and accurate quantitation of YTX. The concentration of CRM-YTX-c makes it suitable for preparing a dilution series for calibration of liquid chromatography (LC) and liquid chromatography-mass spectrometry (LC-MS) instrumentation, as well as for spiking shellfish control samples for recovery experiments. Instructions for Storage and Use To ensure the stability of CRM-YTX-c, ampoules should be stored at -12 °C or below. -
Nucleotide Amino Acid Size (Nt) #Orfs Marnavirus Heterosigma Akashiwo Heterosigma Akashiwo RNA Heterosigma Lang Et Al
Supplementary Table 1: Summary of information for all viruses falling within the seven Marnaviridae genera in our analyses. Accession Genome Genus Species Virus name Strain Abbreviation Source Country Reference Nucleotide Amino acid Size (nt) #ORFs Marnavirus Heterosigma akashiwo Heterosigma akashiwo RNA Heterosigma Lang et al. , 2004; HaRNAV AY337486 AAP97137 8587 One Canada RNA virus 1 virus akashiwo Tai et al. , 2003 Marine single- ASG92540 Moniruzzaman et Classification pending Q sR OV 020 KY286100 9290 Two celled USA ASG92541 al ., 2017 eukaryotes Marine single- Moniruzzaman et Classification pending Q sR OV 041 KY286101 ASG92542 9328 One celled USA al ., 2017 eukaryotes APG78557 Classification pending Wenzhou picorna-like virus 13 WZSBei69459 KX884360 9458 One Bivalve China Shi et al ., 2016 APG78557 Classification pending Changjiang picorna-like virus 2 CJLX30436 KX884547 APG79001 7171 One Crayfish China Shi et al ., 2016 Beihai picorna-like virus 57 BHHQ57630 KX883356 APG76773 8518 One Tunicate China Shi et al ., 2016 Classification pending Beihai picorna-like virus 57 BHJP51916 KX883380 APG76812 8518 One Tunicate China Shi et al ., 2016 Marine single- ASG92530 Moniruzzaman et Classification pending N OV 137 KY130494 7746 Two celled USA ASG92531 al ., 2017 eukaryotes Hubei picorna-like virus 7 WHSF7327 KX884284 APG78434 9614 One Pill worm China Shi et al ., 2016 Classification pending Hubei picorna-like virus 7 WHCC111241 KX884268 APG78407 7945 One Insect China Shi et al ., 2016 Sanxia atyid shrimp virus 2 WHCCII13331 KX884278 APG78424 10445 One Insect China Shi et al ., 2016 Classification pending Freshwater atyid Sanxia atyid shrimp virus 2 SXXX37884 KX883708 APG77465 10400 One China Shi et al ., 2016 shrimp Labyrnavirus Aurantiochytrium single Aurantiochytrium single stranded BAE47143 Aurantiochytriu AuRNAV AB193726 9035 Three4 Japan Takao et al. -
University of Oklahoma
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D. -
Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae -
Supplementary Figure 1. Tintinnid Ciliates (A, B, C, D) and Radiolaria (E, F, G) Collected by the Bottle Net Between 2,000-4,000 M
a) b) c) d) 20 µm e) f) g) 40 µm Supplementary Figure 1. Tintinnid ciliates (A, B, C, D) and radiolaria (E, F, G) collected by the bottle net between 2,000-4,000 m. 1 Supplementary Figure 2. Cytograms of some selected surface and deep ocean samples. The samples were stained with SybrGreen I, a DNA stain that targets nucleic acids and, thus, stain all microbes, phototroph or autotroph. However, those microbes that have red autofluorescence from the chlorophyll a, appear in a different diagonal when plotting red vs. green (SybrGreen) fluorescence. They are indicated as “pa”, while the bacteria and archaea are labelled as “bt”. Reference 1 µm Yellow-Green Polysciences beads were added as internal standards (labelled “b”). A) A surface sample, Station 40 at 70 m, ratio bt/pa= 11.8; B) Station 110, at 2000 m, ratio bt/pa= 6.1; C) Station 126, at 2200 m ratio bt/pa= 6.2; and D) Stn 113, at 3850 m, ratio bt/pa= 9.1. 2 A B C ) -1 D E F Ln Alive cell concentration (cells L (cells cell concentration Alive Ln Time (days) Supplementary Figure 3. Mortality of surface phytoplankton cells in the dark. The decline in the number of alive cells of phytoplankton sampled at the surface layer declined with time when maintained in the dark and at cold temperature, conditions encountered during their possible sinking transient from the surface to the deep ocean. (A) Trichodesmium sp. (p <0.001); (B) centric diatom (p <0.05); (C) Ceratium sp. (p <0.01); (D) Ceratium spp. -
Combined Oral Toxicity of Azaspiracid-1 and Yessotoxin in Female NMRI Mice
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Marine Institute Open Access Repository (OAR) Combined oral toxicity of azaspiracid-1 and yessotoxin in female NMRI mice John A. B. Aasen*1, Arild Espenes2, Christopher O. Miles3,4, Ingunn A. Samdal3, Philipp Hess5,6, Tore Aune1 1Norwegian School of Veterinary Science, Department of Food Safety and Infection Biology, P.O. Box 8146 Dep., 0033 Oslo, Norway. 2Norwegian School of Veterinary Science, Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., 0033 Oslo, Norway. 3Norwegian Veterinary Institute, P.O. Box 750 Sentrum, NO-0106 Oslo, Norway. 4AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand. 5Marine Institute, Renville, Oranmore, Co. Galway, Ireland. 6 IFREMER, Department of Environment, Microbiology & Phycotoxins, Rue de l’Île d’Yeu, 44311 Nantes Cedex 03, France. 1 Abstract For many years, the presence of yessotoxins (YTXs) in shellfish has contributed to the outcome of the traditional mouse bioassay and has on many occasions caused closure of shellfisheries. Since YTXs do not appear to cause diarrhoea in man and exert low oral toxicity in animal experiments, it has been suggested that they should be removed from regulation. Before doing so, it is important to determine whether the oral toxicity of YTXs is enhanced when present together with shellfish toxins known to cause damage to the gastrointestinal tract. Consequently, mice were given high doses of YTX, at 1 or 5 mg/kg body weight, either alone or together with azaspiracid-1 (AZA1) at 200 µg/kg. -
Global Ecology and Oceanography of Harmful Algal Blooms, Science Plan
GEOHAB Global Ecology and Oceanography of Harmful Algal Blooms Science Plan An International Programme Sponsored by the Scientific Committee on Oceanic Research (SCOR) and the Intergovernmental Oceanographic Commission (UNESCO) Edited by: Patricia M. Glibert and Grant Pitcher With the assistance of: Allan Cembella, John Cullen, and Yasuwo Fukuyo Based on contributions by the GEOHAB Scientific Steering Committee: Patrick Gentien, Yasuwo Fukuyo, Donald M. Anderson, Susan Blackburn, Allan Cembella, John Cullen, Malte Elbrächter, Henrik Enevoldsen, Marta Estrada, Wolfgang Fennel, Patricia M. Glibert, Elizabeth Gross, Kaisa Kononen, Nestor Lagos, Thomas Osborn, Grant Pitcher, Arturo P. Sierra-Beltrán, Steve Thorpe, Edward R. Urban, Jr., Jing Zhang, and Adriana Zingone April 2001 This report may be cited as: GEOHAB, 2001. Global Ecology and Oceanography of Harmful Algal Blooms, Science Plan. P. Glibert and G. Pitcher (eds). SCOR and IOC, Baltimore and Paris. 87 pp. Science Plan This document describes a Science Plan reviewed and approved by the Scientific Commission on Oceanic Research (SCOR) and the Intergovernmental Oceanographic Commission (IOC) of the U.N. Education, Scientific, and Cultural Organisation (UNESCO) This document is GEOHAB Report #1. Copies may be obtained from: Edward R. Urban, Jr. Henrik Enevoldsen Executive Director, SCOR Project Coordinator Department of Earth and Planetary Sciences IOC Science and Communication Centre on The Johns Hopkins University Harmful Algae Baltimore, MD 21218 U.S.A. Botanical Institute, University of Copenhagen Tel: +1-410-516-4070 Øster Farimagsgade 2D Fax: +1-410-516-4019 DK-1353 Copenhagen K, Denmark E-mail: [email protected] Tel: +45 33 13 44 46 Fax: +45 33 13 44 47 E-mail: [email protected] This report is also available on the web at: http://www.jhu.edu/~scor http://ioc.unesco.org/hab Cover photos. -
Aquatic Microbial Ecology 80:193
This authors' personal copy may not be publicly or systematically copied or distributed, or posted on the Open Web, except with written permission of the copyright holder(s). It may be distributed to interested individuals on request. Vol. 80: 193–207, 2017 AQUATIC MICROBIAL ECOLOGY Published online October 5 https://doi.org/10.3354/ame01849 Aquat Microb Ecol Grazing of the heterotrophic dinoflagellate Noctiluca scintillans on dinoflagellate and raphidophyte prey Beth A. Stauffer1,*, Alyssa G. Gellene2, Diane Rico3, Christine Sur4, David A. Caron2 1Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70403, USA 2Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA 3School of Oceanography, University of Washington, Seattle, WA 98105, USA 4Graduate Group in Ecology, University of California, Davis, Davis, CA 95616, USA ABSTRACT: Noctiluca scintillans is a bloom-forming heterotrophic dinoflagellate that can ingest (and grow on) a number of phytoplankton prey, including several potentially toxic phytoplankton species. The current study documented (1) a range of N. scintillans growth rates (μ = −0.09 to 0.83 d−1) on several species of harmful dinoflagellates and raphidophytes, including Heterosigma akashiwo and Akashiwo sanguinea, and (2) the first published growth rates on Lingulodinium polyedrum, Chattonella marina, and Alexandrium catenella. N. scintillans attained maximum growth rates (μ = 0.83 d−1) on the raphidophyte H. akashiwo and negative growth rates (i.e. signif- icant mortality) on the dinoflagellates A. catenella (μ = −0.03 d−1) and A. sanguinea (μ = −0.08 d−1) and the raphidophyte C. marina (μ = −0.09 d−1). Toxin production by A. -
Book of Abstracts
PICES Seventeenth Annual Meeting Beyond observations to achieving understanding and forecasting in a changing North Pacific: Forward to the FUTURE North Pacific Marine Science Organization October 24 – November 2, 2008 Dalian, People’s Republic of China Contents Notes for Guidance ...................................................................................................................................... v Floor Plan for the Kempinski Hotel......................................................................................................... vi Keynote Lecture.........................................................................................................................................vii Schedules and Abstracts S1 Science Board Symposium Beyond observations to achieving understanding and forecasting in a changing North Pacific: Forward to the FUTURE......................................................................................................................... 1 S2 MONITOR/TCODE/BIO Topic Session Linking biology, chemistry, and physics in our observational systems – Present status and FUTURE needs .............................................................................................................................. 15 S3 MEQ Topic Session Species succession and long-term data set analysis pertaining to harmful algal blooms...................... 33 S4 FIS Topic Session Institutions and ecosystem-based approaches for sustainable fisheries under fluctuating marine resources .............................................................................................................................................. -
Chemical Signaling in Diatom-Parasite Interactions
Friedrich-Schiller-Universität Jena Chemisch-Geowissenschaftliche Fakultät Max-Planck-Institut für chemische Ökologie Chemical signaling in diatom-parasite interactions Masterarbeit zur Erlangung des akademischen Grades Master of Science (M. Sc.) im Studiengang Chemische Biologie vorgelegt von Alina Hera geb. am 30.03.1993 in Kempten Erstgutachter: Prof. Dr. Georg Pohnert Zweitgutachter: Dr. rer. nat. Thomas Wichard Jena, 21. November 2019 Table of contents List of Abbreviations ................................................................................................................ III List of Figures .......................................................................................................................... IV List of Tables ............................................................................................................................. V 1. Introduction ............................................................................................................................ 1 2. Objectives of the Thesis ....................................................................................................... 11 3. Material and Methods ........................................................................................................... 12 3.1 Materials ......................................................................................................................... 12 3.2 Microbial strains and growth conditions ........................................................................ 12 3.3